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Some metabolic alterations were evaluated in Wistar rats which received control or low-protein (17%; 6%) diets, from the
pregnancy until the end of lactation: control non-lactating (CNL), lactating (CL), low-protein non-lactating (LPNL) and lactating
(LPL) groups. Despite the increased food intake by LPL dams, both LP groups reduced protein intake and final body mass was
lower in LPL. Higher serum glucose occurred in both LP groups. Lactation induced lower insulin and glucagon levels, but these
were reduced by LP diet. Prolactin levels rose in lactating, but were impaired in LPL, followed by losses of mammary gland (MAG)
mass and, a fall in serum leptin in lactating dams. Lipid content also reduced in MAG and gonadal white adipose tissue of lactating
and, in LPL, contributed to a decreased daily milk production, and consequent impairment of body mass gain by LPL pups.
Liver mass, lipid content and ATP-citrate enzyme activity were increased by lactation, but malic enzyme and lipid: glycogen ratio
elevated only in LPL. Conclusion. LP diet reduced the development of MAG and prolactin secretion which compromised milk
production and pups growth. Moreover, this diet enhanced the store of lipid to glycogen ratio and suggests a higher risk of fatty
liver development.

1. Introduction

Lipids are the major source of energy for most tissues during
periods of negative energy balance, but in some circum-
stances they can have pathological effects [1]. Triacylglycerol
(TAG) is stored in various adipose tissue depots of body, but
if blood nonesterified fatty acid (NEFA) levels are elevated
for prolonged periods, as it may occur during lactation or
obesity, TAG can accumulate in other tissues including liver
and muscle cells and can have pathological consequences
such as the development of ketosis [2], type 2 diabetes [3], or
nonalcoholic fatty liver [4]. During lactation, liver, adipose

tissue, and mammary gland (MAG) are the major sites of
fatty acid metabolism and are able to synthesize the in vivo
fatty acids de novo and esterify them to TAG [1].

Lactation comprises a catabolic mode of adipose tissue
metabolism, with markedly reduced fatty acid synthe-
sis/esterification and low-lipoprotein lipase activity [5, 6]. By
contrast, lipogenesis is increased in MAG, ensuring a pref-
erential uptake of TAG precursors for milk fat production
[7]. In this phase, MAG becomes the most active site of
lipogenesis, exceeding by 4-fold the liver [8].

The liver has a more complex role in lipid metabolism
than adipose or mammary tissue, taken up NEFA from
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the blood and either oxidizing them to CO, or ketones
(ketoacetate and 8-hydroxybutyrate), which are released into
the blood for use elsewhere in the body, or esterifying fatty
acids to TAG and phospholipids, which are then secreted
into the blood as lipoproteins including very low density
lipoproteins (VLDL). In lactation, several mechanisms pro-
mote the oxidation of fatty acids in the liver [2, 6], which are
related to a fall in serum insulin accompanied by a rise in
glucagon and also in NEFA [9]. Despite the fall in the serum
insulin to glucagon ratio and other mechanisms that operate
to promote fatty acid oxidation, fatty acid esterification is
also increased in the liver during lactation. This is primarily
due to the substantial increase in NEFA uptake but, in
addition, the activities of some esterification enzymes are
also increased [10]. The physiological purpose of the TAG
accumulation in the liver is not clear. It may be a default of
a system in which NEFA uptake by the liver is determined
by supply rather than need, reflecting the role of the liver in
regulating the nutrient composition of the blood [11, 12].

According to Choi et al. [13], the intrauterine growth
retardation caused by protein deficiency of the mother plays
an important role in the adult life development of “fatty
liver” or fat accumulation within liver. It also increased risk
of adult metabolic syndrome, clustering cardiovascular risk
factors such as diabetes, hypertension, dyslipidemia, and
obesity [14]. This liver lipid accumulation is a feature seen
in protein-calorie malnutrition such as kwashiorkor [4].

In our laboratory, we observed low-protein dams on
the 14th day of lactation lower serum insulin levels and
this study showed that the maternal metabolic adaptation
to hypoinsulinaemia resulted in higher insulin sensitivity,
enhanced carcass fat deposition, hyperleptinaemia, and
hypophagia [15]. The aim of the present study was to
evaluate some metabolic alterations on maternal metabolism
in low-protein rats in the latest phase of lactation.

2. Methods

2.1. Animals and Diets. The experiment was formally
approved by the institutional ethical committee and followed
the COBEA guidelines (Brazilian College of Experimen-
tal Animal) adopted by Mato Grosso Federal University
(UFMT) [16]. Female Wistar rats (90d) were supplied
by the animal central care facility of the UFMT, Cuiaba,
Brazil. Mating was performed by housing females with males
overnight and pregnancy was confirmed by the presence of
sperm in vaginal smears. Virgin and pregnant females were
separated and maintained from the first day of pregnancy
until the 18th day of lactation with isocaloric diets containing
60 g protein/kg (low-protein diet) or 170 g protein/kg (con-
trol diet) as described by Ferreira et al. [15].

Spontaneous delivery took place the 22nd day of preg-
nancy and after which, at 3 days of age, large litters were
reduced to eight pups, ensuring a standard litter size per
mother, that were weighed three times a week until the
end of experimental period. Lactating and non-lactating
rats were divided in four groups and evaluated from the
first day until the 18th day of lactation, as follows: control
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non-lactating (CNL) and lactating (CL), low-protein non-
lactating (LPNL), and lactating (LPL), with free access to
food and water. The control non-lactating and low-protein
non-lactating groups were formed by virgin rats. They
were kept under standard lighting conditions (12 h light/dark
cycle) ata24+1°C of temperature. Food intake was evaluated
at same times of animal weighting.

Milk production in each group was estimated as
described by do Carmo et al. [17] as the difference between
weights of the offspring soon after suckling and after 24 h
fasting, at the 16th day of lactation. The differences were
taken as the amount of milk suckled from the dams.

2.2. Sample Collection and Analyses. At the end of the ex-
perimental period (18th day of lactation) the rats were
euthanized with CO, and the blood was collected after
decapitation. Serum was obtained by centrifugation and
aliquots were stored at —80°C. Serum glucose was measured
by the glucose oxidase method (Accu-chek, Roche Diagnos-
tics, Germany), total protein by the biuret modified method
[18] and albumin by the green bromocresol method [19].
Serum hormone concentrations were analyzed by ELISA
assay cross-reaction kits for rats: insulin (Linco Research,
USA), prolactin (Alpco Diagnostics, USA), leptin (Antigenix
American Inc., USA), and glucagon (Wako, USA).

Gonadal white adipose tissue (GON), liver, mammary
gland (MAG), and carcass (CARC) were quickly removed
after euthanasia for fresh weight determination (g) and
kept at —80°C until its use for dosages. Liver fragments
were excised to determination of glycogen content [20].
The fat content in the tissues was measured according
to Folch method [21], and values were expressed as mg
of lipid/100 mg of tissue. Carcasses lipid was analyzed as
described by Oller de Nascimento and Williamson [22] and
values were expressed as mg of lipid/100 mg of carcass.

2.3. Measurements of Enzymes Activities. Hepatic enzymes
activities were measured by the following methods: glucose-
6-phosphate dehydrogenase (G6PDH) was assayed as
described by Lee [23], malic enzyme (ME) by the method
of Ochoa [24] modified by Hsu and Lardy [25]. Both assays
were performed by measuring the rate of formation of
NADP. ATP-citrate lyase (ATP-cit) was assayed as described
by Srere [26], measuring the rate of oxidation of NADH.

Absorbance was taken each 30 s at 340 nm. Enzymes activities
were expressed as nmol NADH - mg of protein™!- min~!.

Protein concentration was determined as described by Lowry
[27].

2.4. Statistical Analyses. Results were expressed as mean +
SEM for the number of rats indicated. Levene’s test for
homogeneity of variances was initially used to determine
whether data complied with the assumptions of paramet-
ric analysis of variance. When necessary, data were log-
transformed to correct for variance in heterogeneity or
nonnormality. All data were subsequently analyzed by two-
way ANOVA (nutritional status and physiologic status)
followed by Tukey-HSD test for individual differences among
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TABLE 1: Absolute (g) and relative (g/100 g body mass) food intake, protein intake, initial and final body mass of non-lactating and lactating
rats maintained with control (CNL and CL) or low-protein (LPNL and LPL) diets.

GROUPS
CNL CL LPNL LPL
Absolute food intake 293 + 18P 573 + 26 276 + 11° 308 +9°
Relative food intake 92 £1¢ 100 +1° 94 +1¢ 116 = 4°
Absolute protein intake 50 + 8" 97 + 4% 16.5 = 0.6° 19.3 £ 0.9°
Relative protein intake 15.5 = 0.1° 17.0 £0.22 5.60 + 0.04¢ 7.0 £0.2¢
Initial body mass 268 £ 4 404 = 10* 255 + 27 362 + 16*%
Final body mass 300 +7° 330 +8° 287 +5P 249 = 10?

CNL, CL, LPNL groups = 7; LPL group = 8 rats. Values are means + SEM.

*Statistical difference related to non-lactating rats (Two-Way ANOVA; P < .05).

#Statistical difference related to control rats (Two-Way ANOVA; P < .05).
Different letters indicate statistical differences (Tukey HSD test; P < .05).

TABLE 2: Serum concentration of total protein, albumin, glucose, insulin, glucagon, leptin, prolactin, insulin/glucose, and insulin/glucagon
ratios of non-lactating and lactating rats fed control (CNL and CL) or low-protein (LPNL and LPL) diets.

GROUPS
CNL CL LPNL LPL

Total protein (g/dL) 4.9 + 0.4° 5.2 +0.4° 4.9 £ 0.6" 3.4 +0.3°
Albumin (g/dL) 3.1+0.1 2.7x0.2 2.2 +0.3* 1.8 + 0.2*
Glucose (mg/dL) 109 + 2 108 = 6 124 + 4% 112 + 4%
Insulin (ng/mL) 3.5+0.8 1.7 + 0.5* 1.8 + 0.2 0.52 + 0.08**
Glucagon (ng/mL) 1.1 +0.2 0.6 £0.1* 0.6 + 0.2 0.5+ 0.1**
Leptin (ng/mL) 25+0.7 1.1 +0.2* 3.7+ 0.6 1.1 +0.3*
Prolactin (ng/mL) 27 £4° 130 = 4° 22 £8° 65 +6°
Insulin/glucose molar ratio 102 + 22 53 + 18* 47 + 3% 15 + 2%
Insulin/glucagon molar ratio 1.4 +0.4 1.1 +0.2* 1.5+0.2 0.5+0.1*

CNL, CL, LPNL groups = 7; LPL group = 8 rats. Values are means + SEM.

*Statistical difference related to non-lactating rats (Two-Way ANOVA; P < .05).

#Statistical difference related to control rats (Two-Way ANOVA; P < .05).
Different letters indicate statistical differences (Tukey HSD test; P < .05).

groups. Different superscript letters were employed to mark
statistical differences. Student’s ¢ test was used to compare
two groups. P < .05 indicated statistical significance.
All statistical comparisons were done using the Statistics
Software Package (Statsoft, Tulsa, OK, USA).

3. Results

Absolute food intake was similar in low-protein lactating
dams compared to controls, but the increases were found
in both LPL and LPNL when normalizing it by percentage
of body mass. Protein intake was reduced in absolute
and relative terms in low-protein groups. By the end of
experimental period, LPL group significantly reduced the
final body mass (Table 1).

Serum protein concentration was significantly lower in
LPL, but albumin levels were reduced in both low-protein
groups (LPNL and LPL). In an opposite way, serum glucose
values of these rats were higher than the controls (Table 2).

Lactation lowered serum insulin and glucagon levels,
markedly in LPL dams, being that we found insulinemia 3.5

times lower than in CL. On the other hand, low-protein diet
reduced both insulin and glucagon levels when compared to
controls. And, although the lowest ratios of insulin/glucose
and insulin/glucagon in lactating groups (LPL, CL) the low-
protein diet reduced the insulin/glucose ratio. Lactation
induced rise in serum prolactin levels in both LPL and CL,
but it was impaired in low-protein dams and, a fall in serum
leptin levels was observed in both control and low-protein
lactating dams (Table 2).

By this period, LPL dams lost some relative mass of
mammary glands, whereas control dams retained their MAG
weights. Lipid content also reduced in MAG of control
and low-protein rats (Table 3). Daily milk production was
decreased in LPL group too, according to Figure 1, with
consequent impairment of body mass gain in LPL pups
(Figure 2).

Other lipid-providing tissue such as GON was reduced in
both lactating groups (LPL and CL) (Table 3).

Table 4 shows the liver parameters analyzed. In lactating
rats, the mass (g) and the lipid content (%) were increased
in this tissue as compared to non-lactating ones (in absolute
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TABLE 3: Relative mass (g/100g body mass) and lipid content (g) of tissues and carcass of non-lactating and lactating rats fed a control (CNL
and CL) or low-protein (LPNL and LPL) diets.

GROUPS
CNL CL LPNL LPL
Relative mass of tissues (g/100 g)
MAG 2.0 +£0.2¢ 3.2+0.2° 3.0 0.3 2.5 +0.2°
GON 54+03 42 +0.3* 6.2+05 44 +0.4*
CARC 72.6 = 0.8 69.2 + 0.5* 72.4 0.8 71.4 + 0.5*
Lipid content (g/100 g)
MAG 68 =2 21 £5.0% 71 1.0 32 +7.0*
GON 792 35 78 = 2.0* 79.6 £ 0.6 76 £1.0*
CARC 9.0+ 1.0 6.4 0.7 82+09 6.3 +1.0

CNL, CL, LPNL groups = 7; LPL group = 8 rats. Values are means + SEM.
*Statistical difference related to non-lactating rats (Two-Way ANOVA; P < .05).
#Statistical difference related to control rats (Two-Way ANOVA; P < .05).
Different letters indicate statistical differences (Tukey HSD test; P < .05).

TaBLE 4: Liver mass, glycogen content, lipid content, lipid/glycogen ratio, and lipogenic enzymes activities (nmol - mg of protein~'- min~")
of non-lactating and lactating rats fed a control (CNL and CL) or low-protein (LPNL and LPL) diets.
GROUPS
CNL CL LPNL LPL
Absolute mass (g) 9.4+0.3 14.7 £ 0.8* 8.9 + 0.3% 12.4 = 0.7
Relative mass (g/100 g) 32+0.1 4.5 +0.2* 3.1+0.1 5.0 = 0.2*
Glycogen (mg/100 mg) 3.8+0.3 51+0.5 52+04 4.7 +0.8
Lipid (mg/100 mg) 53+0.7 9.3 x0.7* 54+0.8 11.5 = 0.9*
Lipid/glycogen ratio 1.4 +0.2¢ 2.0 £0.3° 1.1 +£0.2¢ 3.1 +0.3*
Lipogenic enzymes activities (nmol - mg of protein™!- min™!) (n =5)
G6PDH 148 + 10° 222 £ 23 62 £ 10¢ 217 = 152
ATP-cit 142 =7 239 + 34* 136 = 15 221 £ 17*
EM 68 £9° 80 +3° 47 £3° 139 + 14°

CNL, CL, LPNL groups = 7; LPL group = 8 rats. Lipogenic enzymes activities were obtained from 5 animals. Values are means + SEM.
*Statistical difference related to non-lactating rats (Two-Way ANOVA; P < .05).

#Statistical difference related to control rats (Two-Way ANOVA; P < .05).

Different letters indicate statistical differences (Tukey HSD test; P <.05).

and relative values), although the absolute mass had decrease
in both low-protein groups. Glycogen content did not
differ between groups, but the lipid-to-glycogen ratio in the
liver elevated in LPL rats. Following these parameters, the
liver lipogenic enzymes G6PDH and ATP-cit activities were
markedly increased by lactation, and in low-protein dams
(LPL) higher levels of malic enzyme activity was observed.

4. Discussion

Despite the highest initial body mass and relative food intake
observed, the lactating low-protein dams reached the lowest
values of final body mass and decrease of serum albumin
concentration was observed in low-protein animals. This is
a well-described consequence of scarce nitrogen stores for
milk-protein synthesis in low-protein malnourishment [5, 8,
28]. The lactation-induced loss of mammary gland weight in
protein-restricted dams (with lowered milk production) then

argues for a general modification of nutrient metabolism,
where milk synthesis is impaired at the glandular level.

According to Dewey [28], a suitable protein supply
in maternal diet is necessary to enhance milk production
and allows a positive increase in milk’s protein balance.
Zambrano et al. [29] described that offspring whose mothers
have restricted protein diet during lactation weighed less
than those whose mothers were on the control diet. Addi-
tionally, Park et al. [14] indicated that poor nutrition in
early life, especially protein restriction, causes long-lasting
changes in mitochondria, and this change is more evident
in the liver and skeletal muscle, that may contribute to the
development of insulin resistance in later life. Choi et al.
[13] demonstrated the occurrence of structural changes in
the liver and, important changes in lipid metabolism in rats
submitted to 25% of food restriction.

Serum prolactin was 70% lower in low-protein dams,
endowing the low MAG weight observed and putting the
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Figure 1: Daily milk production by control (CL) and low-
protein (LPL) lactating. Bars are means + SEM, n = 7 mothers.
*Statistically different from control lactating (Student’s ¢-test; P <
.05).
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FIGURE 2: Weight gain of pups weaned by control (CL) and low-
protein (LPL) lactating. Values are means = SEM; n = 7. *P < .05
relative to CL (Student’s ¢-test). Pups of control and low-protein
mothers were weighed each 3 days after birth until the 18th day of
lactation.

impaired milk production on a pituitary/hormonal level.
Recent studies demonstrated that the actions of prolactin are
not confined to the mammary gland [30], but contributes

to maternal leptin resistance, increased food intake, and
maternal behaviors immediately after parturition [30, 31].

Lactation half end is characterized by decreased insuline-
mia and leptinemia. These low insulin and leptin levels in
lactating rats are associated to catabolic processes releasing
fatty acids from the adipose tissue, towards to the liver.
In lactating low-protein dams the insulinemia reduced in
2-thirds as compared to control lactating, prompting to
a higher release of fatty acids. According to Sipols et al.
[32], low insulin and leptin concentrations can lead to
hyperphagia, which could have contributed to the elevation
of food intake verified in both lactating groups [6, 33].

We found increased serum glucose levels and reduced
insulinemia in low-protein groups, especially in lactat-
ing dams. Moreover, in low-protein lactating rats the
insulin/glucagon ratio was 46% lower than in control. As
described, a higher fatty acid mobilization from depots is
usually observed during lactation, to provide fatty acids
towards the mammary gland and other tissues [5, 6]. The
lactating groups exhibited a reduction in the mass and
lipid content of gonadal adipose tissue on the 18th day of
lactation. In our model, since this lipid mobilization did not
result in increased milk production, a first place for lipid
deposition is the liver.

Both lactating groups exhibited increased mass and lipid
content in the liver. Accumulation of fats in the liver during
early, but not in late lactation, is usually verified and seldom
impairs its functions [12]. The stored lipid-to-glycogen ratio
in low-protein lactating group was, however, very higher
(3:1), and even in control lactating group this parameter
was in the limit (2:1). Previous studies had shown that
when this ratio exceeds about 2:1, pathological problems
begin to develop [2]. The reason for the pathological effects
of high levels of TAG in liver is unclear, but it can relate
to prolonged elevation of nonesterified fatty acids (NEFA)
levels and/or their CoA esters in the cell [34]. Because lipid
homeostasis is mainly dependent on the liver, the underlying
lipid deregulation in lactating nutritional restricted rats
would be mediated, at least in part, through alterations of
liver structure [13, 14].

Additionally, lactation strongly increased the liver
lipogenic enzymes in lactating dams, as compared to non-
lactating females, especially malic enzyme that elevated
only in low-protein dams. Hormonal and nutritional con-
ditions that modify liver lipogenic enzymes activities are
described [35, 36], with insulin being stimulatory and
glucagon a depressor [37]. Previous studies showed that
a high carbohydrate diet stimulates the expression of liver
lipogenic enzymes [38] and contributes to elevate plasma
TAG levels [39]. In our model, diet protein was replaced by
carbohydrate for keeping isocaloric diets. This model did not
increase lipogenic enzymes in non-lactating females and even
decreased malic enzyme activity both in low-protein non-
lactating, as in control lactating. This pattern of alterations is
very likely related to the insulin to glucagon ratios observed,
reinforcing the hormonal control of liver lipogenesis.

Previous works with this model of protein deficiency in
pregnancy and lactation have stated permanent changes in
expression of liver enzymes involved in glucose homeostasis



[40, 41], increases of liver insulin sensitivity [26, 41] and
reduction of glucose tolerance [42]. Such studies explored
the offspring physiology but not the dams.

In this study we observed that low-protein diet during
lactation decreased the development of mammary gland and
prolactin secretion which resulted in lower milk production
and impaired pups growth. Lactation enhanced liver mass,
lipid content and lipogenic enzymes activities. Moreover, this
diet enhanced the store of lipid to glycogen ratio and suggests
a higher risk of fatty liver development.
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