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Abstract

Systems epidemiology offers a more comprehensive and holistic approach to studies of

cancer in populations by considering high dimensionality measures from multiple domains,

assessing the inter-relationships among risk factors, and considering changes over time.

These approaches offer a framework to account for the complexity of cancer and contribute

to a broader understanding of the disease. Therefore, NCI sponsored a workshop in Febru-

ary 2019 to facilitate discussion about the opportunities and challenges of the application of

systems epidemiology approaches for cancer research. Eight key themes emerged from

the discussion: transdisciplinary collaboration and a problem-based approach; methods and

modeling considerations; interpretation, validation, and evaluation of models; data needs

and opportunities; sharing of data and models; enhanced training practices; dissemination

of systems models; and building a systems epidemiology community. This manuscript sum-

marizes these themes, highlights opportunities for cancer systems epidemiology research,

outlines ways to foster this research area, and introduces a collection of papers, “Cancer

System Epidemiology Insights and Future Opportunities” that highlight findings based on

systems epidemiology approaches.

Introduction

Epidemiology research has been successful at identifying many risk factors for complex dis-

eases such as cancer, but much of the etiology remains unexplained. This may be due, in part,

to the limited focus of many studies on a small number of risk factors or contributors to dis-

ease within specific domains or measures. Moreover, many studies fail to evaluate the com-

plexities and interrelations among multiple risk factors on each other and the study outcomes.

Each individual risk factor, such as a single dietary component or genetic polymorphism,

occurs in a broader biological or societal context that may modulate the effect of individual

risk factors on cancer. Many risk factors for cancer are also highly correlated with possible
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interactive, additive, synergistic, or attenuating effects. Additionally, many risk factors are

dynamic and time-varying: changes over the life course and the timing of exposure may mod-

ify cancer risk [1, 2].

Several groups have advocated for a more holistic or comprehensive analytic approach to

the study of disease in populations [3–10]. This type of approach may lead to a better under-

standing of the mechanisms of disease and has been described by investigators using terminol-

ogies such as: eco-epidemiology [11], populomics [12], globolomics [13], systems medicine

[14], and systems epidemiology [13, 15–18]. The term “systems epidemiology” conceptually

borrows from fields such as systems biology, considering epidemiology research in a systems

framework. For the purposes of this paper, we define systems epidemiology as an approach to

study risk and outcomes that incorporates high-dimensional measurements from multiple

domains, assesses the inter-relationships between risk factors, and considers changes over

time. Our definition was adapted from Damman (2014) [17], however, we emphasize the

importance of dynamism within a systems approach. Systems epidemiology research may

leverage advanced computational simulation and modeling techniques to assess these complex

networks and perform comprehensive analyses. Importantly, systems approaches are not lim-

ited to any single analytical method, but constitute a framework to account for complexity and

understand the broader context of disease [7, 17, 19, 20].

Due to the complexity of cancer, a systems epidemiology approach may complement more

traditional methods and lead to insights in disease etiology. To facilitate discussion about the

application of systems modeling approaches for cancer epidemiology, NCI sponsored a work-

shop in February 2019 (https://epi.grants.cancer.gov/events/systems-epidemiology/) with pre-

sentations and discussions by experts in diverse fields to gain broader perspectives (S1 Table).

In this manuscript, we summarize eight major themes from the workshop that will facilitate

systems epidemiology research (Table 1) and discuss opportunities for this approach as exem-

plified by the accompanying papers in this PLOS Collection, “Cancer System Epidemiology

Insights and Future Opportunities”.

Themes to facilitate systems epidemiology research

1. Transdisciplinary collaboration and a problem-based approach

To more holistically study cancer, collaboration across disciplines is required. Traditionally,

there has been a tendency when studying complex diseases for researchers to focus on data

from individual disciplines. Focusing on a problem-based approach could bridge scientists

across disciplines and integrate unique perspectives to improve understanding [21, 22]. Specif-

ically, systems epidemiology would benefit from building linkages between disease content

experts and computational modelers and informaticists who can build informed computa-

tional models.

There are several examples of how transdisciplinary collaborations and a problem-based

approach can lead to scientific insights. In one transdisciplinary collaboration, researchers

developed improved methods of differentiating between benign and aggressive cancer lesions

[23]. Transdisciplinary collaboration also allows for methods to be developed and shared

across fields. For example, dynamic agent-based modeling was developed for infectious disease

modeling but now is commonly used in other complex disease analyses in public health [2,

24].

Several mechanisms, including previous NIH funding initiatives [21, 25–30], have encour-

aged transdisciplinary collaborations and problem-based approaches, which may serve as

models to support this type of work. Another opportunity to foster transdisciplinary collabora-

tions is to bring researchers together prior to applying for research funding. This type of
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process was used by the Cancer Research UK-NCI “Sandpit” workshop [31] and National Sci-

ence Foundation ideas labs [32].

Challenges to be considered in developing transdisciplinary collaborations include sustain-

ability and lack of a shared language among different scientific fields. Individuals with famil-

iarity or training in multiple disciplines can serve as “translators” or “connectors” and

facilitate interactions between distinct fields.

2. Methods and modeling considerations

Two complementary strategies were discussed to support systems epidemiology research:

hypothesis-driven and data-driven strategies. In a hypothesis-driven strategy, researchers

Table 1. Major themes identified to advance systems epidemiology research.

Theme Description

1. Transdisciplinary Collaboration and a

Problem-Based Approach

The ability to perform systems epidemiology research is contingent on

the engagement of experts from varying fields to holistically address a

scientific problem. Needs for transdisciplinary collaboration included:

encouraging a focus on research problems holistically, bringing

researchers together, addressing communication barriers, and

sustaining transdisciplinary collaboration.

2. Methods and Modeling Considerations Whether data-driven or hypothesis-driven, the overall methodology

for systems epidemiology must incorporate an iterative approach

where models evolve over time based on results. Several methods exist

to apply systems modeling. Newer improved methods should

incorporate changes over time, bridging multiple scales (e.g., cell,

individual, and neighborhood), and dealing with unknown

contributions of chance.

3. Interpretation, Validation, and

Evaluation of Models

The complexity of systems models results in challenges for

interpretation, validation, and evaluation. Comparative modeling,

using common datasets or controls, and reproducibility pipelines are

possible strategies to address these issues.

4. Data Needs and Opportunities Despite numerous rich datasets in support of epidemiology research,

data gaps remain. These gaps include the need for data from

populations underrepresented in biomedical sciences, health

behaviors, built environment, and health care provider information.

Opportunities exist to leverage data from wearable devices, electronic

health records, and large cohorts and initiatives. Challenges were

noted regarding combining data from multiple sources and research

domains.

5. Sharing of Data and Models Promotion of systems epidemiology depends on the ability to share

models and data. Effective sharing and reuse requires sufficient

documentation and mechanisms to assess quality and support

findability. Some mechanisms and infrastructures, including existing

sharing platforms, could be leveraged to help address these needs.

6. Enhanced Training Practices The evolving field of systems epidemiology will need to facilitate

training for both students and current researchers in systems

modeling, transdisciplinary research, data sciences, informatics, and

computational modeling.

7. Dissemination of Systems Models Successful dissemination depends on effective communication with

content experts and the non-research community. Through direct

engagement of various stakeholders, systems methods are more likely

to be translated, utilized, and accepted to inform biological

interpretations, interventions, or policies.

8. Building a Systems Community Sustainability of systems epidemiology may depend on cultivating a

systems epidemiology community. This can be facilitated by

establishing organizations, interest groups, or other platforms for

sharing ideas and discussing models. Specialized funding initiatives

and review panels may further support systems epidemiology research.

https://doi.org/10.1371/journal.pone.0255328.t001
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focus on the data necessary to address a specified scientific hypothesis and analyze the data to

test that hypothesis. In a data-driven strategy, the most likely hypothesis is identified based on

a more agnostic, algorithm-based data exploration of several hypotheses. If the goal is to

understand the overall mechanism, a hypothesis-driven strategy may be preferable. At the

same time, given that a hypothesis-driven strategy is limited by current knowledge and

assumptions, a data-driven strategy may gain new knowledge by finding unexpected relation-

ships through a more agnostic approach.

The application of a systems approach to epidemiology questions should be considered an

iterative process involving several steps, including identifying the problem, determining the

model to test, obtaining the data, analyzing results, refining the model, and repeating as neces-

sary based on the results. At times, these steps can occur concurrently. An example of how

modeling was used to inform data collection was demonstrated by the Cancer Intervention

and Surveillance Modeling Network (CISNET) breast consortium. Using simulation model-

ing, the CISNET teams examined the need for radiotherapy in women assessed as low risk

based on genomic testing. These results were useful for informing the design of clinical trials

by identifying those populations where data from the trial would be most informative [33].

Applying a systems approach to epidemiology research may be supported by several types

of existing methods including systems dynamics, network analysis, agent-based modeling, and

others [19, 24, 34–41] (S2 Table). Regardless of the specific analytical method, the unique

aspect of a systems epidemiology approach is accounting for the complexity of the system by

considering multiple domains, inter-relationships between risk factors, and dynamism. Needs

for additional methods were noted, in particular for models incorporating time and space,

dealing with the unknown contribution of chance, and bridging multiple scales (e.g., protein,

cell, tissue, individual, neighborhood, community, ecosystem). It is critical for researchers to

understand the underlying assumptions in methods and the strengths or weaknesses of partic-

ular models for different situations and questions. The variety of methods makes it challenging

to interpret and compare results obtained using different approaches. Therefore, an important

component of applying systems approaches is the validation and evaluation of models.

3. Interpretation, validation, and evaluation of models

As the complexity of a model increases with additional variables, the sparsity of data increases,

thereby reducing the ability to make predictions or classifications. The large number of attri-

butes in a model can also result in overfitting, which leads to biases in a model and makes it

difficult to generalize or apply the model to another population. These issues with complex

modeling are often referred to as the curse of dimensionality problem [42]. Furthermore, deep

epidemiology data, including repeated measurements over time and assessments of multiple

domains, is usually only available on smaller populations, limiting generalizability to other

populations. Therefore, to adequately interpret the data and assess causality using these mod-

els, an iterative process is needed that includes well-designed validation and evaluation steps

which will lead to model refinement and attenuation of these issues.

Model validation is the process of checking if all technical aspects (e.g., parameters defini-

tions, coding, etc.) are done adequately or need refining and is preferably performed by an

independent party [43]. Model evaluation is the process of assessing the performance and

reproducibility of a complete model to discover its likelihood to perform in real world condi-

tions (e.g., training and testing, cross-validation, etc.) [44]. To implement the validation and

evaluation of their models, CISNET uses a comparative modeling approach where multiple

research groups examine the same research questions using different models and identical pre-

dictors, and evaluate the results against real data trends. The consistency across models
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provides support for model predictions [45]. When comparing results from complex models,

care must be taken in the selection of the evaluation metric or the control used for comparison

purposes. The dataset selected as a control could be biased in favor of the model being evalu-

ated based on assumptions inherent in the model and the control dataset. Evaluating these

complex models using common control datasets [46] could reduce this potential issue.

Given the complexity of methods for systems approaches, it may be challenging to repro-

duce all aspects of the analysis. One possible solution suggested at the workshop was to develop

a reproducibility pipeline, or clear documentation for other researchers to apply the models on

other populations. Notably, lack of reproducibility may also be due to intrinsic differences in

the studied populations (e.g., by racial/ethnic or exposures distributions) [46]. Fortunately,

there is guidance for validating and evaluating complex models [43, 47]. Further emphasis on

the best practices for application of systems models to epidemiology research may help

advance the use of these models in epidemiology studies.

4. Data needs and opportunities

Sufficient data (real and simulated) is required to effectively characterize a system [15].

Though workshop participants identified several potential data resources which could be used

to support systems epidemiology research (S3 Table), gaps remain. One critical gap is the lack

of inclusion of understudied groups, including racial and ethnic, socioeconomic, and geo-

graphic diversity and sexual/gender minorities [48, 49]. Insufficient racial and ethnic diversity

is also apparent in genomics research [50, 51] and genomic catalogues [52, 53].

Other needs and opportunities identified by participants were for quality information

about health behaviors, the built environment, and health care provider data. Systems epide-

miology research could be enhanced by improving access or utilization of data sources such as:

wearable devices (i.e. Fitbits), electronic health records [54], and large initiatives such as the

All of Us cohort [55] and Environmental Influences on Child Health Outcomes (ECHO) Pro-

gram [56]. As the understanding of a system develops and new hypotheses emerge, data needs

may change. Collecting broad and multiple data types may enable the examination of multiple

hypotheses without going back to data collection, which is particularly challenging in popula-

tion-based studies. Such a strategy was used by the Community of Mine study [57]. Moreover,

biobanks linked to medical record data provide another potential resource for systems epide-

miology research [58] and could be leveraged to estimate risk factor or biomarker distributions

in a target population missing that information [59, 60].

Characterizing the system requires combining or integrating several sources of data such as

measures from different domains (e.g. genetics and behavioral) or spatial (e.g. cell to tissue)

and temporal (e.g. day vs. year) scales. Often data is formatted uniquely, stored with different

levels of metadata, or located in diverse databases. In fact, it was suggested that the resources

required for integrating diverse, large-scale data types surpasses the resources required for gen-

erating these data [61]. For multi-omic data, several software frameworks have been developed

to address some of these challenges, including Galaxy, Taverna, KNIME, and bioKepler [62].

Additional work is needed in this area.

5. Sharing of data and models

Improved methods for data linkages and model sharing across disciplines can facilitate systems

epidemiology research by enabling a) analyses incorporating information from multiple

domains; b) validation and evaluation of models and results; c) efficiency by avoiding duplica-

tion of efforts. Effective sharing and reuse of data and models requires adequate documenta-

tion (including metadata and descriptors) and mechanisms to assess quality and findability
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[63], which can be costly. The NIH has worked to provide additional funding support for data

and model sharing [64–67]. Moreover, according to the NIH Genomic Data Sharing Policy

(GDS), costs for sharing of data should be included in the project budget [68]. Implementing

carefully curated datasets or model resources and standardizing data quality indicators can

increase confidence in methods and aid reproducibility and reusability. To address difficulty

in finding the appropriate data set or method (i.e. findability), databases or resources that list

and describe models are needed, such as the NCI Genetic Simulation Resources [69]. Several

platforms and infrastructures were discussed that support sharing data and/or analytical mod-

els (Table 2).

6. Enhanced training practices

Participants noted that encouraging a systems framework for epidemiology research will

require improvements in training, including more opportunities focused on systems science

such as the Systems Science for Social Impact program [70]. Meeting participants suggested

changes to the current epidemiology academic curriculum to incorporate systems training with

more emphasis on complexity, transdisciplinary research, computational modeling, and infor-

matics throughout the training continuum for epidemiologists. The current academic infra-

structure is designed to develop scientists that are experts in specific fields/disciplines [22, 71],

whereas systems approaches to epidemiology research require breadth of training across disci-

plines. Several training programs have supported this multidisciplinary model [72–74]. Another

important training need is in the areas of data science, informatics, and computational model-

ing, particularly for population scientists. Training the next generation of data scientists and

integrating these researchers into biomedical and public health fields is a priority within the

NIH strategic plan for data science [75]. Finally, continuing education programs for epidemiol-

ogists [76], along the lines of Continuing Medical Education (CME) course work for physicians,

could also broaden use of systems methods. Topics suggested for this type of training included

advanced modeling techniques and managing and interpreting uncertainty in models.

7. Dissemination of systems models

For systems epidemiology modeling to be useful for research and policy, models and results

using these methods need to be disseminated and accepted.

Stakeholders (e.g., patients, providers, payers, policy makers) should be involved early in

model development to inform parameters and priorities. Incorporating stakeholder feedback

can improve model quality by better defining the system and increase stakeholders’ adoption of

such models. Obtaining feedback on models as they are being developed through early publica-

tion may also lead to better models. However, journals may be reluctant to publish conceptual

models in the absence of application results. A venue allowing for publication of early concep-

tual models could promote feedback (e.g., the preprint server bioRxiv https://www.biorxiv.org/).

Another key component to dissemination of models is effectively communicating models

to the community for researchers, clinicians, policymakers, and the general public. Making the

results interpretable regardless of model complexity would build confidence in the model and

results [77]. Moreover, it is important to explain that uncertainty in the results remains even

though systems models are sophisticated [78]. Effective communication could be enhanced by

encouraging media training for scientists.

8. Building a systems epidemiology community

Growth in the application of systems approaches to epidemiology research will require build-

ing a community of systems epidemiology researchers. Workshop participants noted that the
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Table 2. Example platforms supporting sharing of data and analytical models or methods.

Data Sharing Platforms/Solutions Description

All of Us Research Workbench The All of Us cohort has a goal of enrolling one million

participants in the United States to improve health sciences

research. With the goal of oversampling for diverse

participants, the data being collected includes various

measures such as: health questionnaires, electronic health

records (EHRs), physical measurements, the use of digital

health technology, and biospecimens.

Link: https://www.researchallofus.org/workbench/

Database of Genotypes and Phenotypes (dbGaP) dbGaP stores and distributes results of studies that have

investigated the association between genotypes and

phenotypes.
Link: https://www.ncbi.nlm.nih.gov/gap/

NCI Cancer Research Data Commons (CRDC) The NCI Cancer Research Data Commons (CRDC) is a

cloud-based data science infrastructure that connects data

sets with analytics tools to allow users to share, integrate,

analyze, and visualize cancer research data.

Link: https://datascience.cancer.gov/data-commons

Model Sharing platforms/Analysis platforms Description

Bioconductor Bioconductor provides tools for the analysis and

comprehension of high-throughput genomic data.Link: https://www.bioconductor.org/

Galaxy Galaxy is a web-based platform that enables multi-omics

data integration and analysis workflows.Link: https://usegalaxy.org/

Kepler project (and bioKepler) Kepler is designed to harmonize data by allowing scientists

to create, execute, and share models and analyses across a

broad range of scientific disciplines.
Link: https://kepler-project.org/

KNIME KNIME is an analytics platform that supports data science

workflows and reusable components.Link: https://www.knime.com/

Taverna Taverna is a suite of tools used to design and execute

scientific workflows.Link: https://taverna.incubator.apache.org/

introduction/

Combined Analysis and Data platforms Description

Biosphere Biosphere is an open-source platform developed by the

Broad Institute that can operate across several different

platforms (e.g., Terra, Gen3, and Dockstore) to create an

interoperable data environment for the biomedical

community.

Link: https://www.databiosphere.org/

Genomic Data Science Analysis, Visualization, and

Informatics Lab-space (AnVIL)

AnVIL is a scalable and interoperable resource for the

genomic scientific community. It leverages a cloud-based

infrastructure for genomic data access, sharing and

computing across various data sets.
Link: https://www.genome.gov/Funded-Programs-

Projects/Computational-Genomics-and-Data-

Science-Program/Genomic-Analysis-Visualization-

Informatics-Lab-space-AnVIL#overview

NCI Cloud Resources The NCI Cloud Resources are components of the NCI

Cancer Research Data Commons that allow researchers to

download, store, and analyze vast datasets in the cloud. The

platform gives users access to tools and pipelines already

implemented or lets them upload their own data or

analytical methods to workspaces.

Link: https://datascience.cancer.gov/data-commons/

cloud-resources

St. Jude Cloud-based Repository St. Jude Cloud is a large pediatric genomics dataset that

offers a suite of unique analysis tools and visualizations. It

supports access to more than 700 paired tumor/germline

samples for common and rare pediatric cancers, sequenced

as part of the Pediatric Cancer Genome Project (PCGP).

Link: https://www.stjude.cloud/

Terra Terra is a scalable and secure platform for biomedical

researchers to access Broad hosted data, upload their own

data, and combine data to run on analytic tools. The

platform also contains functions that promote sharing of

data to facilitate collaboration between scientists.

Link: https://terra.bio/

https://doi.org/10.1371/journal.pone.0255328.t002
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current workshop was unique and expressed enthusiasm for bringing together researchers

from disparate fields to address complex problems. In addition to periodic in-person meetings

or workshops such as the one described by this paper, one strategy to build this type of com-

munity is to establish organizations, interest groups, or social platforms that can bring many

different scientists together to share ideas and discuss and compare models, such as the Inter-

disciplinary Association for Public Health Science (IAPHS) [79]. Opportunities to promote

cross-fertilization of ideas would be a systems epidemiology-focused journal, or a journal col-

lection such as this one, where researchers from different disciplines can publish papers in this

arena.

Another strategy to build a systems epidemiology community is through tailored grant

reviews and specialized funding opportunities. Some meeting participants suggested that the

non-linear design and the multidisciplinarity underlying complex modeling and systems

approaches do not easily fit into the traditional three-aim structure of R01 applications, mak-

ing it more challenging for this type of research to compete for funding. Special funding

opportunities that support more complex projects and are amenable to non-linear aims, feed-

back loops and iterative processes may be helpful for this field. Special review panels for sys-

tems epidemiology applications could include reviewers from different disciplines, with at

least one reviewer with computational modeling expertise, assigned to review each application.

Opportunities for systems epidemiology research

In addition to the eight themes highlighted which would facilitate systems epidemiology, sev-

eral research opportunities that may be addressed using a systems epidemiology approach

were discussed by workshop participants (Table 3).

One research opportunity that received substantial attention was to use systems approaches

to help understand and alleviate health disparities. Complex social, behavioral, environmental,

biological, and ecological contributions to disparities vary by context, impact multiple scales,

and involve nonlinear and multidirectional associations (or feedback loops). The systems

nature of health disparities may explain their persistence across different diseases. A systems

approach may thus provide valuable insights into the etiology of disparities to highlight

sources of inequities, identify data needs, and improve interventions [4].

These research opportunities and the papers in this “Cancer System Epidemiology Insights

and Future Opportunities” collection illustrate the promise of systems epidemiology

approaches. However, a portfolio analysis by Shams-White et al. found that despite specific

systems and computational modeling funding announcements, the representation of systems

epidemiology grants in cancer research remains low [80]. Together the above examples and

these results suggest that many cancer-related research questions addressable using a systems

approach may therefore benefit from tailored funding opportunities.

Conclusions and next steps

At the outset of the workshop, several participants expressed uncertainty about the definition

of systems epidemiology. Nevertheless, there was overall agreement about the need for the gen-

eral approach. Some participants suggested that it was important to emphasize the time ele-

ment, or dynamism, within the definition as changes over time are critical to consider and are

often missing in traditional studies. Others underlined the importance of data as the availabil-

ity of high throughput data can help support more systems-based approaches.

To conclude, workshop participants supported a more comprehensive approach to popula-

tion-based research studies and identified several considerations to facilitate the field of sys-

tems epidemiology. The workshop identified several themes or considerations for facilitating
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systems epidemiology research and exemplified research opportunities. These themes

included: transdisciplinary collaboration and a problem-based approach; methods and model-

ing considerations; interpretation, validation, and evaluation of models; data needs and oppor-

tunities; sharing of data and models; enhanced training practices; dissemination of systems

models; and building a systems epidemiology community. As a first step to continue the con-

versation, several researchers participated in this collection of papers, outlining research

opportunities and findings using systems epidemiology approaches. Our intent is that this col-

lection will further spark discussion and foster continued research in this area.

Table 3. Example opportunities for a systems epidemiology approach in cancer research.

Major Opportunity Areas Example Research Questions

Understanding the complexity of common risk

factors: Risk factors that have remained elusive in their

contribution to cancer etiology can be studied

systematically.

• Study obesity via a systems approach to discover the

dynamic (feedback/feedforward) role obesity (both child

and adult) has on cancer etiology and survivorship.

• The systemic effects of circadian rhythm disruptions on

behaviors, organ physiology, and metabolism that could

better explain cancer etiology.

• Estimate the uncertainty of exposure measurements

(i.e., contributed from measurement errors, high

background rates for some contaminants, challenges in

assessing mixtures) in causal relationships and better

understand contribution to disease.

Integration of environmental/behavioral factors: Study

the interaction between individual health behaviors and

environments that increase cancer risk.

• Behaviors are often assessed individually and in

absence of environmental context. However, a systems

approach can support the evaluation of how factors like

sexual behaviors, nutrition, tobacco usage, physical

activity, sedentary behavior, circadian rhythm (sleep)

disruptions, social networks, and infectious disease

transmission work in tandem and vary within different

environments (e.g., rural vs. urban settings) to

contribute to cancer.

Health inequalities/health disparities: Evaluate how

health inequalities are reflected throughout various

biological, socioeconomic, and environmental layers.

• Certain groups may have a higher risk of certain

cancers due to many factors such as stress, low access to

care, education, environmental exposures, and genetics.

• Disentangle the independent and interrelated

contributions of genetic ancestry and socially defined

race/ethnicity to cancer.

Improvement of cancer therapies: Incorporate social

determinants of health and other high-dimensional

population-based measurements from multiple domains

(e.g., neighborhood pollution and physical activity) to

inform differences in treatment response.

• Examine how dynamic social determinants (e.g., diet,

lifestyle, environmental exposures, behaviors, etc.) work

in conjunction with biological processes (e.g., the

microbiome) to influence treatment responses.

Effective interventions and screening (i.e., design,

predict, and evaluate interventions): Integrate

knowledge about biology and the embedded context of

individuals to provide personalized intervention

strategies and screening programs.

• Utilize a systems approach to better prioritize at-risk

populations and tailor interventions beyond a single

behavior.

• Evaluate and further improve interventions and

screening programs over time in the specific

environment/population of interest.

Policy Impacts: Examine the government/policy/

institutional systemic impacts on cancer risk, and how

policies may be improved via a systems approach.

• Use system modeling approaches to test a policy prior

to implementation or examine impact of policy under

different conditions.

• Examine the impact of a policy change on an outcome,

accounting for unforeseen consequences and feedback

loops.

• Evaluate the long-term impacts of a policy, accounting

for changes in components of a system (e.g., changes in

behaviors or movement of populations).

https://doi.org/10.1371/journal.pone.0255328.t003
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