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Abstract

Background: Parkinson disease (PD) is a severe neurodegenerative disease without curative drugs. The highly
complex and heterogeneous disease mechanisms are still unclear. Detecting novel PD associated genes not only
contributes in revealing the disease pathogenesis, but also facilitates discovering new targets for drugs.

Methods: We propose a phenome-based gene prediction strategy to identify disease-associated genes for PD. We
integrated multiple disease phenotype networks, a gene functional relationship network, and known PD genes to
predict novel candidate genes. Then we investigated the translational potential of the predicted genes in drug

discovery.

Results: In a cross validation analysis, the average rank for 15 known PD genes is within top 0.8 %. We also tested the
algorithm with an independent validation set of 669 PD-associated genes detected by genome-wide association
studies. The top ranked genes predicted by our approach are enriched for these validation genes. In addition, our
approach prioritized the target genes for FDA-approved PD drugs and the drugs that have been tested for PD in
clinical trials. Pathway analysis shows that the prioritized drug target genes are closely associated with PD
pathogenesis. The result provides empirical evidence that our computational gene prediction approach identifies
novel candidate genes for PD, and has the potential to lead to rapid drug discovery.
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Background

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder with a significantly increas-
ing prevalence [1]. It involves pathological factors for cell
death, such as mitochondrial dysfunction and oxidative
stress [2, 3]. However, the highly complex and heteroge-
neous disease mechanisms are still inconclusive [4]. Cur-
rent pharmacological treatment shows limited efficacy in
reversing progressive neuronal loss and controlling non-
dopamineric symptoms, such as dementia and sensory
disturbances [5, 6], which have become a major source of
patient disability. Detecting novel genetic basis for PD not
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only reveals the disease pathogenesis, but also facilitates
identifying novel drug targets [1-3, 7].

Overlapping disease phenotypes may indicate common
genetic basis of the diseases [8]. Studying disease pheno-
types of PD have the potential to uncover its underlying
genetic factors [9, 10]. Previous studies have systemat-
ically analyzed disease networks based on phenotypic
similarities to predict disease genes [11-14]. Currently,
disease phenotype data sources remain largely incom-
plete. One disease phenotypic network is based on human
phenotype ontology (HPO) [15] and has many applica-
tions [16—18]. Recently, we explored a new data source of
human disease phenotype in biomedical ontologies and
constructed the disease manifestation network (DMN).
We showed that DMN contains new phenotypic knowl-
edge and is useful in disease gene prediction [19]. In this

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2820-1-x&domain=pdf
mailto: rxx@case.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

The Author(s) BMC Genomics 2016, 17(Suppl 5):493

study, we propose to combine DMN and HPO, and detect
novel candidate disease-associated genes for PD using a
network-based gene prediction strategy.

Several recent studies showed that matching the traits of
genes in Online Mendelian Inheritance in Man (OMIM)
[21] and genome-wide association study (GWAS)
[22, 23] with the drug targets may lead to the discovery
of new drug treatments. In a recent study, we proved
that the disease-associated genes predicted by computa-
tional approaches also have the potential to guide drug
discovery [24]. Here, we demonstrate that the candidate
genes predicted for PD by our approach can provide
information for PD drug targets. We evaluated the ranks
of drug target genes for FDA-approved PD drugs and
potential PD drugs that have been tested in clinical trials.
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We also performed pathway analysis for the top ranked
drug target genes. The result provides empirical evidence
that our gene prediction approach has the translation
potential to lead to rapid drug discovery.

Method

The work flow of our study is shown in Fig. 1 and consists
of two parts: (1) predict genes for PD through network
analysis and (2) investigate the translational potential of
the predicted genes. In the first part, we combined the
disease network of HPO, DMN, and a gene network, and
used genes that are known to be associated with PD as
the seeds to rank all the genes. The gene ranking result
was validated in a “leave-one-out” cross validation and an
experiment of prioritizing PD-associated genes obtained
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Fig. 1 The study contains two steps: predict genes for PD and analyze the potential of predicted genes in drug discovery. We first predicted genes
for PD from the integrated networks, and evaluated the prediction result. Then we assessed the whether the approach prioritizes drug target genes
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from GWAS. In the second part, we evaluated if the top-
ranked genes are enriched for drug target genes for PD
and provide opportunities for drug discovery.

Predict genes for PD using a network-based approach
Construct networks

We downloaded the disease phenotype networks of
HPO from human-phenotype-ontology.org and DMN
from nlp.case.edu/public/data/DMN/. HPO contains
7395 nodes and 17,981,413 weighted edges. The dis-
ease phenotypic similarities are based on phenotype
annotations extracted from OMIM, and were calculated
as the semantic similarities in the phenotype ontology
hierarchy [25]. DMN contains 2312 nodes and 408,029
weighted edges. The disease phenotype annotations
were based on semantic network in the Unified Medical
Language System (UMLS), and disease similarities were
calculated as the cosine similarities between phenotype
feature vectors between diseases [19]. Then we extracted
1,971,371 gene functional relationships from STRING
[26] and constructed a gene network with 17,831 nodes.
All data sources in STRING were used, including the
protein interaction databases, pathway databases and
gene coexpression data.

We constructed three bipartite networks to connect
HPO, DMN and the gene network. We first extracted
4021 and 1872 disease-gene associations from OMIM to
connect the disease nodes in HPO and DMN to the the
gene nodes in the gene network, respectively. The dis-
ease nodes in HPO and DMN were represented by OMIM
identifier and UMLS concept unique identifiers. Then,
a total of 2250 maps between the two kinds of identi-
fiers based on UMLS metathesaurus were used to connect
HPO and DMN.

Predict candidate genes for PD
We first selected the seeds in the algorithm as the disease
nodes of PD and their associated genes. PD has two forms:
familial and sporadic. A major proportion of the patients
have sporadic PD, and the associated genes in OMIM
are for familial PD. However, extensive researches show
that familial and sporadic PD are likely to share the same
genetic pathways [27, 28]. Here, we extracted 15 PD genes
from OMIM, and combined them with the PD disease
nodes in both HPO and DMN to form a set of seeds.
Then we ranked all the gene nodes by their scores,
which calculate the probabilities that each gene can be
reached from the seeds. Assuming py is a vector of initial
ranking scores, the updated score vector at step k is:

Pri1 = 1 — M pe + ypo, )

where y is the probability that the random walker restarts
from the seeds at each step, and M is the transition matrix
of the entire heterogeneous network, which contains three
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intra-network transition matrices on the diagonal, and six
inter-network transition matrices off-diagonal:

Mg Mgp, Mcp,

M= Mgpl MPI MP1P2 . (2)
T T
MGPZ MP1P2 MP2

In the above equation, P;, P, and G represent DMN,
HPO and the genetic network, respectively. The diagonal
sub-matrices M;(i € G,P;,P;) were calculated through
normalizing the adjacency matrix of P1, P» and G, and the
off-diagonal sub-matrices M;;(i,j € G,P1,P,) were cal-
culated through normalizing the bipartite network con-
necting P;, P, and G. The normalization was performed
following the method in [20].

Validate the gene prediction for PD

Before using this approach to predict new PD genes,
we performed a cross validation analysis to test if the
approach can identify the known disease-gene associa-
tions. For each of the 15 seed genes, we removed its
connections to the PD nodes in HPO and DMN, and
excluded it from the seed list. Then we used the rest seeds
to rank all the genes. The procedure was repeated for 15
times, the ranks of the 15 genes were examined.

In the second validation experiment, we constructed
an independent validation set containing 888 genes as a
proxy of the novel PD genes. These genes were obtained
through GWAS and downloaded from PDGene.org
[29, 30]. We retained 669 genes, which have zero overlap
with seeds and appear in our scope of gene ranking. We
counted the number of validation genes in every 500 genes
in our rank from the top to the bottom, and evaluated if
the top ranked genes are enriched for the validation genes.
We also generated the precision-recall curve to show the
performance in ranking the validation genes.

Evaluate the potential of the predicted genes in PD drug
discovery

Investigate the ranks of drug target genes

Currently, only a subset of the human genome is drug-
gable [31]. We investigated whether our approach can
provide information about the drug target genes for PD.
The ranking of two gene sets are tested: the first set con-
tains target genes for FDA-approved PD drugs, and the
second set contains target genes for potential PD drugs
that have been tested in clinical trials. The drugs extracted
from clinical trials are not necessarily successful PD ther-
apies, but have been investigated by researchers for good
reasons, thus are considered at least more promising than
random drugs. We evaluate the ranking of target genes for
both approved and potential PD drugs to approximate the
ability of our approach in prioritizing PD drug targets. A
total of 42 target genes for 22 FDA-approved PD drugs
were extracted from DrugBank [32], which is a drug-target
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database. We also obtained 197 genes targeted by 81 PD
drugs in clinicaltrials.gov (FDA-approved PD drugs were
not included). Both sets of target genes have zero overlap
with the seeds. We investigated their distributions among
all genes.

Analyze pathways associated with top ranked genes

We included all the known PD-associated genes (includ-
ing the genes identified by GWAS) into the seed list and
predicted novel genes for PD. Then we analyzed the path-
ways associated with top-ranked candidate genes to detect
their underlying commonalities. For each of the 1320
canonical pathways extracted from MSigDB [33], a score
was calculated as the number of genes ranked within top
100 divided by the total number of genes in this path-
way. The pathways with the highest scores offer insights
into the functions of the predicted genes. In addition, we
used the same method to analyze the pathways that are
associated with the top 100 drug target genes.

Results

Network-based approach allowed prioritizing known
PD-associated genes

In the leave-one-out cross validation, our approach pri-
oritized the 15 known PD-associated genes from OMIM
(the seed genes) in the top in each validation test. Table 1
shows that 13 out of 15 genes were ranked within top 1 %.
A total of 12 genes were ranked within top 50 among all
the 17,831 human genes. In all the 15 cases, the retained
genes were ranked within top 10 %. The average rank for

Table 1 Result of the leave-one-out cross validation for 15
PD-associated genes from OMIM

Gene Rank Percentage
GBA 15 0.08 %
SNCA 17 0.10%
MAPT 18 0.10 %
PLA2G6 20 0.11%
TBP 23 0.13 %
HTRA2 23 0.13 %
PARK?7 24 0.13 %
LRRK2 24 0.13 %
PARK2 24 0.13%
PINK1 26 0.15 %
FBXO7 30 0.17 %
GIGYF2 33 0.19%
SLC6A3 51 0.29 %
EIF4G1 361 2.02 %
VPS35 1521 8.53 %

We show the rank and percentage among all human genes
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the retained seed genes is 147 (top 0.8 % among 17,831
genes).

In the second validation experiment, our approach pri-
oritized the 669 validation genes, which are PD-associated
genes detected by GWAS and related with different
aspects of PD pathogenesis, such as mitochondrial dys-
function, oxidative stress and aging. Figure 2b shows the
distribution of these genes among all.

The top 500 genes in the ranking contains 99 valida-
tion genes (5.3 fold-enrichment comparing with random
rankings, p < e~*), and this number decreases rapidly as
the rank changes from the top to the bottom. In Fig. 2a,
the precision-recall curve also shows that the top-ranked
genes are enriched for the PD genes detected by GWAS.
The results demonstrate that the genes prioritized by our
approach are likely to be associated with the pathogenesis
of PD.

Predicted genes have the translational potential in drug
discovery

Figure 3 shows that our approach prioritized the genes
targeted by FDA-approved PD drugs and potential PD
drugs in clinical trials. The top 500 genes in the ranking
contains 6 approved PD drug targets (including include
COMT, DDC, DRD2, DRD3, HTR2A and MAOB), which
is a 5.8-fold enrichment comparing with random rankings
(p < e—4). Also, there are 23 potential PD drug targets
in the top 500 genes (4.2-fold enrichment comparing with
random cases, p < e—4). Figure 3a and b show the simi-
lar trends that the PD drug target genes are more likely to
be ranked in the top than in the bottom. In addition, the
top 500 genes contains 173 drug target genes, and 83 %
of them have not been investigated for PD drug discovery.
Together, these results suggest that the top-ranked can-
didate genes provides unique opportunities for detecting
new candidate PD drugs through drug repositioning.

Pathways underlying the top-ranked genes are associated
with PD pathogenesis and provide information of
potential PD treatments
The top ranked pathways associated with the newly pre-
dicted genes involve cell growth or degeneration, as listed
in Table 2. Several among them are associated with nerve
growth signalling (BIOCARTA_TRKA_PATHWAY) and
aging (BIOCARTA_LONGEVITY_PATHWAY), which
are closely related to neurodegenerative diseases and
primary factors in the PD mechanism [1]. The result
also shows that the top-ranked genes are associated
with immunity, which is consistent with the litera-
ture evidence showing that immune responses can
lead to the accumulation of neurotoxins and eventual
neurodegeneration [34].

We also ranked the pathways associated with the
top drug targets. Table 3 shows the top ten pathways.
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Besides the same pathways involving nerve growth as in
Table 2, the drug target genes are also linked to other
genetic factors, such as the insulin-like growth factor
and the active protein that controls cellular processes.
The top one pathway BIOCARTA_IGF1_PATHWAY
involves the insulin-like growth factor 1 (IGF-1) sig-
naling. Previous researches support that IGF-1 has
the potential to become a neuroprotective agent for
PD. Animal model studies have demonstrated that
IGF-1 provides protection against loss of dopaminer-
gic neurons [35]. Several sequential studies also found
that serum IGF-1 is increased in early idiopathic PD
patients [36, 37].

In summary, the pathway analysis detected the com-
monalities underlying the predicted PD genes. The prior-
itized pathways not only reflect PD genetic mechanisms,
but also may lead to the discovery of targets for novel PD
drug therapies.

Discussion and conclusions

In this study, we propose a disease gene discovery strat-
egy for PD, which integrates multiple disease phenotypic
networks with gene functional relationships and known
disease-gene associations. We validated our gene ranking
with a cross validation analysis and an independent
validation set. We demonstrated that the gene prediction
approach provides information for the PD drug targets.
The top ranked genes are enriched for targets for both
approved and potential PD drugs, and provide unique
opportunities for PD drug discovery.

Our approach can be further improved as more human
disease phenotype data become available. For example,
other kinds of disease phenotype data, such as dis-
ease co-morbidities [38, 39] and gene expression profiles,
may reflect different aspects of genetic mechanisms and
lead to the identification of novel candidate drug targets
for PD. In the future, we will develop new approaches
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Table 2 Pathways that are enriched for the top ranked candidate
genes for PD

Pathway
BIOCARTA_TRKA_PATHWAY

Description [33]

Nerve growth factor receptor
signaling pathway

BIOCARTA_SPRY_PATHWAY Regulation of cellular

proliferation and differentiation
BIOCARTA_TFF_PATHWAY
BIOCARTA_ARF_PATHWAY

Epithelial repair

Tumor Suppressor that inhibits
ribosomal biogenesis

BIOCARTA_LONGEVITY_PATHWAY Involving age related diseases

like neurodegenerative disease
BIOCARTA_NGF_PATHWAY
BIOCARTA_HER2_PATHWAY
BIOCARTA_BCELLSURVIVAL_PATHWAY
BIOCARTA_CBL_PATHWAY
BIOCARTA_CTCF_PATHWAY

Nerve growth factor pathway
Mediated signaling of EGFR

Mediate the survival of B cells
Downregulate EGF receptors

Induction of cell cycle arrest
and apoptosis

to rationally integrate heterogeneous human phenotype
data.

In addition, we will systematically predict candidate
drugs for PD using the gene prioritization result. Many
existing drug discovery approaches compare the genetic
and genomic features between diseases and drugs to
identify candidate drug therapies [40]. Recent studies
show that the phenotypic annotations for mouse gene
mutations provide causal relationships between genes and
phenotypes, and have great potential in drug reposition-
ing [41, 42]. In our previous work, we designed a drug

Table 3 Pathways that are enriched for the top ranked drug
target genes

Pathway
BIOCARTA_IGF1_PATHWAY

Description [33]

Stimulates cell growth and
blocks apoptosis

BIOCARTA_INSULIN_PATHWAY
BIOCARTA_NGF_PATHWAY
BIOCARTA_TRKA_PATHWAY

Regulation of glucose levels
Nerve growth factor pathway

Nerve growth factor
receptor signaling pathway

REACTOME_ACTIVATION_OF_THE_AP1 Activation of the AP-1 family

of transcription factors
_FAMILY_OF_TRANSCRIPTION_FACTORS
BIOCARTA_TFF_PATHWAY
BIOCARTA_LONGEVITY_PATHWAY

Epithelial repair

Involving age related
diseases

REACTOME_SHC1_EVENTS_IN_EGFR
_SIGNALING
BIOCARTA_CBL_PATHWAY
BIOCARTA_CDK5_PATHWAY

EGFR signaling
Downregulate EGF receptors

Cellular proliferation and
survival

Page 462 of 569

repositioning approach to combine the human disease
genetics with the mouse phenotype data, and predict
drugs for a given disease through comparing the phe-
notype profiles [43]. In the furture, we will incorporate
the result obtained in this study into the drug reposition-
ing approach, and improved the approach by combining
other data, such as the drug actions and drug structural
similarity.

In this study, we evaluated the ranking of genes and
drug targets that are known to be associated with PD
to approximate the performance of the computational
disease-associated gene prediction approach. The ulti-
mate goal of this approach is to identify novel genes
and drug targets for PD. In the future, we plan to val-
idate the newly predicted disease-associated genes and
candidate drug targets through collaborative biomedical
experiments and animal model studies.
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