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Abstract

Background: The CD133(+) stem cell population in recurrent gliomas is associated with clinical
features such as therapy resistance, blood-brain barrier disruption and, hence, tumor infiltration.
Screening of a large panel of glioma samples increasing histological grade demonstrated frequencies
of CDI33(+) cells which correlated with high expression of cyclooxygenase (COX)-2 and of
membrane type-| matrix metalloproteinase (MT1-MMP).

Methods: We used qRT-PCR and immunoblotting to examine the molecular interplay between
MT1-MMP and COX-2 gene and protein expression in parental, CD 133(+), and neurospheres U87
glioma cell cultures.

Results: We found that CD 133, COX-2 and MTI-MMP expression were enhanced when glioma
cells were cultured in neurosphere conditions. A CD133(+)-enriched U87 glioma cell population,
isolated from parental U87 cells with magnetic cell sorting technology, also grew as neurospheres
and showed enhanced COX-2 expression. MTI-MMP gene silencing antagonized COX-2
expression in neurospheres, while overexpression of recombinant MT1-MMP directly triggered
COX-2 expression in U87 cells independent from MT |-MMP's catalytic function. COX-2 induction
by MTI-MMP was also validated in wild-type and in NF-kB pé5-/- mutant mouse embryonic
fibroblasts, but was abrogated in NF-kB| (p50--) mutant cells.

Conclusion: We provide evidence for enhanced COX-2 expression in CD |33(+) glioma cells, and
direct cell-based evidence of NF-kB-mediated COX-2 regulation by MTI-MMP. The biological
significance of such checkpoint control may account for COX-2-dependent mechanisms of
inflammatory balance responsible of therapy resistance phenotype of cancer stem cells.

Background population of cells within the brain tumor mass
Despite significant improvements, current therapies have  responsible for the initiation and maintenance of the
yet to cure infiltrative gliomas. Therapy resistance is possi-  tumor [1]. Recently, small populations of CSC in adult
bly attributable to cancer stem cells (CSC), a small sub-  and pediatric brain tumors were identified and, once iso-
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lated from tumor tissues, formed neurospheres when cul-
tured in vitro [2,3]. Based upon their high expression of
the neural precursor cell surface marker CD133 (pro-
minin-1), these CSC have been further hypothesized to
bear properties such as resistance to apoptosis and resist-
ance to both drugs and ionizing radiation [4,5]. While the
brain tissue microenvironmental niche is a prerequisite
for expression of the stem cell marker CD133 antigen in
brain tumors [6], its expression level is also thought to
predict clinical outcome in glioma patients [7,8].

High cyclooxygenase (COX)-2 expression is another con-
dition associated with clinically more aggressive gliomas
and is, along with CD133, a strong predictor of poor sur-
vival [9,10]. COX-2 is an inducible enzyme responsible
for prostaglandin production at sites of inflammation
[11,12]. In human glioblastoma, COX-2 performs impor-
tant functions in tumorigenesis [13] and inhibitors of
eicosanoid biosynthesis have been shown to suppress cell
proliferation and to promote astrocytic differentiation
[14]. Since COX-2 protein is overexpressed in the majority
of gliomas, it is therefore considered to be an attractive
therapeutic target [15,16]. In fact, enhancement of gliob-
lastoma radioresponse by the selective COX-2 inhibitor
celecoxib was recently reported [17]. Paradoxically, the
effectiveness of COX-2 inhibitors on glioma cell prolifer-
ation and radioresponse enhancement was also found to
be independent of COX-2 protein expression [18]. This
evidence suggests that alternate signaling molecules are
associated to therapy resistance and involved in regulating
COX-2 expression. These alternate molecules may possi-
bly become attractive therapeutic targets.

Membrane-type matrix metalloproteinases (MT-MMP)
constitute a growing subclass of MMP [19]. While most of
the MMP are secreted, the MT-MMP are membrane-asso-
ciated and a number of these have cytoplasmic domains
which are important in cellular signaling [20-22]. MT1-
MMP is the best-characterized MT-MMP. In addition to
activation of proMMP-2, MT1-MMP displays intrinsic
proteolytic activity towards extracellular matrix (ECM)
molecules. The increased expression levels of several
members of the MMP family have been shown to correlate
with the graded level of gliomas, including MT1-MMP.
Aside from its classical roles, many new functions of MT1-
MMP were recently demonstrated, including a role in
PGE,-induced angiogenesis [23], platelet-mediated cal-
cium mobilization [24], regulation of cell death/survival
bioswitch [22,25], and radioresistance in both glioma
cells [26,27] and endothelial cells [28]. Finally, the recent
demonstration that MT1-MMP also plays a role in medul-
loblastoma CD133(+) neurosphere-like formation and
increased invasiveness [6] reinforces the need to design
new therapeutic strategies that either directly target MT1-
MMP functions or its associated signaling functions.

http://www.jneuroinflammation.com/content/6/1/8

In the present study, we examined whether CD133(+)
U87 glioma cells are characterized by increased COX-2
and MT1-MMP expression, and whether a potential MT1-
MMP/COX-2 signalling axis might be important with
respect to the therapy-resistant phenotype of CSC.

Methods

Materials

Sodium dodecylsulfate (SDS) and bovine serum albumin
(BSA) were purchased from Sigma (Oakville, ON). Cell
culture media was obtained from Invitrogen (Burlington,
ON). Electrophoresis reagents were purchased from Bio-
Rad (Mississauga, ON). The enhanced chemilumines-
cence (ECL) reagents were from Amersham Pharmacia
Biotech (Baie d'Urfé, QC). Micro bicinchoninic acid pro-
tein assay reagents were from Pierce (Rockford, IL). The
polyclonal antibodies against CD133 and COX-2, and the
monoclonal antibody against GAPDH were purchased
from Abcam (Cambridge, MA) and Advanced Immuno-
chemical Inc. (Long Beach, CA) respectively. The polyclo-
nal antibody against MT1-MMP (AB815) was from
Chemicon (Temecula, CA). Horseradish peroxidase-con-
jugated donkey anti-rabbit and anti-mouse IgG secondary
antibodies were from Jackson ImmunoResearch Labora-
tories (West Grove, PA). All other reagents were from
Sigma-Aldrich Canada.

Cell culture and neurosphere-like formation

The human U87 glioblastoma cell line was purchased
from American Type Culture Collection (Manassas, VA)
and was maintained in Eagle's Minimum Essential
Medium (EMEM) containing 10% (v/v) calf serum (CS)
(HyClone Laboratories, Logan, UT), 2 mM glutamine,
100 units/ml penicillin and 100 mg/ml streptomycin.
Cells were incubated at 37°C with 95% air and 5% CO,,.
Neurosphere-like formation was triggered in a defined
serum-free neural stem cell medium [29] containing Ex
Vivo 15 (Lonza, Walkersville, MD), 20 ng/ml basic fibrob-
last growth factor, 20 ng/ml of epidermal growth factor
(Wisent, St-Bruno, QC), 20 ng/ml leukemia inhibitory
factor (Sigma, Oakville, ON) and 1x neural survival fac-
tor-1 (Lonza, Walkersville, MD). Murine 1929 (L) cells
were maintained as previously described [30]. NF-kB p50-
/-and p657/-immortalized fibroblasts were obtained from
Dr David Baltimore (California Institute of Technology,
Pasadena, CA, USA).

Magnetic cell sorting and flow cytometry

Confluent U87 glioma parental cells were harvested with
cell dissociation buffer (Hank's based; Invitrogen), centri-
fuged at 800 x g for 5 min and resuspended in 1x PBS with
0.5% BSA and 2 mM EDTA. Magnetic labeling with 100 ul
AC133 (CD133/1) Microbeads per 108 cells was per-
formed for 30 minutes at 4°C using a CD133 Direct Cell
Isolation kit (Miltenyi Biotec, Auburn, CA). Fifty pl of
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293C3 (CD133-2)-phycoerythrin (fluorochrome-conju-
gated mouse monoclonal 1gG2b; Miltenyi Biotec) was
added for an additional 10 min at 4 °C to evaluate the effi-
ciency of magnetic separation by flow cytometry. Mag-
netic separation was carried out using LS columns and a
MACS separator (Miltenyi Biotec) under a biological
hood. CD133(+) fractions were eluted by removing the
colunm from the magnetic field and using a sterile
plunger. Aliquots of CD133(+)-sorted cells were evalu-
ated for purity by flow cytometry with a FACSCalibur
machine (BD Biosciences). CD133(+)-sorted cell popula-
tions were resuspended in SFM with growth hormones.

Total RNA isolation and quantitative reverse
transcription-polymerase chain reaction (QRT-PCR)
analysis

Total RNA was extracted from monolayers or neuro-
sphere-like cells using TRIzol reagent (Life Technologies).
For ¢cDNA synthesis, 1 pg total RNA was reverse-tran-
scribed into ¢cDNA using a high capacity cDNA reverse
transcription kit (Applied Biosystems, Foster City, CA).
cDNA was stored at -80° C until PCR. Gene expression was
quantified by real-time quantitative PCR using iQ SYBR
Green Supermix (BIO-RAD, Hercules, CA). DNA amplifi-
cation was carried out using an Icycler iQ5 machine (BIO-
RAD, Hercules, CA) and product detection was performed
by measuring the binding of the fluorescent dye SYBR
Green I to double-stranded DNA. All the primer sets were
provided by QIAGEN (Valencia, CA). The relative quanti-
ties of target gene mRNA against an internal control, 18S
ribosomal RNA, was measured by following a AC;
method. An amplification plot comparing fluorescence
signal vs. cycle number was drawn. The difference (ACy)
between the mean values in the triplicate samples of target
gene and those of 18S ribosomal RNA were calculated by
iQ5 Optical System Software version 2.0 (BIO-RAD, Her-
cules, CA) and the relative quantified value (RQV) was
expressed as 24CT.,

RNA interference

RNA interference experiments were performed using
HiPerFect (QIAGEN, Valencia, CA). A small interfering
RNA (siRNA; 20 nM) against MT1-MMP (siMT1-MMP)
and mismatch siRNA were synthesized by EZBiolab Inc.
(Westfield, IN), and annealed to form duplexes. The
sequence of the siMT1-MMP used in this study was
derived from the human MT1-MMP gene (NM_004995)
and is as follows: 5'-CCAGAAGCUGAAGGUAGAAdTAT-
3' (sense) and 5'-UUCUACCUUCAGCUUCUGGATAT-3'
(antisense) [31]. Evaluation of the transient knockdown
duration was performed by real-time quantitative RT-PCR
and the targeted gene expression was found to be rou-
tinely diminished by 65-90% 24 to 48 hrs post-transfec-
tion (not shown).

http://www.jneuroinflammation.com/content/6/1/8

Cell transfection method

Sub-confluent U87 monolayer cells were transiently
transfected with 10 pg of the cDNA encoding full length
(Wt) MT1-MMP fused to GFP [22] using Lipofectamine
2000 (Invitrogen, Burlington, ON). Mock transfections of
U87 cultures with the empty vector, pcDNA (3.1+), were
used as controls. Transfected cells were left to recuperate
and were used 48 hrs post-transfection. MT1-MMP spe-
cific gene expression and function was evaluated by semi-
quantitative RT-PCR and immunoblotting procedures,
and was validated by assessing MT1-MMP-mediated
proMMP-2 activation by gelatin zymography.

Gelatin zymography

Gelatin zymography was used to assess the extracellular
levels of proMMP-2 and MMP-2 activities. Briefly, an alig-
uot (20 pl) of the culture medium was subjected to SDS-
PAGE in a gel containing 0.1 mg/ml gelatin. The gels were
then incubated in 2.5% Triton X-100 and rinsed in nano-
pure distilled H,O. Gels were further incubated at 37°C
for 20 hrs in 20 mM NaCl, 5 mM CaCl,, 0.02% Brij-35, 50
mM Tris-HCI buffer, pH 7.6 and then stained with 0.1%
Coomassie Brilliant blue R-250 and destained in 10% ace-
tic acid, 30% methanol in H,O. Gelatinolytic activity was
detected as unstained bands on a blue background.

Immunoblotting procedures

Proteins from control and treated cells were separated by
SDS-polyacrylamide gel electrophoresis (PAGE). After
electrophoresis, proteins were electrotransferred to poly-
vinylidene difluoride membranes which were then
blocked for 1 hr at room temperature with 5% non-fat dry
milk in Tris-buffered saline (150 mM NaCl, 20 mM Tris-
HCI, pH 7.5) containing 0.3% Tween-20 (TBST). Mem-
branes were further washed in TBST and incubated with
the primary antibodies (1/1,000 dilution) in TBST con-
taining 3% bovine serum albumin, followed by a 1 hr
incubation with horseradish peroxidase-conjugated anti-
rabbit or anti-mouse IgG (1/2,500 dilution) in TBST con-
taining 5% non-fat dry milk. Immunoreactive material
was visualized by enhanced chemiluminescence (Amer-
sham Biosciences, Baie d'Urfée, QC).

Results

CDI133, COX-2 and MTI-MMP expression is increased in

neurosphere-like U87 glioma cultures

Neurosphere-like brain CSC are thought to contribute to
a sub-population of CD133(+) brain CSC [32]. Neuro-
sphere induction in U87 cells was performed according to
established protocols [33,34]. This process promoted the
transition of adherent monolayer cells to non-adherent,
neurosphere-like cells (Figure 1a). Immunodetection of
CD133, COX-2 MT1-MMP and GAPDH was performed
on the cell lysates. Neurosphere culture conditions
induced CD133 and COX-2 expression in U87 cells when
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CDI133, COX-2 and MTI-MMP expression are increased in U87 neurospheres glioma cultures. (A) U87 glioblast-
oma-derived cell lines were cultured as monolayers or non-adherent neurospheres as described in the Methods section and
representative phase contrast photographs were taken. (B) Cell lysates were isolated from U87 glioblastoma-derived cells and
SDS-PAGE performed (20 pg protein/well), followed by Western blotting and CD 133, COX-2, MT1-MMP or GAPDH immun-
odetection. Gelatin zymography was also used to monitor the extent of latent proMMP-2 and active MMP-2 expression from

the conditioned media of the serum-starved cells.

compared to their corresponding monolayer cultures (Fig-
ure 1b). MT1-MMP expression was also induced during
neurosphere-like formation, while the house-keeping
gene GAPDH remained unaffected (Figure 1b). Since
MT1-MMP is known to activate proMMP-2 into MMP-2,
the levels of latent proMMP-2 and active MMP-2 were also
assessed in those same serum-starved monolayer and neu-
rosphere culture conditions. We observed that proMMP-2
activation in U87 neurospheres remained unchanged.
Therefore, increased MT1-MMP seems to occur independ-
ent of its capacity to induce proMMP-2 activation, sug-
gesting that MT1-MMP may regulate alternate
intracellular processes. Collectively, increased CD133,
COX-2 and MT1-MMP expression characterizes neuro-
sphere-like formation in U87 glioma cells.

Cell-based evidence that MTI-MMP directly regulates
COX-2 expression in U87 glioma cell lines

In light of the correlation between MT1-MMP and COX-2
expression observed in U87 glioma neurospheres, we next
sought to assess whether MT1-MMP regulates COX-2
expression. U87 cell monolayers were transiently trans-
fected with either a cDNA plasmid encoding recombinant
MT1-MMP or with siRNA against MT1-MMP. Cells were
then trypsinized and cultured as monolayers or neuro-
spheres as described in the Methods section. Conditioned
media from serum-starved cells was harvested in order to
monitor the extent of secreted proMMP-2 and MMP-2 lev-
els by gelatin zymography and cell lysates were used for
COX-2 and GAPDH immunoblotting. We found that
MT1-MMP was effectively overexpressed under all condi-
tions as it triggered proMMP-2 activation into MMP-2
(Figure 2a, upper panel). When COX-2 protein levels were
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assessed under those same experimental conditions, we
found that overexpression of MT1-MMP also triggered
COX-2 expression (Figure 2a, middle panel). While basal
neurosphere culture conditions re-confirmed COX-2
expression in U87 cells, the neurosphere culture condi-
tions in which MT1-MMP gene expression was downregu-

A. Monolayers Neurospheres
Mock Wt Si Mock Wt Si MT1-MMP

~g- proMMP-2
- MMP-2

COX-2

GAPDH

[C_Monolayers
Bl Neurospheres

Relative COX-2 gene expression
(x-fold over Mock monolayers)
w

i

Mock Wit

Si MT1-MMP

Figure 2

Cell-based evidence that MTI-MMP directly regu-
lates COX-2 expression in U87 glioma cell lines. Mon-
olayers or neurospheres from glioblastoma-derived cells
were either Mock-transfected, transfected with a cDNA
plasmid encoding MT1-MMP (W?t), or transfected with an
siRNA (Si) against MT1-MMP as described in the Methods
section. (A) Gelatin zymography was performed to monitor
the extent of latent proMMP-2 and active MMP-2 expression
from the conditioned media of the serum-starved cells. Cell
lysates were isolated from U87 glioblastoma-derived cells
and SDS-PAGE performed (20 pg protein/well), followed by
Western-blotting and COX-2 or GAPDH immunodetection.
(B) Total RNA was isolated from monolayers (white bars) or
neurospheres (black bars) of U87 Mock-transfected cells, or
from U87 cells transfected with MT1-MMP cDNA or siRNA
against MT|-MMP, and reverse-transcribed as described in
the Methods section. Quantitative PCR was performed in
order to monitor COX-2 gene expression levels.

http://www.jneuroinflammation.com/content/6/1/8

lated (siMT1-MMP) were not associated with increased
COX-2 expression (Figure 2a, middle panel). COX-2 gene
expression levels were also assessed by qRT-PCR as
described in the methods section using total RNA isolated
from U87 monolayers and neurospheres cultures treated
as in Figure 2a. We observed a good correlation between
COX-2 gene and protein expression (Figure 2b) suggest-
ing that COX-2 transcriptional regulation is involved dur-
ing neurospheres formation and that this is performed
through an MT1-MMP-mediated signaling.

CD33-sorted U87 glioma cells grow as neurospheres and
express high levels of COX-2

In order to evaluate the potential contribution of the
CD133(+) cell subpopulation to the MT1-MMP/COX-2
signalling axis, we used magnetic cell sorting (MACS)
technology to isolate CD133(+) cells from the parental
U87 glioma cell population. We found that the CD133(+)
u87 cell population represented ~0.15% of the total
parental U87 glioma cells (Figure 3a, left panel). Sorting
of the CD133(+) cells was then performed and we evalu-
ated the cells as being ~27% CD133 positive (Figure 3a,
right panel). The isolated subpopulation, with an enrich-
ment of ~180-fold for CD133(+) U87 cells, was put into
culture. Cell morphologies of the parental and CD133(+)
U87 glioma cells were compared and we observed that the
CD133(+) cells formed spontaneous neurospheres (Fig-
ure 3b), a characteristic of brain CSC in agreement with
previous reports [33,35]. Total RNA was isolated from
both parental and CD133(+) glioma cells in order to
assess gene expression levels of CD133, COX-2, and -
Actin. We found that CD133 gene expression was
increased by ~6-fold in the sorted CD133(+) U87 glioma
cells (Figure 3c), in agreement with the increased CD133
cell surface expression (Figure 3a). Moreover, MT1-MMP
and COX-2 gene expression were also increased by ~4-
fold in CD133(+) U87 cells (Figure 3c).

MTI-MMP-mediated regulation of COX-2 expression is
independent of MTI-MMP's catalytic functions

In order to investigate the molecular mechanism involved
in MT1-MMP's regulation of COX-2, we first assessed the
implication of its catalytic function. U87 glioma cells were
transfected with a cDNA encoding MT1-MMP, and then
treated (or not) with Ilomastat, a broad-spectrum MMP
catalytic inhibitor. Transfection efficacy was confirmed by
the appearance of the recombinant MT1-MMP protein by
Western blotting (Figure 4a, upper panel). Gelatin zymog-
raphy further confirmed the appropriate targeting of MT1-
MMP to the cell surface since its extracellular catalytic
domain triggered proMMP-2 conversion into its active
MMP-2 form (Figure 4a, middle panel). As expected, treat-
ment of MT1-MMP-transfected cells with Ilomastat abro-
gated proMMP-2 activation (Figure 4a, middle panel).
COX-2 expression was induced by MT1-MMP overexpres-
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CD133-sorted U87 glioma cells grow as neurospheres and express high levels of COX-2. (A) U87 CDI33(+) cells
were isolated from the parental U87 cells as described in the Methods section using MACS technology. Evaluation of CD 133

cell surface expression was then performed by flow cytometry on parental U87 and CD [33(+) sorted cells. (B) U87 CD133(+)
cells were put back into culture and show a typical neurosphere phenotype, unlike their parental counterpart. (C) Total RNA
was extracted from parental U87 and CD133(+) U87 cells and gene expression levels were assessed by qRT-PCR for CD133
(white bars), B-actin (black bars), MT1-MMP (lined bars) and COX-2 (grey bars).

sion, but was insensitive to Ilomastat's inhibition of cell
surface MT1-MMP activity (Figure 4a, lower panel). These
results suggest that MT1-MMP's extracellular catalytic
functions are not required for inducing COX-2 expression
and necessitate an alternative intracellular signaling
mechanism triggered by MT1-MMP's intracellular
domain. Accordingly, overexpression of a cytoplasmic
domain-deleted MT1-MMP [20,21] was unable to trigger
COX-2 expression (not shown). Total RNA was next iso-
lated and COX-2 transcriptional regulation assessed upon
MT1-MMP overexpression in U87 cells. We observed that
transfected cells overexpressing MT1-MMP had signifi-
cantly elevated levels of COX-2 transcripts (Figure 4b).
The possible involvement of nuclear factor kappaB (NF-
kB)-intracellular signaling in MT1-MMP-mediated COX-2
transcriptional regulation was next considered.

COX-2 induction by MTI-MMP occurs through NF-xB-
mediated mechanisms

MT1-MMP was previously demonstrated to possess the
ability to trigger intracellular signaling through its 20
amino acid intracellular domain [20-22]. Moreover, COX-
2 transcriptional expression is thought to be regulated, in

part, through NF-kB-mediated signaling involving nuclear
translocation of the NF-«kB heterodimer p50:p65 [36].
Wild-type mouse embryonic fibroblasts (MEF) as well as
p507/-and p65-/- NF-kB mutants were used to assess MT1-
MMP involvement in COX-2 expression. Cell lysates as
well as conditioned media were isolated from Mock-trans-
fected and MT1-MMP-transfected cells. Expression and
cell surface activity of the recombinant MT1-MMP were
confirmed in transfected cells as Wt, p507/-and p65+/-cells
all exhibited increased proMMP-2 activation into its active
MMP-2 form as judged by gelatin zymography (Figure 5,
upper panel). When COX-2 protein expression was
assessed, we observed the induction of COX-2 by MT1-
MMP in Wt-MEF (Figure 5, middle panel) confirming the
results observed in U87 glioma cells (Figure 4a). Similar
MT1-MMP-mediated COX-2 induction was also observed
in p657/- mutant MEF but COX-2 expression was com-
pletely abrogated in p507/- mutant MEF (Figure 5, middle
panel). This cell-based evidence directly demonstrates the
specific involvement of p50 in NF-kB-mediated MT1-
MMP regulation of COX-2 expression.
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MTI-MMP-mediated regulation of COX-2 gene and
protein expression is independent from MTI1-MMP's
catalytic functions. (A) Cell lysates were isolated from
Mock-transfected, or U87 glioma cells that had been tran-
siently transfected with a cDNA plasmid encoding MT -
MMP, which were subsequently treated (or not) with 10 uM
llomastat (llo). SDS-PAGE was performed (20 pg protein/
well), followed by Western-blotting and COX-2 or MT -
MMP immunodetection. Gelatin zymography was also used
to monitor the extent of latent proMMP-2 and active MMP-2
expression from the conditioned media of the serum-starved
cells. (B) Total RNA was extracted from the above described
cell conditions and gene expression levels assessed by qRT-
PCR for COX-2 in the absence (white bars) or the presence
of llomastat (black bars).
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Figure 5

COX-2 induction by MT1-MMP occurs through NF-
kB-mediated mechanisms. Wild-type (Wt), p65--, and
p50-- mouse embryonic fibroblasts (MEF) were Mock-trans-
fected or transfected with a cDNA plasmid encoding MT -
MMP. Gelatin zymography was used to monitor the extent of
latent proMMP-2 and active MMP-2 expression from the
conditioned media of the serum-starved cells (upper panel).
Cell lysates were isolated and SDS-PAGE performed (20 ug
protein/well), followed by Western blotting and COX-2
immunodetection.

Discussion

Overexpression of COX-2, the enzyme responsible for the
synthesis of prostaglandin subtype PGE,, has been found
to be important in the development of several human
tumor types such as colon, gastric, pancreatic, and brain
tumors [9,37], and has also been associated with high
tumor aggressiveness and poor patient prognosis [15,38].
In cell studies, the growth rate of glioblastoma multi-
forme (GBM) cells correlated with the level of COX-2
enzyme expression, and PGE, is thought to inhibit these
cells' apoptosis [39] and to act as a radioprotector [40,41].
As GBM is a high-grade primary brain tumor that is refrac-
tory to current forms of treatment possibly due to the
presence of tumor-derived CSC, such molecular and cellu-
lar attributes may therefore reflect the CSC therapy resist-
ance phenotype. In light of our results showing increased
expression of COX-2 in CD133(+) U87-derived glioma
cells as well as in CD133-enriched U87 neurospheres, it
could be hypothesized that this molecular signature may,
in part, be responsible for the therapy resistance pheno-
type attributable to CSC.

Membrane-type matrix metalloproteinases (MT-MMP)
constitute a growing subclass of MMP, with MT1-MMP
being the best-characterized MT-MMP whose expression
correlates with high-grade gliomas [19]. Aside from its
well-established roles in the activation of proMMP-2 and
its intrinsic proteolytic activity towards ECM molecules,
many new functions of MT1-MMP have recently been
demonstrated which include a role in PGE,-induced ang-
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iogenesis [23] as well as radioresistance in glioma cells
[26,27]. The recent demonstration that MT1-MMP also
plays a role in medulloblastoma CD133(+) neurosphere-
like formation and increased invasiveness [6] further sup-
ports the concept of a molecular interplay between MT1-
MMP and COX-2. Besides glioblastoma cells, such a link
has also been observed in cells derived from malignant
fibrous histiocytoma, one of the highest-grade sarcomas
arising in bone and soft tissue, where concomitant
increased levels of expression of COX-2 and of MT1-MMP
were described [42]. Overexpression of COX-2 was also
found to elevate tumorigenicity, tumor growth and inva-
sion of human KB carcinoma cells via up-regulated MT1-
MMP activity [43]. Finally, co-distribution of MT1-MMP,
MMP-2 and COX-2 was demonstrated in grade IV
atheroma, again indicating a possible link between these
enzymes in the destabilization of atherosclerotic plaques
[44]. Altogether, these published data suggest a molecular
signaling convergence linking COX-2 to MT1-MMP
expression.

By virtue of its ability to regulate the expression of genes
involved in cell apoptosis, differentiation, adhesion, and
survival, NF-xB constitutes the point of convergence of
many oncogenic pathways [45]. Aside from its critical role
in the development of human cancer, NF-«B has also been
implicated at the molecular level in the promotion of ang-
iogenesis, which is of particular interest since malignant
astrocytomas are highly vascular tumors [46]. NF-xB is
also a transcriptional regulator of inducible expression of
genes including COX-2 [47]. Interestingly, a consensus
binding site for NF-xB p65 (TGGAGCTTCC) was found in
the 5'-flanking region of the human MT1-MMP gene [48]
and NF-kB-mediated induction of MT1-MMP was con-
firmed in murine melanoma cells [49] and in human fib-
rosarcoma cells [50]. Further studies also implicated NF-
kB as a potentially critical factor in astrocytic tumorigene-
sis and astrocytoma progression through analysis of cell
lines and preclinical models [51-53]. NF-kB functions as a
hetero- or homo-dimer which can be formed from five
NF-xB subunits, NF-xB1 (p50 and its precursor p105),
NF-xB2 (p52 and its precursor p100), RelA (p65), RelB
and c-Rel. The most studied dimer, p50:p65, is activated
by the classical pathway and usually promotes gene
expression. In the current study, we provide evidence for a
MT1-MMP-mediated signaling cascade that leads to acti-
vation of COX-2 expression that is independent of MT1-
MMP's catalytic function (Figure 4). We also demonstrate
that this new MT1-MMP/COX-2 signaling axis, in fact,
absolutely requires NF-xB p50 while knockdown of NF-
kB p65 still enabled MT1-MMP to trigger COX-2 expres-
sion. In support to our results, an increase in NF-xkB p50
was recently found to rapidly induce MT1-MMP expres-
sion in trabecular meshwork cells [54]. Given MT1-MMP's
well documented roles in actin/tubulin cytoskeleton per-

http://www.jneuroinflammation.com/content/6/1/8

turbation associated to cell migration or tubulogenesis
processes, very exciting and recent studies documented a
new and underestimated role for dynein/dynactin com-
plex in the nuclear translocation of NF-xB [55]. Whether
such microtubule involvement is affected by MT1-MMP
and that would mediate specific p50 nuclear translocation
certainly deserves further experimentation.

Among the therapeutic molecules that could be envi-
sioned to target COX-2 functions in CSC, the radiosensi-
tizing actions of meloxicam and celecoxib may be
considered in light of their inhibition of PGE, production
[18,56]. Future experimental studies on the growth inhib-
itory and radiosensitizing effects of these two molecules
should focus on PGE,synthesis and on apoptosis induc-
tion in CSC. In fact, our present findings that COX-2
induction correlates with CD133 expression in human
glioma cell lines demonstrates that selective COX-2 inhib-
itors may thus yield a promising perspective to further
improve the therapy of glioma patients. Therefore, the
development of pharmaceutical approaches that alter
expression of MT1-MMP or the MT1-MMP/COX-2 signal-
ing axis in neuroinflammation provides new biological
significance that prompts in targeting invading glioma
cells.
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