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Abstract: Hepatocellular carcinoma (HCC) is one of the most deadly tumors, and current 

treatments for the disease are often ineffective. The discovery of the involvement of microRNAs 

(miRNAs) in hepatocarcinogenesis represents an important area of investigation for the 

development of their clinical applications. These molecules may act as oncogenes or tumor 

suppressors by directly or indirectly controlling the expression of key proteins involved in 

cancer-associated pathways. On the clinical side, because of their tumor-specific expression and 

stability in tissues and in the circulation, miRNAs have been proposed as novel diagnostic tools 

for classification and prognostic stratification of HCC. In recent years, the therapeutic potential 

of miRNAs has been demonstrated in various preclinical studies. Anti-miRNA oligonucleotides 

and miRNA mimics have been found to have antitumor activity. Moreover, by exploiting 

tumor-specific expression of miRNA, efforts have been aimed at improving targeting of tumor 

cells by replicative oncolytic viruses while sparing normal cells. These areas are expected to be 

explored further in the upcoming years to assess the clinical value of miRNA-based approaches 

in HCC and cancer in general.
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Introduction
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is one of 

the most prevalent malignant diseases worldwide, and the third most common cause 

of cancer-related deaths.1 In spite of the development of novel therapeutic strategies, 

the prognosis of advanced HCC remains poor, with a life expectancy of about six 

months from the time of diagnosis.2 In most cases, HCC originates on a background 

of cirrhosis,3 a chronic and diffuse hepatic disease that results from continuous liver 

injury and regeneration. Increased hepatocyte turnover, inflammation, and oxidative 

DNA damage are implicated in the pathogenesis of the disease. The prevalent risk 

factors for HCC are also the cause of liver cirrhosis, and include viral infections (eg, 

hepatitis B and C) and alcohol consumption; further risk factors include tobacco 

smoking, exposure to aflatoxin B1 and vinyl chloride, diabetes, and genetic disorders, 

such as hemochromatosis and alpha-1 antitrypsin deficiency.4–9

HCC is a cancer with a poor prognosis because of the low proportion of cases amenable 

to curative treatment at diagnosis and the high rate of recurrence following therapeutic 

intervention. The estimated recurrence rate can be as high as 70%–80% at five years, 

considering both true recurrences and HCC de novo, and this contributes significantly 

to the dismal prognosis of HCC. In addition, traditional therapies are not effective for 

HCC and are too toxic for patients with cirrhosis. Transarterial chemoembolization and 
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radioembolization are the main treatments for intermediate-

stage HCC at the present time.10 The only systemic therapy 

available for advanced HCC is based on the multikinase 

inhibitor sorafenib,11 which is the most effective therapeutic 

tool for advanced nonresectable HCC, in which it can slightly 

improve patient survival.12,13 The survival of patients with 

advanced HCC treated with sorafenib depends on the absence 

of liver dysfunction and on the status of the patient.14,15 In 

the past few years, use of sorafenib in combination with 

transarterial chemoembolization has significantly improved 

survival rates in patients with advanced HCC.16,17 New 

perspectives in cancer treatment have appeared recently with 

the advent of the microRNAs (miRNAs), a novel class of 

noncoding small RNAs.

microRNAs
microRNAs are short RNAs (containing 20–24 nucleotides) 

that play an important role in all biological processes by 

post-transcriptional regulation of protein-coding genes.18 

They constitute a large class of phylogenetically conserved 

genes, with more than 2000 miRNAs having been discovered 

in humans.19 miRNAs are transcribed by RNA polymerase 

II to produce a primary pre-miRNA, cleaved by the Drosha-

DGCR8 complex to a shorter pre-miRNA approximately 70 

nucleotides long. The pre-miRNA is transported by Expor-

tin-5/RanGTP from the nucleus to the cytoplasm, where it is 

processed to a short miRNA-miRNA*-duplex by the Dicer-

TRPB complex. The *strand is usually degraded, and the 

other strand becomes the mature miRNA that is incorporated 

into the RNA-induced silencing complex.

This ribonucleoprotein complex eventually becomes 

bound to regions of homology present in messenger RNAs 

(mRNAs), usually within their 3′ untranslated regions. 

Recruitment of the RNA-induced silencing complex to the 

target mRNA can promote either degradation or repression 

of translation. Via these mechanisms, each miRNA can 

 modulate the expression of target protein-coding genes 

(reviewed recently by Davis-Dusenbery and Hata20 and 

Farazi et al21).Each miRNA can promote the targeting and 

modulation of expression of tens or even hundreds of mRNAs. 

On the other hand, each mRNA can be targeted and under the 

control of several miRNAs. It has also become  evident that 

mRNAs or RNAs highly expressed by pseudogenes or long 

noncoding RNAs can act as a “sponge” to reduce  interaction 

between miRNAs and other mRNA  species. Therefore, the 

network of interactions between mRNA and miRNA is 

complex and largely still to be clarified in a comprehensive  

systemic fashion.

Role of miRNAs in cancer
In view of their role in regulating the expression of protein-

coding genes, miRNAs now have a widely recognized role in 

human carcinogenesis. Initial evidence came from detection 

of their aberrant expression in all human cancers.22 Some of 

them are frequently found to be upregulated or downregulated 

in cancer in comparison with normal tissue. There is now 

mounting experimental evidence indicating that they may act 

as oncogenes or tumor suppressors by disrupting regulation 

of genes encoding for oncoproteins and tumor suppressor 

proteins.23

In vivo models have provided conclusive proof that 

miRNAs play a key role in tumorigenesis. Proof of principle of 

the involvement of miRNA in the development of neoplastic 

disease was provided by generation of the Eµ-miR155 

transgenic mouse that develops a lymphoproliferative 

B-cell malignancy.24 Further animal models confirmed that 

deregulated miRNAs could be involved in tumorigenesis 

in vivo, mostly in hematologic malignancies.25–28 Targeted 

deletions demonstrated this functional activity in putative 

tumor suppressor miRNAs; for example, a miR-15a/miR-

16-1 knockout mouse model is predisposed to development 

of an indolent form of leukemia, resembling human chronic 

lymphocytic leukemia, where deletion of these miRNAs is 

found in over 60% of cases.29

Role of specific miRNAs in HCC
Involvement of miRNAs in HCC has been demonstrated, as 

in other cancers. HCC develops via deregulation of various 

molecular pathways, including p53, RAS/MAPK, PI3K/

AKT/mTOR, WNT/β-catenin, MET, MYC, and transforming 

growth factor beta. Genetic and epigenetic alterations, as 

well as aberrant miRNA expression, can affect these crucial 

cancer-associated pathways (for a detailed review, see Negrini 

et al30).Several studies have shown that expression of miRNA 

is deregulated in HCC in comparison with normal liver tissue 

(again, see Negrini et al30 for a comprehensive review). 

In light of reports from independent studies, consistent 

deregulation of miR-122, miR-199, miR-221, and miR-21 

appears to be particularly important in HCC (Figure 1). 

Interestingly, both miR-122 and miR-199a are among the 

miRNAs most highly expressed in the normal liver.31

miR-122 is unique among the deregulated miRNAs, in 

that it is almost exclusively expressed physiologically in the 

adult liver,32 where it appears to act as a key regulator of the 

differentiation of adult hepatocytes via repression of genes not 

specific to the liver.33–35 At the molecular level, this effect is 

achieved by regulation of CUTL1, a transcriptional repressor 
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of genes specifying terminal differentiation in multiple cell 

lineages, including hepatocytes. CUTL1 was shown to be 

the most prominent repressed target of miR-122.33 In HCC, 

miR-122 is downregulated in approximately 70% of cases, 

suggesting a tumor suppressor function for this miRNA. Vari-

ous lines of evidence now support this hypothesis. Enforced 

expression of miR-122 can induce apoptosis and arrest 

of the cancer cell cycle,36,37 inhibit tumorigenicity in liver 

cancer cell lines in vivo,36 and sensitize cells to sorafenib or 

doxorubicin.36,38 In addition, loss of miR-122 expression in 

patients with liver cancer is correlated with the presence of 

metastasis39,40 and a shorter time to recurrence.38 The role of 

miR-122 in liver cancer has been demonstrated directly by 

the generation of miR-122 knockout mice.41,42 These mice 

were characterized by hepatic inflammation, fibrosis, and 

development of spontaneous tumors similar to HCC, dem-

onstrating the tumor-suppressor function of this miRNA and 

its important role in liver metabolism and differentiation of 

hepatocytes. These phenotypic effects could at least in part 

be understood by identification of miR-122 gene targets. 

Reduced control of CUTL1, as previously mentioned, may be 

responsible for the lack of differentiation that characterizes 

HCC cells. Another known target of miR-122 is cyclin G1,43 

which is a negative regulator of p53 and is frequently upregu-

lated in HCC. In a mouse model, the absence of cyclin G1 

was associated with less susceptibility to developing liver 

tumors.44 Reduced levels of miR-122 could lead to inhibi-

tion of p53 activity by increasing cyclin G1 levels.38 Loss 

of miR-122 could also directly affect the intrinsic apoptotic 

pathway by reduced regulation of the antiapoptotic protein, 

Bcl-w.45 miR-122 invasive and metastatic properties were 

instead linked to loss of control on ADAM17 (a disintegrin 

and member of the metalloproteinase family).39 By target-

ing ADAM17, miR-122 can reduce in vitro migration and 

invasion, in vivo tumorigenesis and angiogenesis, and local 

invasion in the livers of nude mice. A similar effect could 

also be expected when targeting ADAM10.36

miR-199 has been reported to be consistently downregu-

lated in the majority of HCC,43,46,47 suggesting a tumor sup-

pressive function. All three members of the miR-199 family, 

ie, miR-199a-1, miR-199a-2, and miR-199b, have emerged 

as being frequently downregulated in HCC. Phenotypically, 

enforced expression of miR-199a in HCC cells leads to cell 

cycle arrest at G1 phase, reduced invasive capability, and 

enhanced susceptibility to hypoxia. In patients with HCC, 

downregulation of miR-199a was associated with a higher 
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Figure 1 Predicted effects of deregulated miRNAs in hepatocarcinogenesis. miR-122, miR-199, miR-221 and miR-21 were shown by various studies to be consistently 
deregulated in HCC. Via aberrant control of protein-coding gene targets (only the major ones are shown), their deregulation is expected to induce biomolecular effects that 
promote tumorigenesis.
Abbreviations: miRNA, microRNA; HCC, hepatocellular carcinoma.
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recurrence rate and shorter time to recurrence after surgery. 

These effects could be explained by modulation of target 

genes, such as MET, mTOR, and HIF-1α.48–51 Another impor-

tant target of miR-199 in HCC is CD44, a transmembrane 

glycoprotein involved in cell-cell interaction, cell adhesion, 

and migration.52 Further, absence of control over Discoidin 

domain receptor-1 tyrosine kinase may promote cell invasion 

processes in HCC.53

Among the miRNAs that are upregulated in HCC, there 

is evidence in support of the tumor-promoting activity of 

miR-221. It is upregulated in 70%–80% of HCC samples.54 

From a functional point of view, HCC cells overexpressing 

miR-221 show increased growth, proliferation, migration, and 

invasion capability.54–56 miR-221 antagomirs inhibit growth 

of liver cancer cells, and enforced miR-221 expression was 

shown to enhance tumorigenesis of cells when implanted in 

mice. In this setting, overexpression of miR-221 promotes 

tumor progression and shortens the survival of the animal.57 

More recently, a transgenic mouse model characterized by 

overexpression of miR-221 in the liver was developed. This 

model demonstrates high susceptibility to HCC in male 

animals, which can be partly inhibited by challenge with 

anti-miR-221 oligonucleotides.58 By modulating multiple 

gene targets, miR-221 has been shown to affect several cancer 

pathways. The cell cycle could be promoted by modulation 

of the cyclin-dependent kinase inhibitors, CDKN1B/p27 

and CDKN1C/p57.54 Other important targets include the 

BH3-only protein, Bcl2-modifying factor59 (a proapoptotic 

protein) and PTEN (a negative regulator in the PI3K-AKT-

mTOR pathway).56 DNA damage-inducible transcript 4, 

another negative regulator of the mTOR pathway, was also 

identified as a target of miR-221.57 miR-221 was also shown 

to affect invasion and metastasis by controlling TIMP3, a tis-

sue inhibitor of metalloproteases.56 These examples outline 

the importance of deregulation of even a single miRNA in 

cancer. miR-221 is a paradigmatic example of an miRNA 

regulating multiple pathways at one time.

miR-21 is a potent oncogene when upregulated. It is 

overexpressed in HCC as well as in several other human 

malignancies, including breast, colon, lung, pancreas, pros-

tate, and stomach cancers.60 Overexpression of miR-21 in 

cultured human cells can protect against apoptosis61 and 

increase tumor cell proliferation and migration.62 In vivo, 

miR-21 inhibition suppressed cell proliferation and increased 

apoptosis in a cancer xenograft model.62 In a transgenic 

mouse model, overexpression of miR-21 led to a pre-B 

malignant lymphoma that regressed completely when miR-21 

was inactivated, partly as a result of apoptosis.28 Another 

important activity of miR-21 is chemoresistance induced 

against a variety of anticancer compounds. These multiple 

effects are linked to several genes targeted by miR-21 (for a 

recent review describing miR-21 target genes, see Buscaglia 

and Li63). Among the most important of these is PTEN,64 

which promotes cell survival via activation of the PI3K-AKT 

pathway, and tumor suppressor programmed cell death 4,65,66 

a protein believed to have a role in apoptosis induced by 

transforming growth factor-beta.

Clinical implications
miRNA diagnostics
Profiling of miRNA expression could be a useful tool 

for  classification purposes and for improving prognostic 

 stratification. Previous reviews have summarized the potential 

applications of miRNAs as diagnostic and prognostic markers 

in human cancer and in particular liver cancer.30,67,68

Several miRNAs may have potential prognostic  significance. 

Table 1 summarizes the presently available data. For clas-

sification purposes, it is shown that miR-200c, miR-141 and 

miR-126, alone or in combination, could be used to distinguish 

primary HCC versus other tumor metastases to the liver with 

very high accuracy; moreover, the ratio of miR-205 to miR-194 

expression could be used to distinguish between gastrointestinal 

tumors and metastases outside the gastrointestinal system,69 

which is important considering that the liver is the main meta-

static site for gastrointestinal tumors.70

An emerging area of investigation with regard to miR-

NAs is their potential use as circulating biomarkers. Because 

of their different levels in the serum or plasma of patients 

affected by a range of diseases in comparison with healthy 

subjects,71 miRNAs could be useful biomarkers for patient 

follow-up.72 Table 2 summarizes the studies of miRNAs in 

serum and plasma, confirming the potential use of miRNAs 

as sensitive markers for detection of an underlying HCC 

and for prognostic stratification of the disease. Among the 

miRNAs, miR-122 and miR-21 levels have been reported by 

more than one study to be significantly higher in patients with 

HCC. Because increased levels are also detected in chronic 

hepatitis, their usefulness as clinical tumor markers needs to 

be validated further.73–77

Overall, these results point to miRNAs being potential 

biomarkers that could improve our ability to stratify the 

prognosis and monitor follow-up in patients with HCC. Their 

stability in formalin-fixed and paraffin-embedded samples as 

well as in body fluids like serum or plasma is an important 

property for enabling their detection and quantification in 

biological samples, which are frequently used in clinical 
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Table 1 microRNAs with potential prognostic impact in patients with HCC

miRNAs Molecular alteration Clinical significance Reference

20 miRNAs Signature Venous metastasis, overall survival 131
19 miRNAs Signature Poor survival 47
miR-19a, miR-886-5p, miR-126,  
miR-223, miR-24 and miR-147

Signature Predictor of overall survival and recurrence-free survival after LT 132

miR-26a Downregulation Poor survival 133
miR-122 Downregulation Gain of metastatic properties 39,40
miR-122 Downregulation Early recurrence 38
Let-7 members Downregulation Early recurrence 134
miR-199a-3p Downregulation Reduced time to recurrence 49
miR-199b-5p Downregulation Poor overall survival and progression-free survival rates 51
miR-101 Downregulation Advanced tumor progression, poor prognosis 135
miR-125a Upregulation Better survival 136
miR-92, miR-20, miR-18 Upregulation Poor differentiation 46
miR-372 Upregulation Advanced TNM stage 137
miR-221 Upregulation Multinodularity, reduced time to recurrence 59
miR-221 Upregulation Gain of metastatic properties 138
miR-221 Upregulation High tumor capsular infiltration 139
miR-17-5p Upregulation Multiple tumor nodules, vein invasion, shortened overall survival 140
miR-155 Upregulation High recurrence and poor prognosis following OLT 141
miR-203 Upregulation Good prognosis 142
miR-18 Upregulation Poor prognosis 143

Abbreviations: HCC, hepatocellular carcinoma; miRNAs, microRNAs; TNM, tumor-node-metastasis; LT, liver transplantation; OLT, orthotopic liver transplantation. 
Note: Data adapted from Negrini et al.30

assays. However, at present, prospective studies are still 

required before miRNAs can be used in the clinic as bio-

markers for cancer.

miRNA therapeutics
miRNA inhibition
In the past few years, several lines of evidence have indicated 

that strategies based on modulation of miRNA activity could 

be a novel approach to treating cancer (Figure 2). In 2005, 

Krutzfeldt et al showed that intravenous administration of 

specific antagomirs could silence miR-122 in the mouse 

liver.78 A few years later, Elmen et al demonstrated that 

inhibition of miR-122 by administration of anti-miRNA 

oligonucleotides in nonhuman primates was a promising 

approach for reducing miRNA activity in the adult liver 

without any evidence of toxicity.79 These proofs of principle 

established the basis for the various studies that have been 

performed in cancer models in vivo.

Anti-miR-221 was shown to have antitumor activity, 

which was demonstrated by intratumoral injections of anti-

miRNA oligonucleotides into prostate carcinoma cell-derived 

tumors,80 in melanoma cell xenotransplants,81 and in multiple 

myeloma xenografts.82 Park et al showed the ability of anti-

miR-221 molecules to reduce proliferation of tumor cells and 

promote survival in an orthotopic mouse model of HCC.83 

Anti-miR-221 was also shown to downregulate miR-221 

levels in the liver of the miR-221 transgenic mouse and to 

achieve a significant reduction in the number and size of 

tumors in comparison with untreated animals.58

The role of the miR-21 oncomir was investigated using 

anti-miR-21 molecules in vivo. Use of anti-miR-21 led to 

complete regression of pre-B lymphoid-like malignancies in 

mice overexpressing miR-21.28 Anti-miR-21 was also reported 

to have significant antitumor activity in SCID mice bearing 

human multiple myeloma xenografts.84 Thus, by confirming 

the feasibility as well as short-term safety and efficacy of these 

molecules in large-scale preclinical settings, these studies estab-

lished the basis for the use of anti-miRNAs in clinical trials.

The first miRNA-targeted drug, a molecule known as 

miravirsen SPC3649, has been used in various Phase I 

investigations and is currently in a Phase II clinical trial for 

the treatment of hepatitis C virus (HCV) infection.85 This 

trial stems from the discovery of involvement of miR-122 in 

HCV RNA accumulation, and demonstrated that treatment 

of chronically infected nonhuman primates with an LNA-

modified anti-miR-122 oligonucleotide was well tolerated 

and led to long-lasting suppression of HCV viremia.86,87

miRNA replacement
In addition to inhibition of oncomirs, another approach 

to treating cancer is based on restoration of tumor 

suppressor miRNAs. Several examples of this approach 
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already exist. Enforced expression of miR-26a using an 

 adenoassociated (AAV8) delivery system inhibited tumori-

genicity in a myc mouse HCC model.88 Both AAV8 miR-199 

and cholesterol conjugated small RNA delivery systems could 

effectively restore miR-199a/b-3p and reduce tumor size in 

HCC xenografts.31 The tumor suppressor role of miR-122 in 

HCC was confirmed by strong inhibition of tumorigenesis 

using AAV-mediated delivery of miR-122 in a myc mouse 

HCC model.41 Administration of cholesterol-conjugated 

2′-O-methyl-modified miR-375 mimics significantly sup-

pressed growth of hepatoma xenografts in nude mice.89 miR-

29b could sensitize HCC cells to various apoptotic signals 

and could suppress the ability of HCC cells to form tumors 

in nude mouse xenograft models.90

Further studies demonstrating the antitumor effectiveness 

of miRNAs have been reported in other types of tumors and 

experimental settings.91–93 An important example is restora-

tion of miR-31, the action of which could alter the invasive 

properties of disseminated tumor cells, raising the possibility 

of developing miRNA-based strategies for the treatment of 

metastatic disease.94

The above studies establish miRNAs as promising mole-

cules in cancer therapy. In this context, miR-34a is the first 

miRNA mimic to reach the clinic (http://clinicaltrials.gov/

Local or systemic 
administration
in small animal

models

Future perspectives:
miRNA-based therapies

in clinical trials

Pre-clinical studies Clinical studies

miRNA-inhibition:
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miRNA-dependent CRAds:
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Figure 2 Therapeutic strategies based on modulation of miRNA activity. Summary 
of preclinical studies (on the left) based on miRNA inhibition, miRNA replacement, 
and conditionally replicating adenoviruses regulated by miRNA (microRNA) target 
elements. On the right are clinical trials ongoing using miRNA-based drugs.

Table 2 Circulating microRNAs in liver disease

miRNAs Sample Clinical condition Clinical relevance Reference

miR-122 Serum High levels in patients with HCC or chronic  
hepatitis; lower levels in severe stages of fibrosis

Biomarker for liver injury but not specific  
for HCC; indicator of fibrosis progression in  
CHC infection; marker to distinguish patients  
with CHC from healthy controls

74,76,77, 
144,145

miR-21 Serum/ 
plasma

High levels in patients with HCC or chronic  
hepatitis; higher levels in patients with HCC than in  
those with chronic hepatitis or healthy volunteers

Biomarker for liver injury but not specific  
for HCC; biochemical marker for HCC

73–75,146

miR-223 Serum High levels in patients with HCC or chronic hepatitis Biomarkers for liver injury but not specifically  
for HCC

73

miR-885-5p Serum High levels in patients with HCC, LC, or CHB Complementary biomarker for detection  
and assessment of liver pathologies

147

miR-16 
miR-34a

Serum Higher levels in patients with NAFLD than in controls Correlation with liver enzymes levels, fibrosis  
stage, and inflammation activity; biomarkers  
of diagnosis and histological disease severity  
in patients with CHC or NAFLD

74

miR-221 Serum High levels correlated with tumor size, cirrhosis,  
and tumor stage

Predictive significance for prognosis of  
patients with HCC

146

miR-15b 
miR-130b

Serum Higher levels in tumors during the exploration  
phase on resected tumor/adjacent and nontumor  
tissues; lower levels after surgery

Biomarker with clinical value for HCC  
screening

148

miR-20a 
miR-92a

Plasma/ 
serum

High levels in HCV-infected patients with fibrosis compared  
with healthy volunteers or liver disease not associated  
with HCV; higher levels in acute and chronic HCV-infected  
patients as compared with healthy volunteers

Biomarkers for early detection of HCV  
infection; miR-20a is a predictive biomarker  
of HCV-mediated fibrosis

149

Abbreviations: HCC, hepatocellular carcinoma; CHC, chronic hepatitis C; CHB, chronic hepatitis B; LC, liver cirrhosis; NAFLD, nonalcoholic fatty liver disease; HCV, 
hepatitis C virus; miRNAs, microRNAs.
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ct2/show/NCT01829971).95 Earlier studies showed that len-

tivirus expressing miR-34a could prevent tumor formation 

and progression in mouse models of lung adenocarcinoma 

induced by K-ras and p53.96 Inhibition of tumor growth 

and increased survival were also observed in mice bearing 

multiple myeloma xenografts treated with miR-34a mim-

ics.97 Very recently, expression of miR-34 combined with 

the cytokine interleukin-24 showed synergistic antitumor 

activity in a xenograft model of HCC, indicating the possi-

bility of using a multiple-armed miRNA-based viral vector 

in cancer therapy.98

Oncolytic viruses
Oncolytic viruses are developed to replicate selectively in 

tumor cells. They are engineered to have cytotoxic effects 

in tumor cells with minimal toxicity in normal cells. For this 

reason, they hold promise for the treatment of cancer.99–101 

The first conditionally replicating adenovirus (CRAd), known 

as ONYX-015, carried a deletion in the E1B-55 kDa coding 

region, which was designed to limit its replication with cells 

having dysfunctional p53.99 It was used in clinical trials either 

alone or in combination with chemotherapeutic agents.102–107 

Since then, progress has been made in this field, with more 

selective and potent oncolytic viruses having been entered 

into clinical trials (see Patel and Kratzke108 for a recent 

review).

Among the oncolytic viruses in use, the presence of the 

gene for the immune stimulator granulocyte-macrophage 

colony-stimulating factor (GM-CSF) is improving signifi-

cantly antitumor activity. The safety and biological activity 

of an oncolytic viral vector based on herpes simplex virus 

type-1, known as OncoVEXGM-CSF (Amgen, Thousand Oaks, 

CA, USA), has been assessed in several clinical trials.109,110 

Oncolytic adenoviruses armed with GM-CSF have also been 

used successfully in the treatment of patients with advanced 

metastatic tumors refractory to conventional therapies. Their 

use resulted in antitumor immunity and increased median 

overall survival.111–113 Oncolytic poxvirus carrying GM-CSF 

was also investigated in clinical trials, and demonstrated 

an oncolytic and immunotherapeutic mechanism of action, 

tumor responses, and dose-related survival in treated patients 

with HCC.114–116

To generate safer oncolytic viruses, miRNA-mediated 

suppression of virus replication has been used successfully 

to reduce pathogenic effects in normal tissue. The cellular 

tropism of a picornavirus was modulated by engineering 

target sequences for muscle-specific miRNAs into the viral 

genome, thereby avoiding development of lethal myositis 

in tumor-bearing mice.117 Ylosmaki et al developed a new 

type of conditionally replicating CRAd regulated by miR-

122 target elements within the 3′ untranslated regions of 

the E1A gene, achieving liver-specific suppression of viral 

replication and reducing hepatotoxicity.118 At the same time, 

it was found that viral oncolytic activity was not damaged 

in targeted tumors in vivo.119 A similar approach has been 

reported by Cawood et al, who showed that incorporation of 

miR-122-binding sites to control E1A mRNA significantly 

reduced adenoviral replication and liver toxicity in 

mice.120,121 Another approach to E1A regulation combines 

an miR-122 control with chromogranin-A gene promoter-

controlled virus replication, allowing use of high doses of 

adenovirus for more effective tumor treatment with limited 

liver toxicity.122 Other miRNAs involved in the control 

of oncolytic virus replication include a let-7-dependent 

oncolytic adenovirus, which is able to replicate only in cells 

lacking miRNA expression, such as HCC cells, and not in 

normal liver cells.123

These reports have established the potential value of 

engineered oncolytic viruses in the treatment of human 

malignancy. In this context, the target sequences of miRNAs 

could ensure the detargeting from normal tissues of virus 

replication, which still remains active in tumor cells.

In human cancer, most of the malignant cells are unable 

to produce tumors when implanted into immunodeficient 

mice. Still, 1%–2% of these cells maintain cell renewal 

capabilities and may generate tumors. It has been suggested 

and demonstrated in several instances that these cells persist 

in tumors as distinct populations, which are designated as 

tumor-initiating cells or cancer stem cells.124 Cancer stem 

cells are essential for the growth of solid tumors and hema-

tologic malignancies, as well as for seeding of metastases. 

Because they consist largely of nonproliferating cells, they 

are also intrinsically resistant to traditional therapies, thereby 

being responsible for relapses following therapy. Hence, it 

has been suggested that effective therapies against cancer 

stem cells could potentially lead to complete eradication 

of tumors.

Several studies have demonstrated the importance of 

miRNAs in the control of stem cells125,126 as well as the phe-

notype of the cancer stem cell.124 In HCC, identification of a 

cell population called CD133+ which has the characteristics 

of cancer stem cells, has provided new perspectives for 

characterization of liver cancer.127 Several lines of evidence 

indicate that aberrant expression of miRNAs may control 

and lead to maintenance of liver tumor-initiating cells 

through aberrant modulation of stem cell-associated genes. 
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Table 3 summarizes the findings in this area. As indicated 

earlier, miRNA-based approaches are potentially feasible. 

Targeting of cancer stem cells using an miRNA-based 

approach represents a novel area of investigation aimed 

at eradicating liver tumor-initiating cells, thereby treating 

HCC.128–130

Conclusion
While miRNA-based approaches are not presently used in the 

clinic, their potential applications are expanding in various 

areas of interest. Prognostic stratification, follow-up moni-

toring, and innovative therapeutic approaches are areas that 

might benefit from use of miRNAs. It should be noted that 

it has only been during the last 10 years that investigation of 

miRNAs in cancer has been initiated, and many more studies 

are needed to move this field forward into the clinical setting. 

Validation based on prospective studies of the use of miR-

NAs as cancer biomarkers is needed. Application of miRNA 

replacement or inhibition approaches need larger preclinical 

studies to assess their potential efficacy in specific contexts. 

The present knowledge, as summarized here, should form 

the basis of studies aimed at development of miRNA-based 

clinical applications.
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