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Abstract

The reconstruction of ancestral scenarios is widely used to study the evolution of characters along phylogenetic trees.
One commonly uses the marginal posterior probabilities of the character states, or the joint reconstruction of the most
likely scenario. However, marginal reconstructions provide users with state probabilities, which are difficult to interpret
and visualize, whereas joint reconstructions select a unique state for every tree node and thus do not reflect the
uncertainty of inferences.
We propose a simple and fast approach, which is in between these two extremes. We use decision-theory concepts
(namely, the Brier score) to associate each node in the tree to a set of likely states. A unique state is predicted in tree
regions with low uncertainty, whereas several states are predicted in uncertain regions, typically around the tree root. To
visualize the results, we cluster the neighboring nodes associated with the same states and use graph visualization tools.
The method is implemented in the PastML program and web server.
The results on simulated data demonstrate the accuracy and robustness of the approach. PastML was applied to the
phylogeography of Dengue serotype 2 (DENV2), and the evolution of drug resistances in a large HIV data set. These
analyses took a few minutes and provided convincing results. PastML retrieved the main transmission routes of human
DENV2 and showed the uncertainty of the human-sylvatic DENV2 geographic origin. With HIV, the results show that
resistance mutations mostly emerge independently under treatment pressure, but resistance clusters are found, corre-
sponding to transmissions among untreated patients.

Key words: phylogenetics, ancestral character reconstruction, maximum likelihood, marginal and joint posterior
probabilities, maximum a posteriori, Brier scoring rule, simulations, Dengue, HIV, phylogeography, drug resistance
mutations.

Introduction
A central issue in biology is to recover and understand the
evolutionary history of biological entities. These may be of
different nature and scale, ranging from DNA and protein
sequences to communities, going through biological systems,
organs, strains, individuals, species, and populations. The
characteristics and evolution of these objects are measured
using a variety of “characters,” including molecular properties
(e.g., Werner et al. 2014; Bickelmann et al. 2015; Busch et al.
2016), gene contents of genomes (e.g., Iwasaki and Takagi
2007), morphological and phenotypic characteristics (e.g.,
Endress and Doyle 2009; Marazzi et al. 2012; Beaulieu et al.
2013; Sauquet et al. 2017), ecological traits (e.g., Maor et al.
2017), and geographic locations (e.g., Arbogast 2001; Wallace
et al. 2007; Lemey et al. 2009, 2014; Edwards et al. 2011; Dudas
et al. 2017; Magee et al. 2017). Ancestral character recon-
struction (ACR) is central in all these studies to trace the
origin and evolution of the character of interest. ACR relies
first on the inference of phylogenetic relationships among

the studied objects, that is, a phylogenetic tree, typically in-
ferred from DNA or protein sequences. The character state is
generally known for all (most) tips of the tree (some methods
can accommodate for unknown or ambiguous state values).
ACR is commonly used to reconstruct ancestral sequences
corresponding to specific tree nodes (typically the tree root).
ACR is also used to determine how the character of interest
has changed on the tree from the root to the tips over evo-
lutionary time, by assigning the most likely ancestral charac-
ter states to every internal node. This global reconstruction
over the whole tree describes the evolutionary history of the
character and is commonly called an “ancestral scenario,”
which is the focus of this article. Several approaches have
been proposed for ACR so far, including parsimony (Swofford
and Maddison 1987), maximum likelihood (ML; Pagel 1999;
Pupko et al. 2000; Felsenstein 2004; Ree and Smith 2008), and
Bayesian methods (Huelsenbeck and Bollback 2001; Pagel
et al. 2004).
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Parsimony-based ACR provides quick and simple methods
to infer ancestral scenarios. However, due to the oversimpli-
fication of evolutionary processes (e.g., not accounting for
branch lengths and evolutionary times), parsimony has lim-
ited accuracy (Collins et al. 1994). ML and Bayesian
approaches are based on probabilistic models of character
evolution. ML methods were shown to perform better than
parsimony, using both theoretical arguments and simulation
studies under a variety of conditions ( Zhang and Nei 1997;
Gascuel and Steel 2014). Simulation results showed that even
the simplest models (e.g., JC, Jukes and Cantor 1969) yield
more accurate reconstructions than parsimony (Gascuel and
Steel 2014), thanks to the consideration of evolutionary times
and branch lengths, and are robust to moderate model vio-
lations and phylogenetic uncertainty (Hanson-Smith et al.
2010).

The size of the trees subjected to ACR has rapidly increased
thanks to new generation sequencing technologies.
Evolutionary and epidemiological analysis of pathogens, like
human immunodeficiency virus (HIV), Influenza, and Ebola, is
one of the hotspots of this problem, with data sets commonly
comprising thousands of strains (Holmes et al. 2016; Ratmann
et al. 2017; Dur~aes-Carvalho and Salemi 2018). With such
rapidly evolving pathogens, the links between evolutionary
and epidemiological processes raise essential public health
questions with important practical issues, notably the routes
and patterns of pathogen spread (Wallace et al. 2007; Faria
et al. 2014; Lemey et al. 2014; Gr€af et al. 2015; Dudas et al.
2017; Magee et al. 2017) and the emergence of drug resistan-
ces (Mourad et al. 2015; Zhukova et al. 2017). In these studies
(and many others), ACR was a major tool, aiming to map
ancestral states of pathogen characters (e.g., sampling loca-
tion, risk group of the host, and presence of drug resistance)
on the tree inferred from DNA or protein sequences.

Bayesian methods (Huelsenbeck and Bollback 2001; Pagel
et al. 2004; Drummond et al. 2012) are commonly used in this
context, notably in phylogeography studies (Lewis et al. 2015;
Magee et al. 2017). The main approach is to infer the joint
posterior distributions of ancestral character states, phyloge-
netic tree, and model parameters, using a Markov chain
Monte Carlo (MCMC) procedure. This involves complex
probabilistic models describing the evolution of the sequen-
ces, the molecular clock (possibly relaxed and correlated), the
demography, and last but not least the evolution of the stud-
ied character. Stochastic mapping (Nielsen 2002; Huelsenbeck
et al. 2003) is simpler and commonly used to generate and
compare alternative, plausible evolutionary histories of the
studied character on a given tree. The character evolution
model can be very simple, typically symmetrical with a few
states, but the current trend is to rely on increasingly complex
models, nonsymmetrical, with latent variables, dozens of
character states, and evolution over time (Stadler and
Bonhoeffer 2013; Lambert et al. 2014; Leventhal et al. 2014;
Kühnert et al. 2014, 2016). The Bayesian approach is very
popular because of this wealth of options and flexibility, via
famous software programs like BEAST (Drummond et al.
2012). However, Markov chain Monte Carlo based methods
have a high computational cost, and the joint inference of all

the tree, parameter, and character distributions cannot be
achieved for large data sets. Even the stepwise approach
where we first infer the tree distribution, and then the distri-
bution of the studied character along the most likely trees is
hardly applicable to medium data sets (500–1,000 tips), re-
quiring high performance computing units (Graphics
Processing Units [GPUs]), sophisticated parallel implementa-
tions (Ayres et al. 2012, 2019), and days to weeks of compu-
tation. In contrast, the ML approach is less computationally
demanding as it gives point estimates for the parameters of
interest, instead of distributions. For example, TreeTime
(Sagulenko et al. 2018) is able to deal with large trees com-
prising thousands of tips and perform fast ML-based ACR in a
few minutes or even a few seconds.

However, there are still potential limitations in applying
standard ML-based ACR to large data sets and trees. These
limitations are related to the inference of the character states,
the uncertainty that is inherent to such inference and that of
the phylogeny, as well as the visualization and interpretation
of the (large) resulting ancestral scenario. Two main
approaches are used in ML-based ACR:

• Either we compute the marginal posterior probabilities of
every state for each of the tree nodes (Felsenstein 2004;
Yang 2007). Then, we usually select the state with the
highest posterior. This maximum a posteriori (MAP) se-
lection is independent from one node to another, which
could induce globally inconsistent scenarios (typically:
two very close nodes with incompatible predictions).
This possible shortcoming formed the basis of criticisms
against MAP-based ACR.

• Or we compute the joint ancestral scenario with the
maximal posterior probability (Pupko et al. 2000) using
dynamic programing. This approach has some global
consistency guarantee but returns a unique scenario,
and thus does not reflect the fact that with real data
and large trees, billions of scenarios may have similar
posterior probabilities.

Our simulations (Gascuel and Steel 2014; see also results
below) showed that the predictions and accuracy of MAP
and joint approaches are very close. This advocates for the use
of the full marginal approach, which not only indicates the
most likely state for each node (as predicted by MAP) but also
returns the marginal posterior probabilities of all states, thus
reflecting the uncertainties of node predictions. However,
interpreting and using these probabilistic outputs is difficult,
for example when two states have similar posteriors. Another
difficulty is to visualize and summarize the resulting, global
scenario, which commonly involves thousands of probability
distributions attached to each of the tree nodes.

Here, we propose a simple and fast approach to overcome
these limitations. We use decision theoretic concepts and
tools to infer a limited set of likely states for each of the
tree nodes, which best approximate the marginal posterior
probabilities. In the easy regions of the tree (typically close to
the tips [Gascuel and Steel 2014]), this approach predicts a
unique state, whereas in the difficult parts (typically close to
the root) it may predict several likely states reflecting the

Ishikawa et al. . doi:10.1093/molbev/msz131 MBE

2070

Deleted Text: -
Deleted Text: ,
Deleted Text:  
Deleted Text: 6,
Deleted Text: <xref ref-type=
Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text:  
Deleted Text: ,
Deleted Text:  
Deleted Text: ,
Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text: ,
Deleted Text: 3,
Deleted Text: , <xref ref-type=
Deleted Text:  
Deleted Text: MCMC-
Deleted Text:  to 
Deleted Text:  
Deleted Text: 1
Deleted Text:  
Deleted Text: , <xref ref-type=
Deleted Text: m
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: while 


uncertainty of the inferences. Such results are typically en-
countered in phylogeography, where the deep origin of the
studied species or virus cannot be determined with certainty,
whereas its recent history is almost certain (see application to
Dengue below). When one is mostly interested in the best
guess, this approach will highlight that some of the nodes are
predicted with high confidence, whereas some others are not
(as with numerical values and confidence intervals). This ap-
proach is generic and could be used to reconstruct ancestral
sequences (see Oliva et al. [2019] for a closely related
method), but we restrict ourselves here to unique, discrete
characters, for example geographical or morphological. To
summarize and visualize the resulting scenarios in this frame-
work, we cluster the neighboring nodes with identical pre-
dictions and reuse some of the ideas we developed in
parsimony-based PhyloType software (Chevenet et al.
2013). This way we obtain a compact, tree-shaped and easily
interpretable graphical representation of the most likely an-
cestral scenarios, which is robust to phylogenetic uncertain-
ties and sampling rate variations. In the following, we first
describe the different components of the method, then the
results with simulated data along with comparisons with
other ACR methods, and lastly two real data analyses on
the phylogeography of Dengue and the evolution of drug
resistances in a large HIV data set. All methods developed
and studied in this article are implemented in the PastML
software, which is freely available in several versions and
interfaces, including a web server (https://pastml.pasteur.fr/).

New Approaches

Preamble
The method can be decomposed into three main steps: 1)
ML-based rescaling of the tree and estimation of the model
parameters, 2) ancestral reconstruction of the most likely
character states, and 3) compression and visualization of
the inferred ancestral scenario. These three steps are de-
scribed in turn in the following. In this section, we describe
the input data, notation, model and global framework, and
goals.

The input of the method is a rooted tree denoted as T,
where every tip is associated with a character state. The num-
ber of tree tips is denoted as n and the tree root as R. T may be
not fully resolved, the method applies to both binary and
nonbinary trees. In most cases, T is obtained from a multiple
alignment of sequences (DNA or proteins) using some stan-
dard phylogenetic software. Then, the branch lengths are
expressed in number of substitutions per site. As we shall
see, the input tree is rescaled to fit the evolution of the stud-
ied character, and thus all branch-length measures are accept-
able. Most interesting results will be obtained with time
scaled trees, where branch lengths are expressed in years.
Then, the rescaling factor estimated from the input data
represents the average number of character changes per year.

The studied character may be of various natures, as dis-
cussed in the Introduction. Here, we consider discrete char-
acters with values taken from a finite, nonordered set of
states; for example: {Africa, America, Asia, Australia, Europe}

in phylogeography, or {Sensitive, Resistant} when studying
drug resistances. S denotes the set of possible states, with
size s. A tree tip (or leaf) is denoted as l, and cðlÞ 2 S is the
character state associated with l. The method is able to ac-
commodate tips with unknown character values, denoted as
cðlÞ ¼ X, as well as ambiguities when for a given tip several
states are possible. Then, cðlÞ is a subset of S, and consistently
cðlÞ ¼ X is equivalent to cðlÞ ¼ S.

Continuous-time Markov models are commonly used
to represent the evolution of characters, notably with
sequences where all sites of the studied multiple
alignment are usually assumed to evolve according to
the same model (with different rates when using rates
across sites models, e.g., gamma distributed). In this set-
ting, especially with DNA having four states only, one is
able to accurately estimate the parameters of relatively
complex models, for example GTR (Tavar�e 1986) having
ten parameters and 8 degrees of freedom with DNA. Here,
we have a unique observation describing the evolution of
the studied character through the tips values, and accu-
rately estimating the parameters of complex models is
usually difficult, if not impossible, especially when s is
large (Gascuel and Steel 2018). We therefore use simple
s-state JC-like and F81-like models, which generalize to s
states the 4-state JC and F81 models for DNA (Jukes and
Cantor 1969; Felsenstein 1981). With JC-like models all
rates of changes from state i to state j (i 6¼ j) are equal,
whereas with F81-like models, the rate of changes from i
to j (i 6¼ j) is proportional to the equilibrium frequency of
j, denoted as pj. JC-like models are special cases of F81-like
ones, with all equilibrium frequencies equal to 1=s. Several
studies advocate the use of s-state F81-like models. We
showed (Gascuel and Steel 2014), using simulations, that
even the simpler JC-like version performs nearly as well as
the true model, with DNA-like data generated using an
HKY model (Hasegawa et al. 1985) with high transition/
transversion rate and heterogeneous nucleotide frequen-
cies. Moreover, Dudas et al. (2017) showed that the origin
and destination population sizes (represented by pi and
pj, respectively) are two of the main factors explaining
Ebola dissemination in West Africa. This finding is in ac-
cordance with the use of s-state F81-like models, where
the expected number of changes from i to j is propor-
tional to pipj. Another advantage of F81-like models is
that the probability of changes along a branch of length
t is simply expressed as

PCði! j=tÞ ¼ ð1� e�ltÞpj if j 6¼ i

¼ e�lt þ ð1� e�ltÞpi otherwise;

where l is the normalization factor:

l ¼ 1=ð1�
X

p2
i Þ:

An s-state F81-like model has s parameters (s� 1 degrees
of freedom) corresponding to the equilibrium frequencies of
the s states. In our software, these frequencies can be user
supplied, roughly estimated from the state frequencies
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observed at the tree tips (not recommended, see Gascuel and
Steel [2018]), or estimated by ML as explained in the next
section.

Tree Rescaling and Editing, Parameter Estimation
Beyond the state equilibrium frequencies, the whole model
involves one additional parameter, namely the “global rate,”
denoted as q. With a unique character, as is the case here,
estimating all branch lengths in the tree is just impossible. We
therefore assume that the number of character changes along
the tree is proportional to the branch lengths of the input
tree. Every branch length t is turned into qt, which is inter-
preted as the expected number of character changes along
the given branch. Moreover, we assume that q is constant
across the tree over evolutionary time, which is a similar as-
sumption to the one-rate model (Mooers and Schluter 1999).
With dated input trees, the original branch lengths are mea-
sured in years and q in number of state changes per year. The
estimated value of q is then highly informative about
the global evolutionary rate of the studied character along
the tree.

Both dated and molecular trees may have branches of
length zero. For example, when two input sequences are
identical (quite common with virus strains), we expect that
any reasonable phylogenetic method infers a cherry with null
branches connecting the two sequences (a cherry is a rooted
subtree of two taxa). Similar configurations may happen in
dated trees due to temporal constraints (To et al. 2016).
However, two identical sequences may have been observed
in different countries, thus giving rise to two different char-
acter states linked by a path of length zero, and the same may
happen with other types of characters (e.g., phenotypic). In a
standard phylogenetic setting, the likelihood of any scenario
containing such a configuration is null and no ML-based an-
cestral reconstruction is possible. To circumvent this diffi-
culty, we edit the input tree. First, all internal branches of
length zero are turned into polytomies. Then, for each node
having daughter tips with branches of length zero, we com-
pute the union of their states, which is assigned to all these
tips (e.g., consider a node v with three daughter tips: x with
state i and zero branch length, y with state j and zero branch
length, and z with state i and nonzero branch length; then, in
the edited tree x and y are associated with state set fi; jg and
z is unchanged). This simply expresses that the corresponding
taxa were observed with different states (e.g., the same
sequences in different countries). The likelihood is computed
as usual (Materials and Methods) from this edited (and
rescaled) tree, in order to estimate the model parameters
and infer the ancestral states. Before outputting the state
predictions and visualizing the results, the zero-tip configu-
rations are reedited back to their original state.

To estimate the model parameters (q, the equilibrium
frequencies with F81-like models, and j the transition/trans-
version ratio with the HKY model used in simulations), we
compute the scenario likelihood using the standard pruning
algorithm (Felsenstein 1981), and use the limited-memory
bounded BFGS optimization routine to obtain ML estimates
(L-BFGS-B [Byrd et al. 1995; Zhu et al. 1997], available in

Python SciPy library [Oliphant 2007]). This is achieved in
two steps (both using the pruning and L-BFGS-B algorithms):
first we obtain a rough estimate of q assuming a JC-like
model, then we estimate all parameters together, starting
from the previously estimated value of q and equal frequen-
cies for all the states (and j ¼ 4 with HKY). The L-BFGS-B
algorithm allows for constraints. To avoid very large or very
low values of the global rate q (possible when the tip states
are very similar or highly divergent), we impose: b�1 � 0:001
� q � b�1 � 10; where b is the average length of nonzero
branches. This means that in the rescaled tree the number of
changes along a branch with original length b is in between
0.001 and 10 (note that with 10 changes per branch recon-
structing ancestral scenarios is just impossible). These bounds
on the q estimate performed well in all our applications to
real and simulated data. To ensure that the sum of frequen-
cies is 1.0, one of the frequencies is kept equal to 1=s, the
others are freely optimized (but constrained to be positive),
and all frequencies are normalized in likelihood computations
and when outputting the results.

Discrete Approximation of the State Marginal
Posterior Probabilities
Our method is based on a discrete approximation of the
marginal posterior probabilities of the character states, at-
tached to the internal nodes of the tree. The computation
of these probabilities is standard and used under different
forms in most if not all ML-based phylogenetic programs.
However, the complete description of the procedure is rarely
available and is included in the Materials and Methods for the
sake of completeness. To summarize, we first use the pruning
algorithm (Felsenstein 1981), which performs a bottom up,
postorder tree traversal, and accounts for the information of
the descendants of every tree node; then, we perform a top-
down, preorder tree traversal, which adds to the previous
calculations the information coming from the rest of the
tree. We thusly obtain for every tree node N and state i,
the marginal posterior probability of i for N, MarginalðN; iÞ,
which accounts for the state value of all tree tips. This pro-
cedure has a time complexity in Oðns2Þ, where n is the num-
ber of tips and s the number of states. It is therefore linear in n
and able to process trees with dozens of thousands of tips in a
few seconds. It is equivalent (but faster) to the procedure
consisting in iteratively rerooting the tree with every internal
node and applying the pruning algorithm. The reconstruction
accuracy is clearly higher than that obtained with the pruning
algorithm (without rerooting) and the descendant informa-
tion only (Gascuel and Steel 2014).

Let N be any given internal node of T. Based on the mar-
ginal posterior probabilities MarginalðN; iÞ, we have to decide
which states are predicted for N and which ones are discarded
because their posteriors are too low. We could use some
thresholding approach, but the choice of the threshold values
and decision procedure would be very subjective, without any
formal guarantee on the accuracy of the predictions (see
Oliva et al. 2019 for simulation results). We therefore used
concepts and tools from decision theory and supervised clas-
sification (Brier 1950; Gneiting and Raftery 2007).
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Assume that the true evolutionary model (tree, branch
lengths, and model of character changes) is fully known;
then, a standard result (Guiasu 1977), known as the Bayes
decision rule, is that the most accurate prediction for N is
obtained by selecting the state with the highest posterior
(MAP). In this framework, we predict a unique state, and
the accuracy is simply measured by the probability of cor-
rectly predicting the true ancestral state. However, in our
framework, a unique prediction per node is often unsatisfac-
tory, especially when several states corresponding to different
scenarios have similar posteriors. Then, a refined approach
involves using probabilistic predictions, where states are
assigned to probabilities instead of binary, mutually exclusive
decisions as with the Bayes rule. When the true evolutionary
model is fully known, the marginal posterior probabilities can
be shown to be optimal among all probabilistic predictors
(Gneiting and Raftery 2007). Various scoring criteria (or scor-
ing rules) have been proposed to measure the accuracy of
probabilistic predictors. The most used is the logarithmic
scoring criterion from information theory. This is the negative
of “surprisal,” which is commonly used in Bayesian inference.
However, this scoring criterion is not appropriate here, where
we have state predictions with null probabilities (see below).
Our approach is derived from the Brier quadratic scoring
criterion. Let PPrðN; iÞ be the predicted probability of state
i for node N and TruthðN; iÞ be the “truth” of i for N, which is
equal to 1 when the ancestral state of N is i, and 0 otherwise.
The Brier score can be expressed as

BrierðNÞ ¼
X
i2S

½PPrðN; iÞ � TruthðN; iÞ�2:

In this form, the Brier score is simply the squared Euclidean
distance between PPrðNÞ and TruthðNÞ (the lower the bet-
ter). In practice, the truth is rarely known, except when an-
alyzing simulation results and past events (e.g., in weather
forecasting). In this context, the Brier score is commonly
used to measure the accuracy of probabilistic predictors.
For instance, assuming that we assign probability 1 to the
true state, then BrierðNÞ ¼ 0. On the opposite, if we assign
probability 1 to an incorrect state, then BrierðNÞ ¼ 2, which
is the worst possible value of the score. Assume now that we
have no information on the ancestral state of N. Then, we
have two natural solutions: 1) assign probability 1=s to every
state, then BrierðNÞ ¼ ð1� 1=sÞ2 þ ðs� 1Þð1=sÞ2
¼ 1� 1=s; 2) randomly, uniformly predict one of the states,
then the expected value of BrierðNÞ is equal to
0� 1=sþ 2� ðs� 1Þ=s ¼ 2� 2=s. In other words, ran-
dom predictions are worse than the recognition of our
ignorance.

As already stated, when the model is fully known predict-
ing the marginal posterior probabilities of the states is opti-
mal, regarding the Brier criterion (and other proper scoring
rules, as the logarithmic one). Thus, we use a discrete approx-
imation of the posteriors, which is consistently selected using
the Euclidean distance. The goal is to add as little error as
possible to the (unknown) optimal value of BrierðNÞ. Thanks
to the triangle inequality, this ensures a form of minimization

of the Brier score (see below). Assuming that we decide to
retain k states (among s) in the predictions, then each of these
has probability 1/k, whereas the discarded states have prob-
ability 0. These probabilities are used in the selection of state
subsets but are implicit. The method returns a set of likely
states without any associated probabilities. To define the state
subsets to be explored, we rank the states based on their
posteriors: i1 ð¼MAPÞ is best and is has the lowest posterior.
Then, we select the best subset SSk ¼ fi1; i2 . . . ikg (k¼ 1 to
s) by minimizing the Euclidean distance DkðNÞ between
MarginalðNÞ and the probability vector defined by Prði1 to kÞ
¼ 1=k and Prðikþ1 to sÞ ¼ 0.

This method is named Marginal Posterior Probabilities
Approximation (MPPA) in the following. Let BrierMPPðNÞ
be the Brier score of the marginal posteriors probabilities,
and BrierMPPAðNÞ the Brier score of MPPA. Both scores
are unknown, since the truth is unknown, but we have (tri-
angle inequality):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BrierMPPAðNÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BrierMPPðNÞ

p
�

DkðNÞ. In other words, by minimizing DkðNÞ, we minimize
the gap between the two Brier scores, where BrierMPP is
optimal assuming a fully correct model. We shall see with
simulated data that BrierMPPA is close to BrierMPP, especially
with analyzes performed under the true model.

This method is both simple and fast, with time complexity
in Oðns2Þ again. Its accuracy strongly depends on the accu-
racy of the marginal posteriors, and thus on the severity of
model violations, which are inevitable with real data. A pos-
sible shortcoming could be that these computations are per-
formed independently for each of the nodes. However, we
observed with simulations (Gascuel and Steel 2014; results
below) that joint reconstructions have no clear advantage
over marginal ones. Actually, in a large fraction of cases, the
MAP and joint states are the same, which explains this find-
ing. Moreover, the MAP state is always included in the set of
states resulting from MPPA. For the rare cases (�1% in our
simulations below) where the joint state is not included in
MPPA state set, a program option adds it systematically to
ensure that the joint (most likely) scenario is included in
MPPA solution.

Tree Compression and Visualization
On large phylogenies with hundreds or thousands of tips,
once the ancestral states are reconstructed on each node, it
might be difficult for a human eye to visualize and interpret
the results. To overcome this issue, we provide a compressed
representation of the ancestral scenarios, which highlights the
main facts and hides minor details. This representation is
calculated in two steps: 1) “vertical merge” that clusters to-
gether the parts of the tree where no state change happens
and 2) “horizontal merge” that clusters independent events of
the same kind. Algorithmically, the two merges are performed
in the following way:

• Vertical merge (vertical arrow in fig. 1) : while there exists
a parent–child couple such that the child’s set of input/
predicted states is the same as the parents’ one, merge
them. Note that tips can be merged as well as internal
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nodes in this process. We compute the size of a cluster so
obtained, by the number of tips contained in the cluster,
as the tips correspond to the input data units used for
tree and ancestral scenario reconstructions. Accordingly,
in the initial tree each tip has a size of 1, each internal
node has a size of 0, and when merging two nodes we
sum their sizes. In the compressed tree, a cluster is a node
or “phylotype” following Chevenet et al. (2013).

• Horizontal merge (horizontal arrow in fig. 1): starting at
the root and going top-down toward the tips, at each
node we compare its child subtrees. If two or more iden-
tical subtrees are found, we keep just one representative
and assign their number to the size of the branch that
connects the kept subtree to the current node. Hence, a
branch size corresponds to the number of times its sub-
tree is found in the initial tree. Before the horizontal
merge all branches have a size of 1. Two trees are con-
sidered identical if they have the same topology and their
corresponding nodes have the same state(s) and sizes.

These two routines are illustrated in figure 1. In the case of
a transmission tree with states representing countries, the
vertical merge will cluster together the transmissions happen-
ing within the same country and having the same source

within that country; for instance, see the clouds colored in
blue, orange and purple in figure 1. Then, the horizontal
merge detects independent transmissions from a country A
to a country B; for instance in figure 1, the two red nodes
(¼B) that branch independently from a big blue circle (¼A).

For large trees with many state changes, even after com-
pression the visualization might contain too many details. To
address this issue, a program option makes it possible to
specify the desired number of tips shown in the compressed
tree (15 by default), which is then achieved by performing a
relaxed horizontal merge and hiding less important nodes. In
a relaxed horizontal merge, the definition of identical trees is
updated: instead of requiring identical sizes of the corre-
sponding nodes, we allow for nodes of sizes of the same order
(log 10); for instance, now a node in state A of size 3 can
correspond to a node in state A of any size between 1 and 9,
and a node in state B of size 25 can correspond to a node in
state B of any size between 10 and 99.

If even after a relaxed horizontal merge the compressed
representation contains too many details, we trim less impor-
tant tips as follows. For each node, we calculate its impor-
tance by multiplying its size by the sizes of all the branches on
the path to the root, therefore obtaining the number of tips
of the original tree that are represented by this node; for

FIG. 1. ACR and visualization steps. Starting from the initial tree with annotated tips (top left, different annotations correspond to different colors),
we reconstruct the ancestral node states (top right; colored sectors are used for ambiguous nodes, e.g., orange and purple), and then perform a
two-step compression: the vertical compression (bottom right) clusters together the regions of the tree where no state change happens and puts
the number of tips collapsed into each node as its size (e.g., the blue root cluster of size 5 in the bottom right tree corresponds to the part of the top-
right tree highlighted blue and containing 5 tips), whereas the horizontal compression (bottom left) merges identical subtree configurations,
keeping their number as branch sizes (e.g., the two red tip children of the bottom right root are merged into a red tip attached with a branch of size
2 in the bottom left tree).
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instance, a node of size 2 connected to the root via branches
of sizes 1, 3, and 5 gets an importance of 30. We call a node
blocked by its descendant if its importance is smaller than the
descendant’s one. The intuition behind is that this node can-
not be removed from the tree unless the importance thresh-
old allows the removal of its descendant first. We then set the
cutoff threshold to the 15th largest nonblocked node’s im-
portance (a parameter that can be adjusted), and iteratively
trim all tips with smaller importance (once a tip is removed its
parent becomes an unblocked tip itself and is also considered
for trimming). Finally, we rerun relaxed horizontal merge as
some of the previously different topologies might have be-
come identical after trimming. This trimming procedure and
its parameters are somewhat empirical, but we observed that
it performed well on all data sets we analyzed here and in
other studies.

To simplify the ancestral state analysis of phylogenetic
trees with multiple character data, we developed a pipeline
that combines the results for different characters, for example
geographical location and resistance to drugs. We first apply
ancestral reconstruction separately for each character to ob-
tain their ancestral states, and visualize each character on the
tree nodes as sectors (see application to HIV below). If we
could not choose a unique state for a character, we keep the
corresponding sector uncolored (i.e., white). Once the tree is
colored and each node is assigned its combined states (pie of
colors), we compress the tree as described in the previous
section.

When sampling dates are available for the tree tips, it is
possible to visualize a timeline: we split the time between the
oldest and the most recent samples into five intervals, and
add a visualization slider to navigate in time. At each mile-
stone we hide the subtrees for which all tips were sampled
later. When sampling dates are not available, the timeline is
based on root-to-tip distances instead.

Software and Utilities
PastML takes as input a rooted tree and a tip state annotation
table (for one or more characters). It produces a table with
predicted ancestral states, and an interactively modifiable vi-
sualization (an html file that can be viewed in a browser).
PastML is implemented in python 3, uses Scipy/Numpy
(Oliphant 2007) for parameter optimization/estimation,
and Cytoscape.js library (Franz et al. 2016) for tree visualiza-
tion. An additional option performs an automatic upload of
the full tree, annotated with ACR predictions, to iTOL, an
interactive tool for tree management and visualization
(Letunic and Bork 2016). PastML is available as a python
library/command-line program on pip3. We also provide a
docker container that includes all the functionality and does
not require installing python: evolbioinfo/pastml. Last but not
least, a user friendly web application is available to perform
ACR and visualization of ancestral scenarios. Several ACR
methods are available: our new MPPA algorithm; the stan-
dard marginal posterior probability approach (both MAP and
full probabilistic predictions); the joint posterior probability
estimation algorithm of Pupko et al. (2000); and the three
usual variants of parsimony: ACCTRAN, DELTRAN, and

DOWNPASS (Maddison and Maddison 2000). All this mate-
rial (source code, docker container, web server, etc.) is avail-
able from https://pastml.pasteur.fr.

Results: Method Comparison Using
Simulated Data

Simulation Protocol
In this study, we basically followed the simulation procedure
used in Gascuel and Steel (2014). We generated pure-birth
trees with n¼ 1,000 tips. To obtain a broad range of ACR
difficulties, we used 16 values of the speciation/evolutionary
rate ratio (x) ranging from 0.2 to 8.0, which correspond to an
average number of state changes per branch of 2.5 and 0.0625,
respectively (Steel and Mooers 2010). With a high number of
state changes per branch (e.g., 2.5) ACR is very difficult, espe-
cially for the tree root, whereas with a low number of changes
(e.g., 0.0625) ACR becomes easy as all tips and nodes tend to
have the same state value. For each value of x, 50 trees were
generated, and for each tree we simulated the evolution of 50
unique characters with 4 states, and 50 with 20 states. To ease
the implementation, reproducibility and interpretation of the
results, we used DNA and protein models, although the
method and software are intended for unique characters.
We generated 4-state data sets using Seq-Gen v1.3.2
(Rambaut and Grass 1997) and the HKY model (Hasegawa
et al. 1985) with equilibrium frequencies of A, C, G, and T
being equal to 0.2, 0.1, 0.3, and 0.4, respectively, and a transi-
tion/transversion ratio j of 8.0. These relatively extreme val-
ues were chosen to challenge ACR when using the F81 model
implemented in PastML. Likewise, we generated 20-state data
sets using Seq-Gen and the JTT model (Jones et al. 1992) with
its default amino-acid equilibrium frequencies. We thusly
obtained 16 (x values)� 50 (1,000-tip trees)� 50 (number
of characters) � 2 (4-state/20-state) data sets to assess the
accuracy of ACR methods. During the simulation procedure
with Seq-Gen, we recorded the ancestral state of the charac-
ter seen at each internal node, including the root. Thus, the
“true” ancestral scenario was known. All these data sets are
available from https://pastml.pasteur.fr/.

Methods Being Compared
These simulated trees and tip state values were then sub-
jected to ACR with five methods:

• Parsimony: We computed the most parsimonious states
for all nodes including the root. This computation was
performed using UPPASS (Fitch-Hartigan) and then
DOWNPASS algorithms, which combine the state infor-
mation from all tree tips (analogous to the calculation of
posteriors, Materials and Methods). DOWNPASS returns
all most parsimonious states for all nodes, as opposed to
ACCTRAN and DELTRAN which solve part of the ances-
tral ambiguities heuristically (Maddison and Maddison
2000). This method returns a set of possible states for
each node, and thus shares common points with MPPA.

• Joint: We used the dynamic programing algorithm de-
scribed in Pupko et al. (2000) to infer the most likely
ancestral scenario over all the tree and possible state
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values. For each of the nodes, we thus obtained a joint
estimation of the most likely state. This method returns a
unique state for each node.

• Marginal: we computed the marginal likelihoods and pos-
terior probabilities of all states for all internal nodes in-
cluding the root (see Materials and Methods). This
method returns full probabilistic predictions (each state
is assigned a probability) for all nodes. Marginal is the best
possible probabilistic predictor (as measured by the Brier
score, and other proper scoring rule) when the model is
fully known.

• MAP: Using previous computations, we assigned the
state with the highest marginal posterior to each node.
MAP thus returns a unique state for each of the nodes,
just as Joint.

• MPPA: We used the method described above to approx-
imate the state posteriors and return for every node a
subset of likely states.

With the ML-based methods (i.e., Joint, Marginal, MAP,
and MPPA), the simulated data sets were analyzed under
the four following conditions, corresponding to various
model violations intended to measure the robustness of
the ACR methods being compared:

(1) True model and branch lengths: the true evolutionary
model (i.e., the model used in simulations, HKY with 4
states and JTT with 20 states) was used for ACR. The
model parameters were estimated from the data (i.e.,
with HKY: the global rate q, the nucleotide frequencies,
and j; with JTT: q only, we used JTT frequencies as
usual). The (true) input tree was rescaled using the
estimated value of q before performing ACR (standard
usage of PastML, used in all conditions). In this setting,
there is no model violation and Marginal is expected to
be optimal regarding the Brier score. The goal was to
check that the results were only slightly degraded with
model violations.

(2) True model and noised branch lengths: the true
model was used, as in previous setting (including
parameter estimation and rescaling), but the
branch lengths of the input trees were perturbed.
The goal was to account for approximate branch-
length estimation and molecular-clock violation,
two common features with usual data sets. To ob-
tain the input tree, all branch lengths of the true
tree were multiplied by independent, lognormal
variables, with mean 1.0 and standard deviation
0.5 (i.e., uncorrelated, lognormal molecular-clock
model with standard deviation similar to that ob-
served in HIV data [To et al. 2016]).

(3) F81 model and true branch lengths: we used F81 and
F81-like models for 4- and 20-state data sets, respec-
tively. The model parameters (q and equilibrium fre-
quencies) were estimated from the input data. This
setting corresponds to the default option of PastML.
The goal was to check that the loss of accuracy was
low, compared with the perfect “true model and
branch lengths” setting.

(4) F81 model and noised branch lengths: we combined 4-
and 20-state F81-like models and optimizations, with
noised input trees (see conditions 2 and 3 above). This
setting can be seen as realistic as it combines the de-
fault evolutionary model in PastML with branch-length
perturbation.

Comparison Criteria
To compare the accuracy of the various ACR methods being
tested, we used the Brier score of the predicted states against
the known, true scenario. In the above Brier score formula
TruthðN; iÞ was equal to 1 when the true state of node N was
i, and 0 otherwise. Accordingly, PPrðN; iÞ was equal to 1 (i is
predicted) or 0 (i is not predicted) for the methods predicting
a unique state (i.e., Joint and MAP); PPrðN; iÞ was equal to
1=k (i is predicted) or 0 (i is not predicted) with Parsimony
and MPPA when k states were predicted; with Marginal, PPr
ðN; iÞ was simply equal to the marginal posterior probability
of state i for node N. The Brier scores of the nodes were then
averaged, and we returned the average score over 2,500 trials
(50 trees � 50 trials) for each of the simulation conditions.
The same criterion was also applied to the tree root, as ACR is
expected to be more difficult with the root than with other
tree nodes, especially those being close to the tips (Gascuel
and Steel 2014).

To compare the performance of the various methods in
producing consistent predictions across the tree, we applied
the Brier score to edges instead of nodes. The goal was to
check that the predictions for the two extremities of any
given edge were compatible and close to the truth, thus
establishing, or not, the superiority of global predictions as
produced by Joint, over independent predictions as produced
by MAP or MPPA (see also Gascuel and Steel 2014). An edge E
was perfectly predicted ½PPrðE; i; jÞ ¼ TruthðE; i; jÞ ¼ 1�
when its two extremity states i, j were the same as the true
ones. In case of multiple predictions, k on one extremity and p
on the other, PPrðE; i; jÞ was equal to 1=kp when both
states were included in the predicted states at both edge
extremities, and 0 otherwise. With Marginal we simply used
for PPrðE; i; jÞ the product of the state posteriors of i and j at
both extremities of E. The formula to compute the Brier score
was the same as for nodes, but considering a state space of
size s2.

For Parsimony and MPPA, we counted the average num-
ber of predicted states per node in the various simulation
conditions. The goal was to check the advantage of predicting
several states instead of a single one, in case of uncertainty.
The same was also applied to the tree root, where a
larger number of states is expected as predictions are more
difficult.

Accuracy of the Various ACR Approaches
The results are displayed in figure 2 (4 states) and figure 3 (20
states) for the most relevant simulation conditions.
Additional results are provided in supplementary figures
S1–S5, Supplementary Material online, for all simulation con-
ditions and the root and edge predictions. We observe that
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• Evolutionary rate: As expected, predictions are very diffi-
cult with the lowest q value (speciation/evolutionary rate
ratio, 0.2, i.e., 2.5 changes per branch in average); then, all
methods have similar or worse accuracy to/than the ag-
nostic method predicting all states with equal probability.
With higher q values, predictions become easy, as few
mutations occur in the tree. With the highest q values
(�5.0, i.e., �0.1 changes/branch) all methods succeed
(Brier score �0) and are equivalent.

• Root prediction: As expected, predicting the root is much
more difficult (supplementary figs. S1 and S2,
Supplementary Material online): when q is �0.5 (�1.0
changes/branch), even the best method (Marginal with

the correct model) does not improve much over the
agnostic method, and with the highest q value (8.0, eas-
iest condition), the Brier score is still substantially larger
than 0.

• Number of states: As expected again, predictions are more
difficult with 20 states (fig. 3, Brier score �1.5 for the
worst methods and conditions) than with 4 states
(fig. 2, Brier score�0.95 for the worse methods and con-
ditions). Moreover, the gap between the best and worse
methods is larger with 20 states than with 4 states.
However, the ranking of the various methods is the
same in both settings, and this holds for root prediction
as well.

• Ranking of ACR methods: Marginal is the best method
regarding the Brier score, as expected with decision the-
ory, and its advantage still holds with model violations
(figs. 2 and 3 and supplementary fig. S5, Supplementary
Material online). Joint and MAP are the worst, due to the
fact that they predict a unique state and do not account

FIG. 2. Accuracy of ACR methods with 4-state DNA-like simulated
data. x axis: speciation/substitution (or evolutionary) rate ratio. y axis:
Brier score (the lower the better; panels A and B); Number of pre-
dicted states per node (panel C). (A) ML-based methods use the true
model (HKY, with estimated parameters) and branch lengths
(rescaled by PastML). (B) ML-based methods use the F81 model
(with estimated equilibrium frequencies) and noisy branch lengths
(rescaled by PastML). (C) Number of nodes predicted by parsimony
and MPPA. “All states”: all states are predicted with equal probability
(¼1/4). “Marginal True”: best possible accuracy, obtained with
Marginal using the true model and tree, as in panel A. See text for
details.

FIG. 3. Accuracy of ACR methods with 20-state protein-like simulated
data. (A) True model (JTT) and tree (rescaled by PastML). (B) 20-state
F81-like model (with estimated frequencies) and noisy branch lengths
(rescaled by PastML). With “All states” every state is predicted with
probability 1/20. See note to figure 2 and text for details.
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for uncertainty. Their accuracies are similar, with a slight
advantage for MAP in certain conditions (e.g., in the ab-
sence of model violations, figs. 2A and 3A). This result still
holds with the edge Brier score (supplementary figs. S3
and S4, Supplementary Material online), thus indicating
again that Joint and global predictions have no advantage
compared with the more local calculations of marginal
posterior probabilities (still highly dependent for neigh-
boring nodes). Moreover, the ranking of all methods with
the edge Brier score is the same as that obtained with the
node Brier score.

• Multiple/single state predictions: Thanks to multiple pre-
dictions in uncertain configurations, Parsimony has a
clear advantage over Joint and MAP (figs. 2 and 3). The
advantage of MPPA is even larger, due to the fact that
MPPA predicts more states than Parsimony, and that
these states are predicted using a rigorous probabilistic
approach. With medium q value (1.0), the number of
predicted state by MPPA is 	1.3 and 	3.0, for 4 and
20 states, respectively. This indicates that the large accu-
racy gain of MPPA, compared with unique state predic-
tion methods (Joint, MAP), is obtained thanks to a
relatively low number of predicted states, which eases
the interpretability and visualization of the global scenar-
ios returned by MPPA. However, in difficult conditions
(low q values and/or root prediction, figs. 2 and 3 and
supplementary figs. S1 and S2, Supplementary Material
online) the number of states predicted by MPPA is larger
(and much larger than parsimony’s), indicating that
MPPA “recognizes its ignorance.” We shall see that these
findings are confirmed with real data.

• Model violations: In terms of accuracy, MPPA is close to
Marginal in all conditions, especially with 20 states, and is
the second best method (figs. 2 and 3). Moreover,
MPPA’s accuracy remains nearly identical with noisy
branch lengths, compared with true branch lengths (sup-
plementary fig. S5, Supplementary Material online).
When violations occur in the model describing state
changes (i.e., F81-like models are used to analyze data
simulated with HKY and JTT) we observe different results
depending on the number of states. With 4 states, there is
a low but visible gap between “Marginal true” and
“Marginal F81,” which added to the gap between
MPPA and “Marginal F81” indicates that model violations
have a substantial impact. However, MPPA is still better
than Parsimony, especially in the difficult region (low q
values). With 20 states, all these differences are low and
the impact of model violations is negligible. This advo-
cates for the use of F81-like models, especially with a large
number of states, where estimating all the parameters of
complex models is likely unfeasible (but see Lemey et al.
2014).

To summarize, MPPA performs well in this simulation
study, with an accuracy close to the fully probabilistic
Marginal method, but outputs that are much easier to inter-
pret and visualize. Moreover, the F81-like model seems to be a
relevant choice, especially with 20 states, as it yields accurate
ancestral predictions while avoiding difficult estimations of

the relative rates of changes from one state to another.
Results of Oliva et al. (2019) confirm these findings. The
method proposed in that study , named MPPE, shares com-
mon points with MPPA (e.g., ranking of the character states
using their posteriors, and selection of the best k states) but
uses a different selection criterion based on the expected
classification error. The accuracies of MPPE and MPPA are
very close, and clearly better than the accuracy of all other
methods considered in that study.

Results: Phylogeography of Dengue
Epidemics
To demonstrate the performance of PastML on real data, we
reconstructed the ancestral history of Dengue serotype 2
(DENV2) epidemics. We used a medium-size data set of
356 sequences, obtained from Ayres et al. (2019). This data
set is annotated with: sampling years (between 1944 and
2014); countries, which we grouped in 10 regions (Central
America, Caribbean, South America, Europe, Africa,
Western Asia, Eastern Asia, South-eastern Asia, and
Oceania); and genotypes (13 sequences of Sylvatic lineage,
and 343 sequences of 5 endemic genotypes: American,
Asian-American, Asian I, Asian II, and Cosmopolitan). We
inferred a ML tree from the DNA sequences, and dated
and rooted this tree (based on dates) using LSD (To et al.
2016). To check the robustness of PastML inferences against
phylogenetic uncertainty, the tree reconstruction was per-
formed with three ML tools: RAxML (Stamatakis 2014),
PhyML (Guindon et al. 2010), and FastTree (Price at al.
2010), resulting in three trees with substantial topological
differences (mean normalized bipartition distance 	10%).
However, the global topological information was preserved
(e.g., the genotypes and sylvatic lineage were perfectly iden-
tified and supported in the three trees). To further study the
impact of poorly supported branches and topological uncer-
tainties, we created a fourth tree by collapsing the 40 poorly
supported branches of the PhyML tree (SH-like support
<50%). This collapsed tree was dated and rooted as the three
others. The phylogeography of DENV2 epidemics was recon-
structed from these four trees and location annotations using
PastML with default options (MPPA with F81-like model). We
also checked the robustness of ACR results regarding state
sampling variations. For this purpose, we generated five new
DENV2 alignments, each by picking 356 sequences randomly
with replacement from the original alignment. This way we
obtained five randomized alignments of the same size as the
original one, but with some sequences removed and some
present multiple times, which in turn perturbed the numbers
of samples per location. We then reconstructed the phylo-
geography of these five resampled data sets using RaxML and
the same approach as for the original alignment.

PastML results with the RAxML tree are shown in figure 4.
The location of the root is unresolved between five regions:
the Caribbean, Eastern Asia, Oceania, South America, and
South-eastern Asia. Provided that the root represents the
common ancestor of the sylvatic and endemic/epidemic
strains (dated 1209 [1147–1249]), this result is not surprising.
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If instead we focus on the endemic/epidemic subtree (left
subtree of the root), its root (dated 1744 [1723–1759]) is
resolved to South-eastern Asia. The South-eastern Asian en-
demic/epidemic cluster has grown over years and by 2014
contained 145 strains from our data set (large orange node on
the compressed representation). From there, the epidemic
was spread to Southern Asia (lilac), Eastern Asia (six indepen-
dent introductions represented as an edge of size six leading
to a green node), Oceania (red), Africa (light blue), and the
Caribbean (blue). From Caribbean, it was further spread to
South America (multiple introductions leading to clusters of
various sizes in light-orange), and from there to Central
America (light-green). These findings agree with the study
of global Dengue type 2 phylogeography by Walimbe et al.
(2014) performed using a Bayesian approach on 307 E-gene
sequences (sampled between 1944 and 2011). They also could
not pinpoint the ancestral location for DENV2 sylvatic and
endemic/epidemic strains, and detected South-eastern Asia
as the origin for Asian, Asian-American, and Cosmopolitan
endemic genotypes. They also found multiple migrations
from Caribbean countries to the American mainland.
However, in some cases, PastML predictions remain more
cautious. For example, for sylvatic strains Walimbe et al.

predicted West Africa as the most probable ancestral loca-
tion, whereas PastML hesitates between five possible loca-
tions, including Africa (gray subtree). For the American
endemic genotype (light-yellow subtree), Walimbe et al. pre-
dicted India to be the ancestral location, whereas PastML
hesitates between Southern (including India) and South-
eastern Asia.

PastML compressed scenarios for RAxML, FastTree,
PhyML, and PhyML-collapsed trees are almost identical,
with a few minor differences that can be mostly eliminated
by resolving some unresolved nodes (supplementary fig. S6,
Supplementary Material online). This illustrates the robust-
ness of PastML against phylogenetic uncertainty. The same
holds regarding sampling variations: PastML ancestral scenar-
ios with resampled data sets are very similar to the scenario
inferred using the original alignment (supplementary fig. S7,
Supplementary Material online). Figure 4 shows the advan-
tage of the approach, where uncertain inferences are not
solved arbitrarily but made explicit. For example, the MAP
and Joint inferences for the tree root are Eastern Asia and
South-eastern Asia, respectively, whereas MPPA predicts five
possible origins including both MAP and Joint predictions.
However, for most of the nodes MPPA predicts a unique

FIG. 4. Ancestral reconstruction of DENV2 epidemic locations. The figure shows the full tree (top) and compressed (bottom left) visualizations
produced by PastML using MPPA with an F81-like model. Different colors correspond to different geographical regions as shown in the map in the
bottom right corner. The sylvatic and American genotype subtrees are shown with grey and light-yellow backgrounds, respectively. The Joint and
MAP predictions are shown for the uncertain nodes. MAP and Joint disagree on the tree root, but their predictions are included in MPPA
predictions for all nodes (including those with unique MPPA prediction).
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location (average number of states per node	1.03). The log-
likelihood of the Map, Joint, and MPPA scenarios is equal to
�197.3,�197.2, and�193.8, respectively (as expected Joint is
better than MAP, and MPPA is even better as it includes
several states for some of the nodes). PastML thus represents
a larger fraction of the data, while producing a scenario which
is almost fully resolved.

Results: Drug Resistance Mutations in HIV
To demonstrate the performance of PastML with large data
sets, we studied the emergence, transmission and reversion of
drug resistance mutations (DRMs, Bennett et al. 2009) in HIV.
DRMs emerge under the pressure of drug treatments, and
then may be transmitted to drug naı̈ve patients (Zhukova
et al. 2017). An essential public health issue is to detect po-
tential drug resistant subepidemics, which could become
prevalent and pose major problems, as is already the case
with other pathogens and diseases (e.g., malaria).
Parsimony-based ancestral reconstructions were already
used fruitfully in this context, with patients from the UK
(Mourad et al. 2015). We focused here on the subtype C of
HIV1 (HIV1-C), the most prevalent subtype around the world

(	50% of HIV infections), originating from Central Africa,
spread in Southern and Eastern Africa, and then in Europe
and the Americas, with multiple introductions (Vidal et al.
2000; Hemelaar 2012; Faria et al. 2014).

We used a large data set of 3,619 HIV-1C pol sequences,
obtained from Jung et al. (2012), Chevenet et al. (2013), and
the latest (2017) pol alignment of the Los Alamos HIV data-
base. This data set is annotated with sampling dates and
countries. We built a tree from the DNA sequences using
PhyML (Guindon et al. 2010), and rooted it using non-C
sequences. As in Mourad et al. (2015), we first computed
the presence of the studied DRM in the sequences, thus
obtaining the value of a 2-state character (sensitive/resistant)
for every tree tip. Then, we used PastML with default options
to reconstruct the ancestral resistance status of the tree
nodes and root. We also performed analyses through time,
to study the dynamics of DRM emergence, diffusion and re-
version, and combined DRM analyses with phylogeography
to reveal the spatial propagation of resistances. Five of the
most prevalent DRMs were analyzed.

Results for M184V (the most prevalent DRM in our data
set) and the combination with phylogeography for the largest
resistance cluster are displayed in figure 5. M184V is a major

FIG. 5. Ancestral state reconstruction of the presence/absence of DRM M184V over time (top), and combined with location data (bottom left).
The reconstruction was done by PastML with MPPAþ F81 option. For the timeline, the tree was pruned at each year to remove the tips sampled
after that year. In the bottom left panel, M184V presence/absence is combined with location data: M184V state is shown color-coded in the left
half of each node (green when mutation is absent, and orange for resistant strains), countries are color-coded in the right half of each node, and
shown in the labels.
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nonnucleoside RT inhibitor (NRTI) mutation selected in
patients receiving Lamivudine (3TC) and Emtricitabine
(FTC) (Gallant 2006). 3TC was approved for medical use in
the United States in 1995, and FTC in 2006. They are both
used worldwide nowadays. According to the study of Castro
et al. (2013) on the persistence of DRMs, in the absence of
drug-selective pressure M184V is lost relatively quickly (me-
dian time to loss 	1.0 [0.5–2.0] years).

Ancestral state reconstruction allows us to detect poten-
tially acquired (ADR) and transmitted drug resistance (TDR)
patterns. An acquired drug resistance is represented by a
single-patient resistant node in the compressed visualization,
which implies a state change from a sensitive parent node.
Potential TDRs are represented by cluster(s) of resistant
patients, where internal edges correspond to transmissions
of resistant strains. Note that these simple statements
still hold with incomplete sampling (Mourad et al. 2015):
transmissions of DRMs within resistant clusters are then in-
direct, whereas a one-patient resistant node may correspond
to a small resistance cluster, the root of which acquired
the DRM.

We analyzed the reconstructed transmission tree at differ-
ent time points, each time pruning the tree to remove the
tips and nodes sampled after the corresponding year. Figure 5
shows the results for 1996 (the sampling year corresponding
to the first sequences with M184V in our data set), 2005 and
2015 (last sampling year in our data set). We see the emer-
gence and growth of potential TDR clusters over time. In
2005, the main configurations included a major TDR cluster
of 53 patients, and 76 cases of independent DRM emergence
(ADR, i.e., 1-patient node, or small resistant clusters of 2–3
patients). There are also multiple cases of reversion of the
DRM (e.g., 66 cases of patients having a sensitive virus at the
time of sampling, which originate from the major resistant
cluster). By 2015 the main TDR cluster grew (to 72 patients),
and so did the numbers of cases of ADR and DRM reversion.
Importantly, the main resistance cluster in 2005 is included in
the one of 2015, which demonstrates the potential of the
method in surveying the emergence of problematic resistant
subepidemics, as the 2015 cluster was already predictable in
2005.

To further investigate the largest TDR cluster, we com-
bined the ancestral state reconstruction for M184V with
the location. The result located the whole resistant cluster
in South America. We then increased the geographical reso-
lution by replacing the regions with the countries and focused
on the subtree with the root in East Africa, as this is from
where the virus was spread to South America according to
our reconstruction. The results are shown in the bottom left
panel of figure 5, and suggest that the resistance cluster is
located in Brazil, and that it originated from either a sensitive
or a resistant case in Brazil (the parent node of the TDR
cluster is a Brazilian node with unresolved M184V state).
The reconstruction also shows that the virus was introduced
to Brazil from Burundi, from where it was also spread to
Tanzania, and Ethiopia. This geographical result agrees with
the study on HIV-1C epidemics in Eastern Africa and
Southern Brazil by Mir et al. (2018), although the latter was

performed using a Bayesian approach and a different data set,
which included more Brazilian sequences.

The results for the second, third, and fourth most preva-
lent DRMs in our data set (K103N, D67N, and K70R) are
similar to those for M184V: they show emergence and growth
of TDR clusters over time, and well as growth of the number
of ADR and reversions to sensitive state. The largest TDR
clusters for these three DRMs are located in Brazil, just as
with M184V. With the decrease of DRM prevalence, the size
of TDR clusters in our data decreases, from a 72-patient TDR
cluster for M184V to a 7-patient one for K70R. The analysis of
K103N can be found in supplementary figure S8,
Supplementary Material online. The results for the fifth
most prevalent DRM (Y181C) are different: We hardly see
any TDR clusters (their size is at most four patients), and the
largest TDR cluster is located in India (supplementary fig. S9,
Supplementary Material online). This could be the very start
of TDR spread for this mutation hence making it a candidate
for closer surveillance, or it could simply be due to the quick
reversion time of Y181C (median of 1.3 years, cf., Castro et al.
[2013]) and hence inability to form TDR clusters.

Figure 5 and the results illustrate again the advantage of
MPPA reconstructions. For example, the Joint and MAP pre-
dictions for the root of the Brazilian subtree (unresolved by
MPPA) disagree, they are respectively resistant and sensitive.
The same occurs with 34 other nodes, where MPPA predic-
tions contain again both states predicted by MAP and Joint.
In total, 	2.5% of the tree nodes cannot be fully resolved by
MPPA, which corresponds to 	1.025 states per node in av-
erage. The total log-likelihood of MPPA is equal to �834.9,
whereas the log-likelihood of Joint is �861.8, and of MAP is
�872.4 (as expected substantially lower than Joint). MPPA
thus represents a much larger fraction of the data, while
producing a scenario which is almost fully resolved.

PastML analyses were performed on a laptop with a 4-
core 2.50GHz CPU. ACR and visualization of Dengue phylo-
geography (356 tips, 10 states) as well as of HIV-1C DRM
dynamics (3,619 tips, 2 states) took 	1 min per tree.

Conclusions
We presented a new, simple, and fast approach to reconstruct
ancestral scenarios, deal with the uncertainty of ancestral
inferences in the difficult regions of the tree (typically around
the tree root), and visualize and edit interactively a tree-
shaped graphical representation of the most likely ancestral
scenarios. The results obtained with the Dengue and a large
HIV data sets are congruent with previous studies. Moreover,
these results are robust against phylogenetic uncertainty and
sampling variations.

The method proposed here to account for uncertainties in
ancestral inferences could easily be adapted to sequences and
especially proteins, where its ability to provide an inventory of
a limited number of alternative amino acids should be very
useful to examine likely variants and determine the best can-
didate based on the structure and physicochemical proper-
ties. Directions for further research include the exploration of
other loss functions, in place of the Brier scoring rule, for
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example in line of Oliva et al. (2019) or reusing previous
concepts and results from decision theory (Gneiting and
Raftery 2007). Moreover, the current version of PastML is
based on JC-like and F81-like models, due to the limited in-
formation available with unique characters. Some refine-
ments (e.g., in the line of Lemey et al. [2014], and Dudas
et al. [2017]) should be useful, not only to improve the accu-
racy and ancestral reconstructions but also to provide users
with a global view of the evolutionary processes at stake
(strain flow between regions and countries, acquisitions and
losses of molecular characters, dynamics of ecological charac-
ter changes, etc.). Lastly, an interesting direction would be to
develop methods and tools to compare our tree-shaped,
compressed representations of ancestral scenarios, calculate
some distance between two scenarios, extract the common
parts and the differences, and propose some consensus.

Materials and Methods

Computation of the Marginal Posterior Probabilities
Let N be a given internal node of the tree T, and U, V, and F
be the left descendant, right descendant, and father of N,
respectively, with corresponding rescaled branch lengths
denoted as u, v, and f. Moreover, let DownðNÞ be the vector
of state conditional likelihoods induced by the state values
of the tips of the “down” subtree rooted with N. DownðN; iÞ
is equal to the likelihood of having state i in N given the
states observed in the extant descendants of N. DownðNÞ is
computed recursively using the pruning algorithm
(Felsenstein 1981), which combines a postorder tree tra-
versal with the following formula:

DownðN; iÞ ¼ ½
X

j

PCði! j=uÞDownðU; jÞ�

�½
X

j

PCði! j=vÞDownðV; jÞ�;

and for a tip l : if cðlÞ ¼ i or X; then Downðl; iÞ ¼ 1;

else Downðl; iÞ ¼ 0:

This algorithm proceeds in a bottom-up fashion, first com-
puting the conditional likelihoods of the nodes close to the
tips and progressing until the tree root. The conditional like-
lihoods so obtained can be used to compute marginal pos-
terior probabilities and then predict the ancestral states
attached to every tree node. Several ancestral reconstruction
programs use this approach. However, a more accurate
method does exist (Yang 2007; Gascuel and Steel 2014).
Indeed, when using DownðNÞ we only account for the infor-
mation contained in the tips descending from N, and not for
the information contained in the rest of the tree.

To account for all tree information, we define a second
vector of conditional likelihoods attached to N, UpðNÞ, where
UpðN; iÞ denotes the conditional likelihood of having i in N
given the tip values observed in the “up” subtree of N. To
define this subtree, assume that T is rerooted with N; then N
has three direct descendants: U, V, and F, each associated with

a subtree. The up subtree of N is defined as the subtree
associated with F including the branch (of length f) from F
to N. In other words, the up subtree contains all branches,
nodes and tips which are not included in the down subtree of
N. To compute the Up conditional likelihoods we use the
following formula (applied to node U to simplify the notation,
but the same formula applies to V, N and all tree nodes):

UpðU; iÞ ¼
�X

j

PCði! j=uÞUpðN; jÞ

�
�X

k

PCðj! k=vÞDownðV; kÞ
��
:

This formula is exploited recursively thanks to a top-down,
preorder tree traversal. We start from the tree root R, having
UpðR; iÞ ¼ 1 for all states i, and progress toward the tips; for
example, UpðNÞ is computed after UpðFÞ and before UpðUÞ
and UpðVÞ, as seen in the formula. Moreover, this formula
uses the Down likelihoods, which have to be computed first.
Both Down and Up calculations are easily extended to polyt-
omies: the Down formula contains as many sum terms as N
has descendants (instead of 2 above with U and V); the Up
formula contains as many internal sum terms as U has
brother nodes (instead of 1 above with V).

Once DownðNÞ and UpðNÞ have been computed, the
state marginal posterior probabilities of N are computed us-
ing (remember that for the tree root UpðR; iÞ ¼ 1):

MarginalðN; iÞ ¼ piDownðN; iÞUpðN; iÞ
TotalProbaðNÞ ; where

law of total probabilityð Þ:

TotalProbaðNÞ ¼
X
j2S

pjDownðN; jÞUpðN; jÞ:

These algorithms have a time complexity in Oðns2Þ, where
n is the number of tree tips and s the number of states. The
whole procedure is thus linear in n and remarkably fast.

All along these calculations, some of the conditional like-
lihood values may be extremely small when n is large, and
smaller than the minimum value permitted for double float-
ing numbers. As in other ML programs, if the conditional
likelihoods of N are smaller than a given threshold, then all
conditional likelihoods of N are multiplied by a power of 2.
This numerical trick does not change the marginal posterior
probabilities, as the relative values of the conditional likeli-
hoods are preserved.

DENV2 Data and Analyses
We used a data set of 356 aligned sequences of Dengue se-
rotype 2, obtained from Ayres et al. (2019). We built ML trees
from the DNA sequences using three inference tools: RAxML
v8.2.11-sse3 (Stamatakis 2014), PhyML v3.3.20180621
(Guindon et al. 2010), and FastTree v2.1.10 (Price at al.
2010), all with GTRþC6 substitution model and default
options. The trees were then dated and rooted (based on
dates) using LSD v0.3beta-55183ca9d0 (To et al. 2016).
PastML was used with default options (MPPAþF81) to
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reconstruct the ancestral locations of all tree nodes and root,
among ten regions (character states) present in the data set.

HIV-1C Data and Analyses
We used an HIV-1C pol sequence data set, previously used in
Jung et al. (2012), and then (in a slightly updated version) in
Chevenet et al. (2013). We extended the latter alignment with
HIV-1C pol sequences from the latest (2017) pol alignment in
the Los Alamos HIV database (https://www.hiv.lanl.gov/con-
tent/index; Last accessed June 1, 2019), hence adding 583
sequences. Addition of the new sequences was performed
using MAFFT multiple sequence alignment program with
the –add option (Katoh and Standley 2013). The final align-
ment contains 3,619 HIV-1C pol sequences, plus 35 outgroup
reference sequences from the non-C subtypes. The data set is
annotated with sampling dates and countries.

We detected the Surveillance Drug Resistance Mutations
(Bennett et al. 2009), using the Sierra web service of the
Stanford HIV drug resistance database (Liu and Shafer
2006). We removed the Surveillance Drug Resistance
Mutation positions from the alignment and reconstructed
five most parsimonious trees using TNT (Goloboff and
Catalano 2016), which were used as starting trees for five
runs of PhyML (Guindon et al. 2010) with GTRþIþC6 sub-
stitution model and aLRT SH-like branch supports. The most
likely tree was retained for further analyses and ancestral
reconstructions. This tree was rooted with the outgroup
sequences, which were subsequently removed from the
tree. The branches of length zero and aLRT SH-like support
<0.5 were collapsed into polytomies.

PastML was then used to reconstruct, along this tree, the
ancestral scenarios describing the emergence, diffusion, and
reversion in some cases, of DRMs. We analyzed DRMs with
high prevalence in our data set: M184V with a prevalence of
0.07 (highest prevalence in our data set), K103N (prevalence
¼ 0.05, second highest prevalence), and Y181C (prevalence¼
0.03, fifth highest prevalence). Results (available at https://
pastml.pasteur.fr) for the third and fourth highest prevalence
DRMs are similar to those of M184V and K103N. PastML was
used with MPPAþ F81 and a node importance threshold of
10. We performed analyses through time to study the dy-
namics of DRM emergence, diffusion and reversion. In this
context, we have two character states: the DRM is absent or
present, and the corresponding strain (tip, node) is sensitive
or resistant, respectively. Results for the most prevalent DRM
(M184V) are provided in figure 4. Results for the two other
DRMs are in supplementary figures S8 and S9, Supplementary
Material online.

Data Availability
All of our data, trees, ACRs, and Snakemake pipelines (Köster
and Rahmann 2012) used to reconstruct the trees and ana-
lyze them are available from https://pastml.pasteur.fr; Last
accessed June 1, 2019.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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