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Abstract

Alzheimer’s disease (AD) is associated with abnormal functioning of the default mode network (DMN). Functional
connectivity (FC) changes to the DMN have been found in patients with amnestic mild cognitive impairment (aMCI), which
is the prodromal stage of AD. However, whether or not aMCI also alters the effective connectivity (EC) of the DMN remains
unknown. We employed a combined group independent component analysis (ICA) and Bayesian network (BN) learning
approach to resting-state functional MRI (fMRI) data from 17 aMCI patients and 17 controls, in order to establish the EC
pattern of DMN, and to evaluate changes occurring in aMCI. BN analysis demonstrated heterogeneous regional
convergence degree across DMN regions, which were organized into two closely interacting subsystems. Compared to
controls, the aMCI group showed altered directed connectivity weights between DMN regions in the fronto-parietal,
temporo-frontal, and temporo-parietal pathways. The aMCI group also exhibited altered regional convergence degree in
the right inferior parietal lobule. Moreover, we found EC changes in DMN regions in aMCI were correlated with regional FC
levels, and the connectivity metrics were associated with patients’ cognitive performance. This study provides novel sights
into our understanding of the functional architecture of the DMN and adds to a growing body of work demonstrating the
importance of the DMN as a mechanism of aMCI.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder

characterized by cognitive decline and progressive dementia [1],

and is thought to be caused by aberrant connections between

cerebral regions involved in cognitive functioning [2,3]. Amnestic

mild cognitive impairment (aMCI) is the transitional stage between

normal aging and early AD, and individuals diagnosed with aMCI

are at high risk for progression to AD [4]. Numerous neuroim-

aging studies have demonstrated that patients with aMCI also

have alterations to regional [5] and functional [6–8] neural

networks, as well as to whole-brain connectivity [9].

Functional magnetic resonance imaging (fMRI) of the neural

activity occurring in the default mode network (DMN) under

resting state has recently attracted attention as a novel means to

understand the mechanism of AD [10,11], and as a potential

biomarker to diagnose incipient AD [12]. The DMN comprises a

constellation of regions that are more active under resting state

than during goal-oriented or attention-demanding tasks; these

regions include the medial prefrontal cortex (MPFC), posterior

cingulate cortex (PCC), and inferior parietal lobule (IPL) as core

regions, and the lateral temporal cortex (LTC) and medial

temporal lobe (MTL) as additional regions [10,13]. Intriguingly,

the DMN regions are the typical predilection targets of AD [14], a

finding confirmed by the functional [11,15,16] and structural [17]

connectivity alterations revealed by neuroimaging studies of AD.

With respect to the DMN in aMCI, Sorg et al. [18] found that

connectivity between bilateral hippocampus and left PCC was

selectively decreased in aMCI, while Bai et al. [19], Qi et al. [6]

and Jin et al. [20] reported the coexistence of both impairment

and compensation within the DMN in aMCI. These studies

indicate a potential significance of the DMN as a useful tool for

understanding functional abnormalities present in the pathology of

aMCI.

Considering the methodology used, most previous fMRI

connectivity studies of the DMN in aMCI are, in essence,

evaluations of temporal correlations between brain regions within

the network, which is generally referred to as functional

connectivity (FC) analysis [21]. This is performed using region of

interest (ROI) based linear correlation analysis [22], or data-driven

independent component analysis (ICA) [6,18,20]. Recently,

effective connectivity (EC) analyses, which provide insights into

directed relationships between brain regions [23], for example,

Granger causality analysis (GCA) [24] and Bayesian network (BN)

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e82104



[25], has been employed in resting state fMRI connectivity studies

to reveal further characteristics of spontaneous fluctuations [26–

28]. These methods have also been used in AD studies to evaluate

directed connectivity changes [16,29]. However, whether aMCI

patients also exhibit an aberrant EC relationship between DMN

regions remains largely unknown.

Here, we employed a combined Group ICA and BN learning

approach to explore resting state fMRI effective connectivity

changes in the DMN, in patients diagnosed with aMCI. Briefly,

Group ICA is the regular method used for FC analysis of resting

state brain networks [6,11,30]. BN is a directed acyclic graph

(DAG) model of joint multivariate probability distributions, that

captures the conditional independence relationships among

multiple interacting quantities (in this case, brain regions of

interest) [31]. BN is used to describe global directed connectivity

patterns between brain regions in a data-driven manner, without

any prior knowledge of the relationships among them [25]. In the

current work, Group ICA was first used for the separation of FC

map of DMN, which was then used for the determination of ROIs

for EC analysis. Gaussian BN was finally employed to model the

EC patterns of these DMN regions. With the use of Group ICA

and BN analysis, we aimed to determine the functional

organization of DMN regions from the perspective of directed

connectivity, and to evaluate whether aMCI alters the EC of

DMN, and if so, whether the EC changes were correlated with

regional FC levels, and associated with individual clinical and

cognitive performance.

Materials and Methods

Subjects
Seventeen aMCI patients (7 men and 10 women), and 17 age-,

gender-, and education-matched healthy normal control subjects

(NC: 9 men and 8 women) participated in this study. All subjects

were recruited from the local communities of Beijing, China. Each

participant underwent a series of standardized clinical and

neuropsychological evaluations, including the Clinical Dementia

Rating (CDR) Scale [32], the Mini-Mental State Examination

(MMSE) [33], and the Montreal Cognitive Assessment (MoCA)

[34]. Participants’ cognitive skills in several domains, including

visuospatial executive function, attention, delayed recall, and

orientation to time and place were assessed using MoCA. All

aMCI subjects were diagnosed by experienced neurologists. None

of the aMCI patients was taking any specific medications for their

condition during the period of the study. Subjects with any history

of psychiatric disease, neurological disorder, drug abuse, moderate

to serious hypertension, or known systematic disease were

excluded. Patients met the diagnostic criteria for aMCI, which

include reported and neuropsychologically assessed memory

impairments, largely intact activities of daily life, and an absence

of dementia [4,35]. Table 1 shows the detailed demographic data

and clinical/cognitive characteristics of these participants.

Ethics Statement
This study was approved by the Institutional Review Board of

the Institute of Psychology, Chinese Academy of Sciences. All

participants provided written, informed consent before taking part

in our experiments.

Data Acquisition
A 3-Tesla Siemens Trio scanner (Erlangen, Germany),

equipped for echo planar imaging (EPI), at the Beijing MRI

Center for Brain Research was used for image acquisition. During

the scan, participants were instructed to lie quietly, keep their eyes

closed, and not to think of anything in particular. For each

participant, 200 resting state functional volumes were collected,

using the following parameters: time repetition (TR) = 2000 ms,

time echo (TE) = 30 ms, flip angle = 90u, field of view

(FOV) = 2006200 mm2, 33 axial slices, thickness = 3.0 mm,

gap = 0.6 mm, acquisition matrix = 64664, and in-plane

resolution = 3.12563.125. High-resolution, three-dimensional

T1-weighted structural images were acquired for each subject,

with the following parameters: 176 slices, acquisition matrix

= 2566256, voxel size = 16161 mm3, TR = 1900 ms, TE

= 2.2 ms, and flip angle = 9u.

Data Pre-processing
Data pre-processing was performed using the Statistical

Parametric Mapping program (SPM8, http://www.fil.ion.ucl.ac.

uk/spm) and the Data Processing Assistant for Resting State fMRI

(DPARSF) V2.0 Basic Edition (http://www.restfmri.net). The first

10 volumes were discarded to allow for equilibration of the

magnetic field. The remaining 190 volumes were corrected for the

intra-volume acquisition time differences between slices using the

Sinc interpolation and were corrected for the inter-volume

geometrical displacement due to head motion using a six-

parameter (rigid body) spatial transformation. Participants includ-

ed in this study are with head motions less than 2.0-mm in any

direction and 2.0u of any angular motion during the resting-state

scan. The aMCI group and NC group were matched on mean

head motion (p.0.08 in any direction). The functional images

were then normalized into the standard space of Montreal

Neurological Institute (MNI) using an optimum 12-parameter

affine transformation and nonlinear deformations. The normal-

ized volumes were resampled to a voxel size of 36363 mm3.

Finally the images were spatially smoothed with a 4-mm full width

at half maximum (FWHM) Gaussian kernel.

Group Independent Component Analysis
Group ICA is a data-driven technique which is widely used to

separate patterns of task-activated neural networks, image artifacts

and physiologically generated independent components (ICs),

including resting state networks [30,36–38]. Here, the pre-

processed fMRI data from all subjects were entered into the

software of Group ICA in the fMRI Toolbox (GIFT, http://icatb.

Table 1. Demographics and Clinical/Cognitive Characteristics
of the Participants.

Characteristic NC aMCI P value

N (M/F) 17 (7/10) 17 (9/8) 0.49a

Age, years 67.965.6 70.564.5 0.15b

Education, years 11.863.2 9.864.6 0.16b

MMSE 28.461.4 24.563.9 ,0.001b

CDR 0 0.5 —

MoCA 26.161.5 19.264.4 ,0.001b

Visuospatial executive
function

4.660.7 2.561.0 ,0.001b

Attention 5.960.3 4.461.5 0.002b

Delayed recall 3.261.0 1.661.6 0.009b

Orientation 5.960.2 5.361.0 0.023b

aThe p value was obtained using a two-tail Pearson chi-square test.
bThe p value was obtained using a two-sample two-tail t test.
doi:10.1371/journal.pone.0082104.t001

Altered Directed Connectivity of DMN in aMCI
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sourceforge.net), for the separation of DMN, and the determina-

tion of DMN regions for BN analysis. As there is no consensus on

the selection of an optimal number of ICs, we chose to have the

analysis output 20 components [11,30,39]. The Group ICA

program included two rounds of principal component analysis

(PCA) for reduction of fMRI data dimension, ICA separation, and

back-reconstruction of the ICs and the corresponding mean time

course for each subject. The component that covers the main

regions of the DMN previously reported [10,13] was selected for

statistical analysis. To derive the Group DMN pattern, we

converted the intensity values within each subject’s DMN

component to z-scores, and applied a one-sample t-test (p,0.05,

corrected by false discovery rate [FDR]) to these individual

components. To determine the regions for the subsequent EC

analysis, we identified key DMN regions as ROIs, each of which

was a sphere centered on the local maximum FC cluster, with a

radius of 6 mm.

Gaussian Bayesian Network Analysis
The ROIs identified in the previous process were entered into

the BN analysis for the construction of EC patterns of DMN. The

averaged resting state fMRI time series over the voxels in each

ROI was extracted to represent the time course of the region. In

particular, before the extraction of ROIs’ time series, detrending

and temporal band-pass filtering of the fMRI data was performed

in order to reduce the effects of low-frequency drifts and

physiological high-frequency noise [40,41]. As the head movement

and several potential nuisance signals were reported to influence

the resting-state connectivity [42–44], we regressed out the

possible sources of artifacts of the fMRI data including the six

head-motion profiles, global signal, white matter signal, and

cerebrospinal fluid (CSF) signal. The residual volumes were

retained for the inter-ROI effective connectivity analysis.

A BN is a graphical representation of a joint probability

distribution over a set of random variables. It is a directed acyclic

graph (DAG), with nodes corresponding to the research variables,

and arcs denoting conditional dependence relationships. Each

node is quantified by its conditional probability, given its parent

nodes in the network. The absence of arcs between nodes in a BN

refers to conditional independencies among them. The BN graph

encodes the Markov assumption; that is, each node is independent

of its non-descendants, given its parents in the network [31]. Here,

nodes in the BN represent ROIs from DMN, the time series from

which is assumed to follow a linear Gaussian conditional

distribution. Consider a set X~fX1, :::, Xng of random variables

where variable Xi(i~1, :::, n) represents the ith ROI, the

conditional probability density of Xi given its parents Pa(Xi)
can be given by

P(XijPa(Xi)) ~ N(miz
X

Xp[Pa(Xi )
bp(xp{mp), s2) ð1Þ

in which mi is the unconditional mean of Xi, s2 is the conditional

variance of Xi given its parents, and bp is a linear connectivity

coefficient from the parent node Xp to Xi that quantifies the

strength of the relationship between them [45]. The joint

probability distribution of X~fX1, :::, Xng, namely,

P(X1, :::, Xn) ~ P
n

i~1
P(XijPa(Xi)) ð2Þ

is thus a multivariate Gaussian. A determined linear Gaussian BN

is in fact equivalent to a set of multivariate linear regression

equations. Each node Xi in a Gaussian BN can be viewed as the

linear regression of its parents Pa(Xi) [46].

The BN method requires no assumption of any prior knowledge

of the relationship between research variables, and can provide a

global connectivity characterization of a system automatically

learned from data in an exploratory manner. We employed the

Bayesian information criterion (BIC) [47] based search-and-score

approach to learn the EC among DMN regions. The BN model

that optimizes the BIC score among the space of possible

candidates was identified as the best fit network. The L1-

Regularization Paths algorithm [48], and the maximum likelihood

(ML) estimate implemented in the collections of Matlab functions

written by Murphy et al. (http://www.cs.ubc.ca/̃murphyk/

Software), were used for learning the DAG structure and

parameters of the BN model, respectively, for the NC and aMCI

groups.

For the constructed BN pattern of DMN regions, it was also of

interest to examine the network features on the basis of the

determination of directed connections among DMN regions. The

BN is particularly useful for characterizing processes composed of

locally interacting nodes [31]. Within the framework of BN, the

activity of each DMN region is directly dependent on the activity

of its several parent regions (ingoing connections), and regions with

more parents exhibit a higher regional dependence degree in the

network. Therefore, we defined a network measure, the conver-

gence index (CI) quantified as the number of parents (i.e., the

number of ingoing connections), for each region in order to

describe the regional dependence degree. Regions with a higher

CI have more parents, depend more on the activity of the network,

and might be more pivotal within the DMN. We further

differentiated these DMN regions into those having a higher CI

and those having a lower CI, according to whether or not their

dependence degree was above or below the average degree value

of all the regions.

Statistical Analysis
Before examining EC changes in aMCI, we first conducted

ROI analyses to examine the between-group FC changes, and

their correlations with clinical/cognitive variables in each ROI. As

the z-score reflects the correlation degree of a given voxel’s time

series to the mean time course of the component, we calculated the

average z-score of voxels within each ROI for each subject in

order to quantify the level of FC in these regions. To determine

the between-group FC differences in the DMN, a two-sample t-test

(p,0.05) was performed for each ROI. Correlations between FC

in these DMN regions, and cognitive variables including MMSE

and MoCA scores were also examined.

EC changes to the DMN in aMCI were examined in two ways.

Firstly, to determine the changes of directed connections between

DMN regions in aMCI, a randomized permutation test was

performed [16,49]. The differences in connection weight coeffi-

cients between NC and aMCI were taken as the statistical

measures. We first calculated between-group differences of the

connection coefficients, and then obtained the reference distribu-

tions of these statistics by randomly rearranging all of the 34 fMRI

datasets into two groups, reconstructing the BN models, and

recalculating the differences of these connection weights between

the two randomized groups (1000 permutations). Finally, the

probabilities of BN connections in NC group that were higher

than those in aMCI group, as well as probabilities of connections

in aMCI group that were stronger than those in NC group

(p,0.05) were examined, and the type-I errors of between group

differences for each connection were reported. Secondly, to

determine changes in regional dependence degree in each DMN

Altered Directed Connectivity of DMN in aMCI
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region in aMCI, we compared the CI of each ROI between NC

and aMCI using a two-sample t-test (p,0.05).

To examine whether the EC changes in aMCI are associated

with regional FC levels, we calculated the Pearson correlation

(p,0.05) between regional dependence degree (CI) and regional

FC value for each region that showed an EC difference in the

aMCI group.

To examine the relationship between network connectivity

metrics and clinical/cognitive measures in aMCI group, we

calculated the Pearson correlation (p,0.05) between CI values in

regions with altered EC, and patients’ global performance

(MMSE/MoCA); we also calculated the Spearman correlation

(p,0.05) between CI and individual cognitive performance in the

domain of visuospatial executive function, attention, delayed

recall, and orientation function.

Results

Demographic, Clinical, and Cognitive Characteristics
There were no significant differences in age (p = 0.15), gender

(p = 0.49), or years of education (p = 0.16) between the NC and

aMCI groups. The aMCI group had significantly lower scores on

the MMSE and MoCA tests than NC group (p,0.001). The

aMCI group also had significantly lower scores for visuospatial

executive (p,0.001), attention (p = 0.002), delayed recall

(p = 0.009), and orientation (p = 0.023) abilities than NC group.

Functional Connectivity Mapping of the Default Mode
Network

Figure 1 shows the FC map of DMN that was extracted from

Group ICA. To determine the regions for the subsequent EC

modeling of the DMN, we choose 9 regions that showed

significant FC (p,0.05, corrected by FDR) as ROIs. They are

PCC, dorsal MPFC (dMPFC), ventral MPFC (vMPFC), left IPL

(LIPL), right IPL (rIPL), left LTC (lLTC), right LTC (rLTC), left

hippocampus (lHC), and right hippocampus (rHC). The signifi-

cant DMN cluster locations are shown in Table 2.

Effective Connectivity Mapping of the Default Mode
Network

The Gaussian BN approach was applied to characterize the

directed connectivity relationships among the 9 DMN regions.

Figure 2 shows the BIC-optimized BN connectivity patterns of the

DMN in both the NC and aMCI groups. The DAG demonstra-

tions of the EC patterns were constructed using arcs of varying line

width to indicate the direction and strength of the conditional

dependence relationships. Intuitively, the group-level EC patterns

in the NC and aMCI groups seem very similar, except for one

connection (rLTCRlLTC) which changed directionality, and one

small-weighted connection (rHCRlIPL) which disappeared in

aMCI.

Figure 1. The functional connectivity map of the DMN. The statistical map was derived from a one sample t-test (p,0.05, corrected by FDR) of
all subjects’ DMN components. Bar at the right shows T-values.
doi:10.1371/journal.pone.0082104.g001

Table 2. Regions showing significant FC in the DMN.

Region Peak MNI location Brodmann’s areas Peak T

PCC 9 254 15 23, 30, 31 18.6

dMPFC 6 57 18 9, 10, 24, 32 8.7

vMPFC 0 48 215 10, 24, 32 9.7

lIPL 245 269 36 39, 40 13.6

rIPL 54 260 24 39, 40 13.1

lLTC 257 26 221 20, 21 7.0

rLTC 60 212 221 20, 21 6.7

lHC 227 221 221 28, 35, 36 9.2

rHC 27 221 221 28, 35, 36 6.7

doi:10.1371/journal.pone.0082104.t002

Altered Directed Connectivity of DMN in aMCI
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We also calculated the CI at each node, in order to differentiate

the regional convergence degree among these ROIs. Figure 2

shows that the PCC, dorsal and ventral MPFC, and bilateral IPL

(shown as red nodes) have a higher CI in both groups; each of

them has more ingoing connections, not only from themselves but

also from other regions. While the bilateral LTC and bilateral HC

(shown as green nodes) had a lower CI in both groups, each of

them had only ingoing connections from each other, with no

ingoing connections from the PCC, MPFC, or IPL connecting to

them.

FC Changes and Their Relationship with MMSE/MoCA in
aMCI

We examined the FC differences in the 9 ROIs between the NC

and aMCI groups. The between-group comparison of the FC in

these ROIs showed that there was no significant difference in any

of the 9 DMN regions (p.0.05). However, we found that the FC

values in two regions, the dMPFC and the rLTC, were

significantly correlated with patients’ global clinical and cognitive

performance. The FC values in the dMPFC were positively

correlated with MMSE (r = 0.64, p = 0.005) and MoCA (r = 0.66,

p = 0.004) scores, while in the rLTC, the FC values were negatively

correlated with MMSE (r = 20.52, p = 0.033) and MoCA

(r = 20.66, p = 0.004) scores (Figure 3).

EC Changes in aMCI
The alterations to the EC of the DMN in aMCI were

demonstrated in two ways, including changes in connectivity

weight between regions and changes in regional convergence

degree.

Figure 4 shows the between-group differences in connectivity

weights. Compared to controls, the aMCI group had decreased

connectivity weight of the connections dMPFCRlIPL,

dMPFCRrIPL, and rLTCRvMPFC, and increased connectivity

weight of the rLTCRvMPFC connection (p,0.05). Although the

connection between the bilateral LTC changes direction, and the

rHCRlIPL connection disappears in aMCI, we did not find any

significant between-group differences in connectivity weight for

these connections at the group level (p.0.05). There was only a

trend towards decreased rLTCRlLTC connectivity in aMCI

(p = 0.081).

Figure 5 shows the changes of regional convergence degree in

aMCI. We found that in aMCI group, the local convergence

degree in the rIPL was altered. As shown in Figure 5, the CI in

rIPL is significantly decreased from 5.461.3 in NC to 4.361.6 in

Figure 2. The directed connectivity of the DMN. The DMN regions are graphically represented with connections depicting conditional
dependencies. Line width is proportional to the connection weight, and node size is proportional to the regional CI. Red and green nodes indicate
the regions with higher and lower CI than the average, respectively.
doi:10.1371/journal.pone.0082104.g002

Figure 3. Relationship between FC and individual performance in aMCI. Scatter plots show the significantly positive correlation between FC
in the dMPFC with MMSE (A1) and MoCA (A2) scores, and the significant negative correlation between the rLTC with MMSE (B1) and MoCA (B2) scores.
Each circle represents data from a single participant.
doi:10.1371/journal.pone.0082104.g003

Altered Directed Connectivity of DMN in aMCI
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aMCI (p = 0.041). There was no significant change in CI in other

regions in aMCI (p.0.05).

Relationship between EC and FC in aMCI
For the 5 regions with significantly altered EC in aMCI,

including the dorsal and ventral MPFC, bilateral IPL, and rLTC,

we examined the correlation between the local convergence

degree and regional FC level, in order to examine the intrinsic

relationship between two different connectivity attributes in aMCI.

We found a significantly positive correlation between CI values

and FC levels in the dMPFC (r = 0.684, p = 0.002), and trending

positive correlations in the rIPL (r = 0.426, p = 0.088) and rLTC

(r = 0.415, p = 0.098) (Figure 6).

Relationship between EC Metrics and Clinical/Cognitive
Performance

Finally, we examined the relationship between the convergence

degree in regions with between-group EC differences, and

individual clinical and cognitive performance. Within aMCI

group, we found that CI in the dMPFC and vMPFC significantly

correlated (p,0.05) with global performance (Figure 7). We also

found that CI in the dMPFC and vMPFC was significantly

correlated with individual performance on visuospatial executive

function and delayed recall tests, and that CI in the rIPL and

rLTC correlated with orientation and attention performance,

respectively (p,0.05). In addition, CI in the vMPFC also showed a

trend toward a positive correlation with attention performance

(Table 3).

Discussion

In this study, we employed Gaussian BN to construct the

directed EC patterns within the DMN, and then evaluated

changes in patients with diagnosed aMCI. The EC modeling

revealed a heterogeneous regional convergence degree across

DMN regions in both groups. The between-group comparison

found abnormal EC of the DMN in aMCI, including altered

directed connectivity weights on several connections that originate

from the dMPFC and rLTC, as well as decreased regional CI in

the rIPL. Moreover, we found EC changes in aMCI to be

correlated with regional FC levels, and that network metrics,

including the FC and CI, are associated with patients’ clinical and

cognitive performance.

Functional Architecture of the DMN Revealed by BN
Analysis

Unlike other traditional fMRI directed connectivity analysis

methods, such as structural equation modeling (SEM) [50] and

dynamic causal modeling (DCM) [51], the BN learning approach

characterizes the dependence structure between multiple interact-

ing regions without requiring any a priori assumption of a network

model, and provides a global description of a complex system in an

exploratory manner [25,31]. In this study, we employed BN to

model and compare the directed EC patterns between DMN

regions in the NC and aMCI groups. The BN learning approach

revealed similar directed connections and network features in both

groups (Figure 2). As differentiated by the CI, the measure defined

for the clarification and simplification of local dependence

relationships, the 9 identified regions appeared to play different

roles in the network. Spontaneous activity in the PCC, dorsal and

ventral MPFC, and bilateral IPL, each depends largely on the

activity of other DMN regions, while activity in the bilateral LTC

and HC is relatively independent of other regions, except for the

interdependence between them. It appears that the DMN regions

may be organized into two closely interacting subsystems, from the

perspective of conditional dependence relationships. This finding

agrees with previous heterogeneity studies of DMN regions [52]

based on activity [53], functional connectivity [10,54], and power

spectral [52] analysis of the network. These studies demonstrated

that the PCC, MPFC, and IPL rank highly in neural activity and

oscillatory power, and together constitute a network ‘‘core hub’’

[10,13,51,53,55]. In our study, activity in these regions was found

to depend more on the network, and show a higher degree of local

interactivity relative to other DMN regions, including the bilateral

LTC and HC. The BN analysis of effective connectivity

relationships has therefore deepened our understanding of the

functional architecture of the network.

Figure 4. Changes in directed connectivity between DMN
regions in aMCI. Red and green connections indicate increased and
decreased connectivity weights, respectively, in aMCI compared to
controls. All the aberrant connections generate from the dMPFC or the
rLTC, which are shown in red nodes. The type-I error of having a
between group difference is shown next to each connection.
doi:10.1371/journal.pone.0082104.g004

Figure 5. Scatter plot of the CI in the rIPL. The circles represent the
data from individual subjects. The histogram and the error bar show the
within-group mean value, and the standard deviation. A declining line
between the two histograms indicates a significantly decreased CI in
the rIPL from NC to aMCI.
doi:10.1371/journal.pone.0082104.g005
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Altered DMN Connectivity in aMCI
Before comparing the directed connectivity relationships

between DMN regions in the NC and aMCI groups, we examined

the FC alterations in aMCI subjects. No significant FC difference

was detected between the two groups in any of the 9 ROIs. This

result appeared to be different from most neuroimaging studies of

aMCI which usually showed altered FC of the DMN [6,20], but

was consistent with a recent study of Zamboni et al. [56], in which

they also reported unaffected functional connectivity networks

including the DMN in aMCI. We speculate that the apparent

inconsistency of different studies may be due to the heterogeneous

nature of aMCI [57]. However, we found significant correlations

between FC variables and clinical/cognitive variables in the

dMPFC and rLTC in the aMCI group (Figure 3). Better cognitive

performance of aMCI subjects was correlated with higher FC in

the dMPFC and lower FC in the rLTC. This result may suggest

that although the FC of DMN regions in our aMCI subjects did

not show any significant alterations when compared to controls, it

may have partly predicted their current cognitive status.

Even though the BN connectivity patterns of the two groups

seem similar, the connections between some regions had

significant between-group differences in their connectivity weights.

We found significantly decreased connectivity from the dMPFC to

the bilateral IPL, from the rLTC to the vMPFC, and an increased

connection from the rLTC to the rIPL in our aMCI group

(Figure 4). An interesting feature of these aberrant connections in

aMCI is that they all originated from either the dMPFC or rLTC,

in which FC values were shown to be significantly correlated with

cognitive variables. In addition, we found that the local CI in rIPL

was significantly decreased in aMCI compared with controls

(Figure 5), and that it showed a trend toward positive correlation

with the FC level in this region (Figure 6). Moreover, we found a

significant correlation between the two connectivity attributes in

the dMPFC, and an obvious trend in the rLTC in aMCI (Figure 6).

This finding indicates that the directed connection alterations and

regional interactivity relationship changes evident in DMN regions

of the aMCI group have inherent relationships with the FC levels

in these regions. In a previous effective connectivity study of the

DMN in clinical AD [16], there was also an observation that the

aberrant directed connections in AD appeared at the regions with

significantly decreased FC, although they paid little attention on

the relationship between different connectivity metrics. But the

altered connections in their clinical AD appeared to be different

from the disrupted connections in our present aMCI subjects. An

important potential factor is speculated to be the variation in

selection of ROIs between the two investigations. On the premise

of identical ROIs definition, a longitudinal study is beneficial for

further looking into the relationship between the two connectivity

attributes from aMCI to AD. In our study, the results provide new

evidence of the disrupted directed connectivity within DMN and

suggest an association between directed connectivity changes and

regional FC levels in aMCI patients.

Figure 6. Correlation analysis between two fMRI connectivity attributes in aMCI. Scatter plots show the significant positive correlation
between FC and CI in the dMPFC. (p,0.05), and trending positive correlations between FC and CI in the rIPL and rLTC. (0.05#p#0.10). Each circle
represents data from a single subject.
doi:10.1371/journal.pone.0082104.g006

Figure 7. Relationship between CI and individual performance in aMCI. Scatter plots show the significantly positive correlation of CI in the
dMPFC with MMSE (A1) and MoCA (A2) scores, and the significantly positive correlation of the vMPFC with MMSE (B1) and MoCA (B2) scores. Each
circle represents data from one participant.
doi:10.1371/journal.pone.0082104.g007
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The decreased connectivity from the dMPFC to the bilateral

IPL revealed in our aMCI subjects demonstrates a typical

anterior–posterior disconnection characteristic [58] of the disease.

The frontal and parietal regions have been identified as the sites

most markedly affected by the neuropathology of AD [59], and the

disconnection between them has been suggested as a biomarker of

early AD [16,60]. The decreased dMPFCRl/rIPL connectivity

demonstrated here confirms that the disconnection between these

regions is also present in the aMCI stage, under the resting state

condition. Neuroimaging studies of the DMN have linked the

MPFC to self-referential processing [61]. In particular, the

dMPFC is involved in self-projection when thinking about others

[62,63], and functions together with lateral parietal areas to

support the retrieval and evaluation of self-related information

[64,65]. Altered activation of the dMPFC and IPL regions has

been shown to be associated with altered reflective, recollective,

and evaluative processes in patients with AD in an fMRI study

using a self-assessment task [66]. In addition, some task-centered

fMRI studies have also reported that hypoactivation or discon-

nection of these regions is related to impairments in episodic

memory retrieval in patients with aMCI [67,68]. Presumably, the

decreased dMPFCRl/rIPL connectivity under the resting state

condition, as demonstrated here, could be a reflection or cause of

impairment in these corresponding functions, and may serve as an

important imaging marker of aMCI.

In addition to fronto-parietal disconnections, altered connec-

tions from the rLTC to the vMPFC and rIPL suggest that aMCI

patients also have altered temporo-prefrontal and temporo-

parietal pathways. The rLTC is a crucial region involved in the

retrieval of episodic memory [69]. A deviant pattern of right

temporo-prefrontal circuitry has been previously identified as

being associated with AD-related memory deficits [70]. Recent

DMN studies have also proposed that the vMPFC is involved in

self-projection to the personal past [62], and functions with the

LTC to respond to retrieval of autobiographical knowledge

[63,71]. Previous structural and functional neuroimaging studies

of AD have found that volume atrophy and abnormal activation in

the LTC and prefrontal regions are associated with diminished

ability to retrieve episodic aspects of autobiographical memory

[72,73]. As episodic memory impairment is the most outstanding,

and earliest neuropsychological sign of AD [74], our finding

suggests that the decreased resting state rLTCRvMPFC connec-

tivity could also be an important feature of the disease. Increased

connectivity from the rLTC to the rIPL was also detected in aMCI

group. This increased connectivity indicates that the activity of the

rIPL depends largely on the activity of rLTC. A previous FC study

of DMN reported increased FC in these regions in aMCI patients

[6]. Although we did not find increased FC in either the rLTC or

rIPL, we found a higher FC value in the rLTC, which was

correlated with lower clinical and cognitive performance scores in

aMCI patients (Figure 3B1 and B2). This characteristic and the

increased rLTCRrIPL connectivity are suggested to reflect a

compensatory mechanism, which is active in aMCI [6,75].

Finally, we found that the convergence degree in regions with

altered EC mentioned above was correlated with individual

cognitive performance in aMCI group. In addition to correlations

between CI in the dorsal/ventral MPFC and global cognitive

abilities measured by MMSE/MoCA (Figure 7), we found more

correlations between CI in the dorsal/ventral MPFC, rIPL, and

rLTC, with multiple cognitive domains (Table 3). However, the CI

in these different regions is correlated with different aspects of

individual performance. Particularly, the CI in the dorsal and

ventral MPFC is related to individual performance on executive

control and delayed memory recall tests; the CI in the rLTC was

correlated with patients’ attentional performance; and the CI in

the rIPL was correlated with individual orientation ability. The

relationship of MPFC to delayed recall performance further

supports the above speculation that MPFC-related disconnections

are associated with memory impairments in aMCI. The LTC also

plays a critical role in maintaining sustained attention to verbal

inputs [76], and altered connectivity of this region has been

previously documented in the dorsal attention network of AD

patients [8,77]. With spatial perception and orientation functions

being linked to the IPL [78], it is not surprising to observe the

involvement of the rIPL in disorientation problems related to

aMCI [79]. Thus, our findings confirm a clinically relevant role for

the various DMN regions in the pathology of aMCI, and indicate

their potential importance in characterizing the progress of the

disease.

Limitations of the Current Study
Several limitations of the present study deserve mention. First,

the BN provides a single snapshot of dynamic neural process, and

does not take into account temporal relationships between regions.

In addition, the acyclic constraint on BN structure determines that

the method cannot disclose reciprocal connections [25]. The

dynamic BN [80] which can capture temporal interrelationships of

brain regions, and model reciprocal connections, would ideally be

utilized to reveal more characteristics of the DMN, and to evaluate

the changes in these aMCI patients in future works. Second,

although the BN works well for detecting relationships between

brain regions, it has been suggested that the directionality of

identified connections should be interpreted cautiously [81].

Therefore, the present study has limited the focus on network

Table 3. Spearman correlation between convergence indexes in regions with significantly altered EC and cognitive performance
in aMCI group

Region Spearman correlation coefficient (p value)

Visuospatial executive function Attention Delayed recall Orientation

dMPFC 0.665 (0.004)a 0.337 (0.185) 0.552 (0.002)a 0.409 (0.103)

vMPFC 0.700 (0.002)a 0.461 (0.063)b 0.666 (0.004)a 0.299 (0.243)

lIPL 20.029 (0.913) 20.032 (0.903) 0.409 (0.851) 0.068 (0.796)

rIPL 20.022 (0.932) 20.069 (0.792) 0.024 (0.927) 0.562 (0.019)a

rLTC 20.377 (0.135) 20.508 (0.037)a 20.079 (0.762) 20.083 (0.750)

asignificant correlation (p,0.05).
bcorrelation trend (0.05#p#0.10).
doi:10.1371/journal.pone.0082104.t003
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features, by summarizing the connections in the BN framework,

and on the examination and discussion of aMCI-induced EC

changes. Third, the present study was performed with a relatively

small number of participants. It limited us to provide results with

sufficient statistical power. Our findings especially the directed

connectivity changes were derived in an exploratory manner and

were not corrected by multiple comparisons. Larger independent

samples would be needed in future works to increase the statistical

power of the findings and to improve the reliability of the

conclusions. Fourth, as the head motion has been found to have

complex challenges on between-group fMRI connectivity com-

parisons [43,44], we still cannot rule out the possibility that our

findings might remain confounded by the head motions despite we

have applied strategies to reduce motion in the present study.

Fifth, the present study focused on exploring the aMCI-related

directed connectivity changes in the DMN. Multi-mode MRIs

investigations of the directed connectivity in the network are

required to disclose the structure-function relationship of the

network, and then to explain if the cause of directed connectivity

deficits in aMCI is functional, structural or both. Finally, as a

cross-sectional study, it is not clear to what extent these EC

changes are related to the progressive trajectories of the disease.

Follow-up longitudinal studies would be required to investigate the

relationship of these EC changes to the progression to AD.

Conclusions

In summary, using a combined Group ICA and Gaussian BN

analysis of resting state fMRI data, we have constructed an

effective connectivity network of DMN regions, revealed the

organization pattern within the network, and demonstrated

abnormal EC of DMN in aMCI patients. Thus, our study

provides novel sights into the functional architecture of the DMN,

and our findings add to a growing body of work showing the

importance of DMN as a neural substrate of aMCI.
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