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2 Smart Immune, Paris, France, 3 Department of Medicine V, Hematology, Oncology and Rheumatology, University of
Heidelberg, Heidelberg, Germany, 4 Department of Biotherapy, Hôpital Universitaire Necker-Enfants Malades, Groupe
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Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of preference
for numerous malignant and non-malignant hemopathies. The outcome of this approach
is significantly hampered by not only graft-versus-host disease (GvHD), but also infections
and relapses that may occur because of persistent T-cell immunodeficiency following
transplantation. Reconstitution of a functional T-cell repertoire can take more than 1 year.
Thus, the major challenge in the management of allogeneic HSCT relies on the possibility
of shortening the window of immune deficiency through the acceleration of T-cell
recovery, with diverse, self-tolerant, and naïve T cells resulting from de novo
thymopoiesis from the donor cells. In this context, adoptive transfer of cell populations
that can give rise to mature T cells faster than HSCs while maintaining a safety profile
compatible with clinical use is of major interest. In this review, we summarize current
advances in the characterization of thymus seeding progenitors, and their ex vivo
generated counterparts, T-cell progenitors. Transplantation of the latter has been
identified as a worthwhile approach to shorten the period of immune deficiency in
patients following allogeneic HSCT, and to fulfill the clinical objective of reducing
morbimortality due to infections and relapses. We further discuss current opportunities
for T-cell progenitor-based therapy manufacturing, including iPSC cell sources and off-
the-shelf strategies. These opportunities will be analyzed in the light of results from
ongoing clinical studies involving T-cell progenitors.

Keywords: allogeneic hematopoietic stem cell transplantation, T-cells, immune reconstitution, T-cell progenitors,
immunotherapy, thymus, immunodeficient, immunocompromised
org July 2022 | Volume 13 | Article 9569191

https://www.frontiersin.org/articles/10.3389/fimmu.2022.956919/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.956919/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.956919/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.956919/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:isabelle.andre@inserm.fr
https://doi.org/10.3389/fimmu.2022.956919
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.956919
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.956919&domain=pdf&date_stamp=2022-07-07


Gaudeaux et al. T-Cell Progenitor-Based Immunotherapy
INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is
the only available cure for many hematopoietic malignancies and
several non-malignant conditions. The estimated need for allo-
HSCT is at least 50,000 patients per year in the EU/US. The
successful outcome is highly dependent on the HLA compatibility
between donor and recipient with the best clinical results obtained
when a matched related donor (MRD) is available. However, the
availability of MRDs is limited (approximately 25%–30%); thus,
the majority of allo-HSCTs are realized from matched unrelated
donors (MUDs) (50%) and mismatched related donors
(MMRDs) (20%), whose number is growing since the
introduction of post-transplant cyclophosphamide treatment.
The outcome of these allo-HSCTs from alternative donors is
significantly hampered by complications such as infections,
GvHD, and relapses. In fact, as reported by the Center
for International Blood and Marrow Transplant Research
(CIBMTR) and the European Group for Blood and Marrow
Transplantation (EBMT), infections and relapses are the main
causes of mortality within the first 100 days post-HSCT (1–3).
Despite the advances in supportive care and in different methods
for ex vivo manipulations of the graft (4, 5), the clinical outcome
of allo-HSCT still represents an unmet medical need.

The key issue to be solved is the profound and long-lasting post-
transplant immunodeficiency due exclusively to the delayed
reconstitution of the T lymphoid compartment, which can take
more than 1 year, especially in adult patients. Indeed, competent
immune response following allo-HSCT requires T-cell
reconstitution with a diverse naïve T-cell repertoire, which results
from de novo thymopoiesis from donor HSCs. Numerous clinical
studies have shown that early T-cell immune reconstitution, and in
particular the early acquisition of a CD4+ T-cell compartment at
day 100 following HSCT, is associated with a lower risk of infection
and, in the malignant setting, lower relapse rates and improved
event-free and overall survival rates for both pediatric and adult
patients (6–9).

T-cell differentiation proceeds through three major steps.
First, hematopoietic stem cells differentiate into lymphoid
progenitors able to egress the bone marrow (BM) and enter
blood circulation. Then, these progenitors migrate to the
thymus where they finalize their commitment toward the
T-cell lineage differentiation pathway. Finally, thymocytes
begin to express their T-cell receptor (TCR) and undergo
positive and negative selections. Thymic homing of BM-
derived hematopoietic progenitors is thus a prerequisite for
continuous T-cell development, as shown with murine models
defective in thymic portal endothelial cells (10, 11). In steady
state, thymus seeding progenitors (TSPs) migrate into
the thymus in small numbers. They interact with thymic
endothelial cells, allowing their differentiation into early
thymic progenitors (12, 13). With age, both murine and
human hematopoietic stem cells are biased towards the
production of non-lymphoid cells (14, 15) contributing to a
decrease in circulating TSP populations (16). Furthermore, the
intrinsic ability of TSPs to differentiate toward T-cell lineage
decreases with time (16, 17). Finally, any factor altering the
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thymic niche results mainly in T-cell-mediated cellular
immunity defects, predisposing patients to infections and
autoimmune diseases. The thymus is extremely sensitive to
various factors and agents, such as stress, infections, or certain
medications (18, 19). Thymic impairment has notably been
linked to diminished production of chemokines, such as CCL21
and CCL25, involved in the migration of TSPs toward the adult
murine thymus (12, 20–22). Aging also induces progressive
regression of thymic size and structure, termed thymic
involution, resulting in altered thymopoiesis (23). Increased
adiposity and fibrosis of the organ and the reduction of cortical
volume lead to a disorganized microenvironment associated
with reduced thymic output (14, 23, 24).

In the context of HSCT, TSP supply by the bone marrow has
been shown to be a limiting factor for T-cell reconstitution (25–
27). The occurrence of GvHD correlates with low TSP counts in
the blood 3 months post-transplantation (28–30). Additionally,
as a drawback of conditioning protocols, chemotherapy
profoundly impairs thymus function by causing thymus
atrophy, impacting the efficacy of thymopoiesis, and resulting
in a decrease in the production of naïve T cells (31, 32).

Injection of large quantities of lymphoid progenitors able to
directly seed the thymus and generate a wave of thymopoiesis
(Figure 1) appears as a promising strategy to improve T-cell
production after HSCT (33, 34). We will describe the required
properties of such lymphoid progenitors, the various types of
cells that have been tested in preclinical models, as well as the
manufacturing and clinical perspectives.
DEFINITION OF THYMUS SEEDING
PROGENITORS’ IDENTITY: BLURRED
LINES BETWEEN PHYSIOLOGICAL
CELL POPULATIONS

Many circulating hematopoietic progenitors possess T lineage
potential, but among them, only a small subset is able to enter the
thymus and is therefore considered as true TSP.

In humans, upon reaching the thymus, TSPs upregulate CD7,
specifically under the influence of strong intra-thymic Notch
signaling induced by the Delta-like Ligand 4 (DLL4)–Notch1
interaction, and differentiate into early T-cell progenitors (ETPs)
(35–37). ETPs further differentiate into CD7+CD5+ thymocytes,
which subsequently upregulate CD1a. The CD1a- cells can be
subdivided into CD44+ and CD44- cells, the latter having full
TCRB rearrangements, higher expression of T-cell lineage genes,
and solely T-cell developmental potential (38).

Before giving rise to fully mature CD4+ or CD8+ single-
positive T cells (SPs), thymocytes undergo positive selection to
select thymocytes with TCR able to bind HLA, and negative
selection to eliminate cells that recognize self-antigens. Between
the double-negative (DN) and double-positive (DP) stages lies
the immature single-positive (ISP) CD4+ stage, with no surface
expression of CD3 or TCR (39).

The nature of the earliest human TSP is still a subject of
debate. Different TSP phenotypes have been proposed
July 2022 | Volume 13 | Article 956919
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previously: a CD34hiCD45RAhiCD7+ phenotype (40), Lin-

CD34+CD10+CD24- (16), and cells characterized as Lin-

CD34+CD10-CD45RA+CD62Lhi (41). Two recent studies have
performed deeper immune profiling of TSPs using single-cell
level analysis. The first one, focusing on the human postnatal
thymus, identified two distinct TSPs within the CD34+

thymocyte population: CD34+CD10+CD7- (TSP1), which are
Notch-naïve and can represent the most immature progenitors,
and CD34+CD10-CD7hi (TSP2), which are Notch-primed
outside the thymus (42). The second study, using human
thymus samples, revealed three TSP populations that also have
counterparts in the bone marrow: a quiescent HSC-like subset
(TSP1), an MPP-like subset (TSP2), and a CLP-like subset with
the capacity to commit toward thymocytes much more rapidly
than the other two (TSP3) (43).

To colonize the thymus, TSPs must leave the bloodstream
through the vascular endothelium, thanks to the combination of
multiple mechanisms, most of them having been described in
murine models and hypothesized to be conserved in human
hematopoiesis. Among them, particular interest has been placed
in the adhesion molecule CD44 (44, 45), selectins like P-selectin/
PSGL-1 interactions, integrins like a4b1/VCAM-1 and aLb2/
ICAM-1 (46–48), and chemokine receptors CXCR4, CCR9, and
CCR7 (22, 49–53). Among other factors that play a role in thymus
colonization by TSPs, cytokine receptors such as Flt3 (CD135) and
c-kit (CD117) (54) as well as lymphotoxin b-receptor have been
documented (10, 55). Progenitors enter the thymus most likely
across the cortico-medullary junction area (12).
Frontiers in Immunology | www.frontiersin.org 3
EX VIVO GENERATION OF T-CELL
PROGENITORS

Reproducing the pre-thymic process is of high interest given the
fact that TSPs are rare and constitute a limiting factor after
HSCT. Adoptive transfer of large numbers of ex vivo-produced
TSP-like cells could accelerate de novo T-cell reconstitution post
allo-HSCT. This would bypass the initial steps of donor HSC
differentiation into TSPs in the bone marrow as well as early
induction of the TSPs into T-cell lineage in the thymus. In this
case, an ex vivo culture system that can provide the essential
Notch and cytokine signals to induce HSCs into T-cell
progenitor differentiation is a relevant approach to mimic the
early T-cell differentiation steps in the bone marrow and the
thymus. Moreover, ex vivo-generated T-cell progenitors should
not, or only incompletely, initiate their TCR rearrangement so
that they can undergo thymic selection in the recipient thymus to
give rise to self-tolerant T cells.

Initially achieved for fundamental research purposes, fetal
thymus organ cultures (FTOCs) depleted of endogenous
thymocytes and seeded with human HSCs allowed complete T-
cell development, from the DN stage to positive and negative
selection (56–58). For less demanding and more standardized
culture conditions, feeder cell lines were developed in order to
support T-cell differentiation of HSCs (59–61).

The generation of the OP9-DLL1 cell line led to important
progress in understanding the different steps of T lymphopoiesis.
Both murine and human HSC culture on OP9-DLL1 give rise to
July 2022 | Volume 13 | Article 956919
FIGURE 1 | Comparative approach between allo-HSCT as a current standard of care and combination of allo-HSCT with T-cell progenitor transplantation. Timing
of fully functional T-cell compartment reconstitution: more than 1 year with current standard of care vs. less than 3 months with combinatorial approach. Created
with BioRender.com.
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the different stages of thymopoiesis, from T-cell progenitor to SP
TCRab+ cells (62–65). Murine and human T-cell progenitors
generated using this ex vivo co-culture process have both
demonstrated their ability to engraft the thymus of NOD-
SCID-IL2Rgnull (NSG) mice and further differentiate into T
cells (66, 67). Unfortunately, the use of feeder cells, which are
most often genetically modified murine cell lines, is not
compatible with further clinical T-cell progenitor-based
applications. Because the interaction of Notch1 with its ligand
is mechanosensitive, immobilization of the ligand on stable
surfaces is key to achieving Notch pathway triggering (68).
To this end, an IgG Fc fragment-fused DLL1 recombinant
protein was generated, enabling, in a feeder-free DLL1-based
culture system, efficient expansion of both murine and human
hematopoietic progenitors and partly supporting the production
of T-cell progenitors (69, 70).

Our team adapted this strategy by developing an hDLL4-Fc
recombinant protein compatible with the coating of culture
flasks (71). We have further improved this 7-day culture
system by a combination of cytokines crucial for stem cell
survival and T-cell commitment, allowing the production of a
large number of CD34-CD7+ progenitors. In particular, the
addition of TNFa in the culture process resulted in significant
improvement in terms of both purity and harvest yield of the
final T-cell progenitor product (72). These cells express TCF7,
BCL11b, GATA3, and CD3e; have not yet started their TCR
rearrangement; and possess enhanced T-cell potential in vitro
and in vivo, leading to the fast production of mature and
polyclonal TCRab and gd T cells upon transplantation in NSG
mice (72), similarly to T-cell progenitors produced in 14 days
with hDLL4-Fc, IL-7, SCF, and VCAM-1 (73).

Notably, this culture process can be applied to all sources of
HSC (such as umbilical cord blood and blood of mobilized
donors) (72, 74). It was translated to the clinic and is currently
being tested in pediatric and adult patients undergoing HSCT for
hemopathies or severe combined immune deficiencies
(NCT04707300, NCT03879876, and NCT04959903).

Other teams have compared the effectiveness of DLL4-coated
beads with DLL4-coated culture flasks, with the goal of
optimizing cell manufacturing (75). However, cell cultures
remained static in their study, which is incompatible with
actual large-scale bioreactor production. Mechanosensitive
Notch1–DLL4 interaction seems not to be sufficiently efficient
in a bead–cell complex formed in suspension. Although it does
not represent an obstacle for the treatment of patients included
in the ongoing clinical trials, this observation underlines the
new challenges to be overcome for large-batch production of
such T-cell progenitors (e.g., off-the-shelf banks).
T-CELL PROGENITORS AND THYMIC
CROSSTALK: BOOSTING THYMOPOIESIS
BY THYMUS REGENERATION

The thymus has a complex structure and encompasses numerous
cell types, including thymic epithelial cells (TECs) as well as
Frontiers in Immunology | www.frontiersin.org 4
dendritic cells (DCs), macrophages, fibroblasts, vascular
endothelial cells, and connective tissue cells (76). Besides the
acceleration of the thymopoietic process, infusion of T-cell
progenitors may favor thymus regeneration through crosstalk
between the developing thymocytes and the TECs. Different
teams demonstrated the direct influence of thymocytes on the
formation and maturation of TECs in murine models (77–79).
For instance, T-cell progenitors generated ex vivo express a high
level of RANKL and, thanks to interaction with its receptor, are
able to increase transcript levels for TEC-derived chemokines
when cultured in FTOC (74, 80). Singh and colleagues reported
that injection of T-cell progenitors led to thymic engraftment
and regeneration not only in young murine recipients but also in
aged recipients (80).

Mechanisms underlying thymic regeneration and cell
populations contributing to it were recently detailed by
Cosway and colleagues, highlighting the cooperative work of
eosinophils, iNKT cells, and ILC2 in the murine thymus (81).
The ILC2 population was linked to the production of IL5 in
the thymic microenvironment, resulting in the acceleration
of thymocyte replenishment in the organ. Interestingly,
Hernández and colleagues recently demonstrated the
spontaneous occurrence of ILC2 and T-cell progenitors in the
OP9-DLL1 culture system, indicating the apparent ontogenic
proximity of these two cell populations (82). This
characterization work paves the way for the development of
both adaptive and innate cell-based therapies that may be able to
synergize in promoting thymic regeneration.
THE FUTURE OF T-CELL PROGENITORS:
SCALING UP PRODUCTION FOR BROAD
CLINICAL APPLICATION

One approach for widening the use of T-cell progenitor-based
acceleration and enhancement of T-cell reconstitution post-
allogeneic HSCT is the availability of off-the-shelf T-cell progenitor
sources. Some of the obstacles for this strategy include the
unavailability of major histocompatibility complex (MHC)-
matched donors (if not autologous), and the time and cost
required to generate personalized T-cell progenitor-based
immunotherapy. In this context, Zakrzewski et al. have
demonstrated that the adoptive transfer of ex vivo-generated T-cell
precursors in an irradiated recipient with a complete MHC
mismatch led to efficient thymic regeneration and functional TCR
selectionwith host-tolerant T cells, while avoidingGvHD (83). These
data paved the way for the development of an off-the shelf T-cell
progenitor strategy as a universal immunotherapy. Cryopreserved
cord blood unit (CBU) cells provide the ideal platform for the
generation of these cellular therapy products due to its immediate
availability, high proliferation yield during differentiation (72), and
the possibility of covering the majority of the population using a
limited number of units. By creating an off-the-shelf T-cell
progenitor bank from umbilical cord blood CD34+ cells, the
therapeutic cell product would become immediately available to
patients in need, independently of the donor, even when allogeneic
July 2022 | Volume 13 | Article 956919
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HSCT is not possible (e.g., following lymphodepleting
chemotherapy, in aging patients as protection against viral
infections, or in the context of immunosuppressive therapy).

Induced pluripotent stem cells (iPSCs) could also be a
relevant source to produce such off-the-shelf banking: iPSCs
can unlimitedly self-renew and possess the potential to
differentiate into all cell types, including immune cells (84–86).
They can be easily genetically engineered and clonally selected
to ensure a homogeneous cell derivative (87). If genetic
modifications and clonal selections are needed, master iPSC
lines with the desired modifications would be banked as a
renewable T-cell progenitor source. T-cell production from
iPSCs consists of a series of multiple differentiation steps that
includes induction of iPSCs into mesodermal progenitors,
mesodermal progenitors into hemogenic endothelial cells
(HECs), HECs into CD34+ hematopoietic stem and progenitor
cells (HSPCs), and HSPCs into T cells in the presence of DLL1-
or DLL4-induced Notch signaling (88–90). Multiple studies had
successfully reprogrammed somatic T cells into iPSCs and
differentiated them back into highly proliferative T cells, while
maintaining their rearranged TCRs (91–95). Recently, Flippe
et al. developed a feeder-free method to generate HSPCs from
iPSCs, which were closely similar to cord blood-isolated CD34+

HSPCs and could give rise to T-cell progenitors upon co-culture
with OP9-hDLL1/DLL4 murine stromal cells (96, 97). An
artificial thymic organoid-based culture system has also been
described to generate conventional T cells from iPSCs (98). All
these methods are based on stromal feeder cells of murine origin
(hDLL1- or hDLL4-expressing MS5 or OP9), which limits their
use in the clinic. In an effort to develop clinically compatible
methods, feeder cell-free immobilized DLL1 or DLL4
microbead-based techniques have been developed to generate
T-cell progenitors and T cells from iPSCs (75, 90). Progenitor T-
cell differentiation has also been shown to be improved by the
induction of endothelial-to-hematopoietic transition on DLL4
and VCAM1 (99).

However, safety concerns associated with iPSC-based cell
therapy should be considered. Risk factors of using iPSC-derived
cell products include genetic and epigenetic abnormalities
occurring during reprogramming or subsequent culture for
maintenance (100–103), their potential to become tumorigenic
and immunogenic (104–107), as well as variability across iPSC
lines and batches (108).
CONCLUDING REMARKS

After allogeneic HSCT, 18 to 24 months are usually necessary to
reconstitute a polyclonal T-cell repertoire. The possibility of
using T-cell progenitors to accelerate post-transplant lymphoid
reconstitution appeared concomitantly with the identification
of thymus seeding progenitors (TSPs) and the development of
T-cell differentiation protocols based on Notch, DLL1, and
DLL4 ligands. Although TSPs cannot be used as such because of
their rarity and the difficulty in isolating them, T-cell
Frontiers in Immunology | www.frontiersin.org 5
progenitors generated ex vivo have largely demonstrated their
effectiveness, both through congenic studies in mice
and through xenogeneic experiments with human cells.
More importantly, they also appear to be effective when
transplanted into aged mice, which raises the prospect of
their use in elderly patients with highly involuted thymuses
(83). While this review is written in the context of allo-HSCT, it
may be of interest to also highlight perspectives of T-cell
progenitor use concomitantly with autologous HSCT: recent
findings show that even in autologous settings, immune
reconstitution and tolerance is impacted, resulting in the
phenomenon of auto-GVHD (109).

Other studies suggest that T-cell progenitors could participate
in the regeneration of thymic architecture through cytokines
expressed at the progenitor stage and at the CD4+ SP stage (110).
If this hypothesis is confirmed, the injection of T-cell progenitors
could improve thymic function, which would be particularly
useful in patients whose thymus has been altered by
chemotherapy, irradiation, infections, GvHD, or inflammation,
as well as in elderly patients whose thymuses have undergone
thymic involution. Moreover, increased recovery of other
thymus-dependent lineages such as gd T cells, NKT cells, or
MAIT cells (111–113) could be speculated on the basis of
preclinical results (72). These properties of T-cell progenitors
are under investigation in ongoing clinical trials in adults treated
for malignant hemopathies.

We have developed a GMP-compliant feeder cell-free
process, compatible with different HSC sources and allowing
the manufacturing of cryopreserved drug products for clinical
trials. Combined with the possibility of using T-cell progenitors
that are partially incompatible with the recipient, this opens
prospects for off-the-shelf biobanks of allogenic T-cell
progenitors with centralized production. iPSCs also appear as a
source of stem cells for T-cell progenitor manufacturing, but
further developments are required before considering clinical
applications. The possibility of genetically modifying these cells
during production, for example, arming them with a chimeric
antigen receptor (CAR), further increases their potential in
immuno-oncology.
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