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Abstract: Here, we develop a dry eye syndrome (DES) incidence rate prediction model using air
pollutants (PM10, NO2, SO2, O3, and CO), meteorological factors (temperature, humidity, and wind
speed), population rate, and clinical data for South Korea. The prediction model is well fitted
to the incidence rate (R2 = 0.9443 and 0.9388, p < 2.2 × 10−16). To analyze regional deviations,
we classify outpatient data, air pollutant, and meteorological factors in 16 administrative districts
(seven metropolitan areas and nine states). Our results confirm NO2 and relative humidity are the
factors impacting regional deviations in the prediction model.
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1. Introduction

Dry eye syndrome (DES) is a multifactorial disease of the tear film and eye surface that causes eye
discomfort and visual impairment [1–5]. DES is one of the world’s most common chronic diseases [6].
Recently, epidemiological studies have reported an increasing incidence rate of DES ranging between
4.3 and 73.5% in the worldwide population [7–11]. Additionally, symptoms of DES have a negative
effect on eyesight and quality of life [12], and it is known that various factors of the tear layer and the
surface of the eyeball act in combination with the prevalence of DES [13].

The risk factors consistently associated with DES in epidemiologic studies are age, female Gender,
postmenopausal estrogen therapy, omega-6 fatty acid level, refractive surgery, antihistamine use,
vitamin A deficiency, connective tissue disease, and bone marrow transplantation [14]. Additionally,
long-term computer use may reduce eye blinking and cause symptoms including burning, stiffness,
redness, and blurring of the eyes [15]. Moreover, 50–75% of contact lens wearers complain of eye
irritation [16–18]. This may worsen moisture loss and cause tear osmotic pressure and changes in the
eye surface, which can be a major risk factor for DES [19]. Air pollutants coming into contact with the
eyes can have a similar effect on the outbreak of DES.

Since air pollution has emerged as an international concern, research on its effects on the human
body is underway. Since air pollutants cause eye diseases [20–22], the association between air pollution
and DES is of particular interest. Studies have reported that ocular surface damage caused by air
pollutants causes tear film instability which causes DES [23–25]. Two case studies have reported
significant relationships between air pollution and DES prevalence in South Korea [26,27]. Um et al.
observed a correlation between DES and atmospheric SO2 concentrations and reported DES onset

Int. J. Environ. Res. Public Health 2020, 17, 4969; doi:10.3390/ijerph17144969 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/1660-4601/17/14/4969?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph17144969
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2020, 17, 4969 2 of 12

according to the degree of urbanization [26]. Hwang et al. analyzed the correlation between O3

level and DES and found that high O3 concentrations and low humidity were associated with the
occurrence of DES among Koreans [27]. Since the correlation between environmental factors and DES
has been clarified through epidemiological researches in South Korea, it is necessary to develop a
prediction model for DES incidence caused by air pollution so the model contributes to the public
health perspective.

During this study, we analyze the air pollutants and meteorological factors associated with DES
incidence rate data. Furthermore, we develop a nationwide DES incidence rate prediction model and
analyze regional deviations in the DES incidence rate prediction model.

2. Materials and Methods

South Korea is divided into 17 administrative districts including Sejong which was newly added
in 2012 as a 17th district. However, since this study used environmental and hospital data from 2002 to
2015, Sejong was excluded to avoid statistical error.

2.1. Enviromental Data

Air pollutant (PM10, NO2, SO2, O3, and CO) levels and meteorological factors (temperature,
relative humidity, and wind speed) measured hourly from 1 January 2002, to 31 December 2015,
were retrieved from a total of 254 air pollution monitoring networks operated by the Korean government.
Each administrative district has from 3 to 70 sampling stations depending upon the regional population
density (Figure 1). According to the population statistics in 2019, half of the Korean population is
concentrated in the metropolitan area (Seoul, Incheon, and Gyunggi), so about 44% of sampling stations
are in the metropolitan area. The hourly measured meteorological factors were obtained adjacent to the
sampling sites. We then calculated the monthly average of nationwide and 16 administrative divisions
in South Korea.
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2.2. Dry Eye Syndrome Hospitalization Data

DES hospitalization data between January 2002 and December 2013 in South Korea was provided
by the Korea Health Insurance Review and Assessment Service (KHIRAS) for research purposes.
Since South Korea operates public health insurance, hospitals are required to report patient medical
records. A total of 48,344 DES patient data were obtained, based on disease code. The ophthalmological
outpatient data were classified based on diagnostic codes after removing patient personal information
by the KHIRAS. The National Health Insurance Service (NHIS) of South Korea provides public health
insurance for 95% of South Koreans [28], and hospitals in South Korea are required to submit medical
service documents to NHIS. It was able to classify DES outpatient data by administrative districts
because the hospital data includes not only patient disease codes but, also, the information of the
administrative districts. Population data from 2002 to 2007 and from 2008 to 2013 were obtained from
Statistics Korea and the Korean Ministry of the Interior and Safety, respectively.

2.3. Dry Eye Syndrome Incidence Rate Prediction Model

Regarding model development, the monthly average of environmental and DES outpatient data
was used. DES outpatient data and environmental data were provided on a daily basis and on an
hourly basis, respectively, so the environmental data were reproduced on a daily average. However,
a daily average-based prediction model might have been affected by the weekend and holiday data,
so it was necessary to add variables related to the day of the week. To avoid adding the day of the
week variables, it was appropriate to analyze the data on a weekly or monthly basis. Our previous
study used data for 3 years, so the weekly average was used because the number of data was very
small when using a monthly average [29]. However, since this study used statistical data from 2002
to 2015, monthly average data was suitable to reduce errors caused by delaying hospital visits due
to weather conditions and other factors. Further, using the monthly average was more appropriate
than using the annual or weekly averages for the analysis of the seasonal effects on DES incidence.
The DES incidence rate means the number of DES outpatients divided by the population (Equation
(1)). Nationwide and regional DES incidence rates were calculated separately.

Incidence rate =
The number o f outpatients

Population
(1)

where, the number of outpatients is the number of patients who have been diagnosed with DES by
visiting a hospital, and the population is the number of people who live in the administrative districts.
Correlation analysis was first conducted using nationwide monthly averages of DES incidence rates,
air pollutant levels, and meteorological factors to identify which of these factors most significantly
affected the DES outpatients. Then, based on the results of the analysis, a general regression model
was used to develop a nationwide DES incidence rate prediction model. Finally, we used the same
procedure to develop models for the 16 administrative divisions.

3. Results and Discussion

3.1. Monthly Average of Dry Eye Syndrome Incidence Rates, Air Pollutant Levels, and Meteorological Factors

The nationwide monthly average DES incidence rates increased sharply from 2002 to 2011 but
decreased from 2012 to 2013 (Figure 2).

Figure 3 shows the monthly average PM10, NO2, SO2, O3, and CO levels. PM10 showed high
concentrations in March–May and mainly a low concentration in July–September. O3 concentrations
were highest in April–May and the lowest in November–January. CO, NO2, and SO2 showed the
highest and lowest concentrations during the winter and summer months, respectively.
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Figure 3. Monthly average air pollutant concentrations, 2002–2015. Figure 4 shows the monthly
averages of meteorological factors (temperature, relative humidity, and wind speed) from 2002 to 2015.
Temperature and humidity were highest in the summer months (June–September) and lowest in the
winter months (December–February). Wind speed differed from year-to-year but was generally high
between February and April.
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Air pollutants (PM10, NO2, SO2, O3, and CO) and meteorological factors (temperature, relative
humidity, and wind speed) were normalized to Equation (2) for correlation analysis.

Normalized data =
Original data− µ

σ
+ 4 (2)

where µ and σ are the mean and standard deviation of the original data, respectively. The z-score is
defined by Equation (3) and provides a standardized factor for how far the data are from the σ value.
To facilitate data analysis, 4 was added to Equation (2) to remove negative values. Table 1 shows the
variables for each category used in model development. The DES incidence rate is designated as y.
Air pollutants and meteorological factors are designated as x1–5 and z1–3, respectively. Population
rate, another variable used in the correlation analysis, is the ratio of each Gender population to total
population and is designated as M1–9 and W1–9. Additionally, M and W refer to the population rate
of Men and Women, respectively.

(Original data− µ)/σ (3)

Table 1. Variables for correlation analysis.

Data Categories Variables

DES incidence rate Incidence rate y

Air pollutant data PM10, NO2, SO2, O3, CO x1, x2, x3, x4, x5

Meteorological data Temperature, humidity, wind speed z1, z2, z3

Population rates

Men: (all), (0–9), (10–19), (20–29), (30-39), (40-49),
(50-59), (60-69), (70–79), (over 80) years

Men:
M, M1, M2, M3, M4, M5, M6, M7, M8, M9

Women: (all), (0–9), (10–19), (20–29), (30-39),
(40-49), (50-59), (60-69), (70–79), (over 80) years

Women:
W, W1, W2, W3, W4, W5, W6, W7, W8, W9

Table 2 shows the results of the correlation analyses between air pollutants, meteorological factors,
and DES incidence rates from 2002 to 2013 using the monthly average of nationwide data. PM10 was
positively correlated with NO2 (0.616), SO2 (0.569), CO (0.506), and wind speed (0.429) and negatively
correlated with temperature (−0.447) and relative humidity (−0.643). The DES incidence rate showed
significant positive correlations only with O3 (0.274) and a negative correlation with CO (−0.477).
These findings are similar to those reported from the analysis of 3 years of data by Hwang et al. [27].
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Table 2. Correlations among incidence rates, air pollutant data, and meteorological data (nationwide averages).

x2 x3 x4 x5 z1 z2 z3 y

x1 0.616 0.569 0.183 0.506 −0.447 −0.643 0.429 −0.272
x2 1.000 0.815 −0.324 0.835 −0.841 −0.784 0.185 −0.176
x3 1.000 −0.350 0.876 −0.837 −0.735 0.350 −0.226
x4 1.000 −0.559 0.414 0.035 0.151 0.274
x5 1.000 −0.815 −0.649 0.274 −0.477
z1 1.000 0.833 −0.479 0.025
z2 1.000 −0.574 0.062
z3 1.000 −0.041

O3 did not directly affect the DES incidence rate because the average O3 monthly concentrations
and the number of DES outpatients tended to increase together until 2011. To verify this observation,
correlation analyses of DES incidence rates were performed using regional data for each year
(2002 ~ 2013) using the averages of each factor from the 16 administrative districts (Table 3). Districts with
positive and negative correlation coefficients for x1–z3 indicated high and low DES incidence rates,
while those with low negative correlation coefficients for x1–z3 indicated low DES incidence rates.
Correlation analyses by year in consideration of regional deviations, air pollutants, and meteorological
factors correlated with DES incidence rates differed from the nationwide results, as shown in Table 2.
PM10, NO2, and SO2 concentrations were positively correlated with DES incidence rates except in 2003
and 2010, while relative humidity was negatively correlated with DES incidence rates. This is the result
of excluding yearly deviations; thus, it was necessary to study other factors that could explain yearly
deviations. Since the correlation analyses using nationwide average data in Table 2 was not analyzed
by year, it showed a pattern of increasing O3 and DES incidence rates according to year, indicating that
this was not an accurate result. However, it was still informative to analyze the correlations between
each air pollutant and the meteorological factors.

Table 3. Annual correlations between DES incidence rate and environmental factors considering
regional deviation.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

x1 0.488 0.287 0.555 0.373 0.151 0.290 0.232 0.012 −0.034 0.188 0.286 0.147
x2 0.475 0.330 0.400 0.377 0.183 0.344 0.252 0.283 0.296 0.284 0.226 0.154
x3 0.153 −0.069 0.134 0.155 0.036 0.127 0.173 0.290 0.324 0.421 0.262 0.391
x4 0.128 0.049 −0.186 −0.436 −0.260 −0.478 −0.382 −0.395 −0.305 −0.374 −0.146 −0.066
x5 −0.089 −0.017 0.019 −0.112 −0.164 0.075 0.013 −0.088 −0.096 −0.16 −0.381 −0.422
z1 0.119 0.149 −0.066 −0.090 −0.100 −0.024 −0.070 −0.038 0.043 −0.005 0.028 0.241
z2 −0.216 −0.232 −0.311 −0.423 −0.198 −0.309 −0.211 −0.260 −0.360 −0.361 −0.339 −0.477
z3 0.266 0.134 0.081 −0.103 0.024 −0.075 −0.128 −0.052 −0.052 −0.025 −0.122 −0.015

Figure 5 shows the DES incidence rates by Gender and age ranges, which shows significant
associations with DES incidence rates. A steady increase was observed in men from their 10s to 80s.
Concerning women, the DES incidence rate increased in their 20s, decreased slightly from their 30s to
40s, and then increased in their 70s. The incidence rates for women were higher than those in men in
all age ranges.
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The nationwide data show how each variable affected the annual deviations without considering
regional deviations, while the regional data show how regional deviations affected DES incidence
rates. Thus, the absolute value of the correlation will be high if the difference in population rate
by year and region directly affects the DES incidence rate. Table 4 summarizes the results of the
correlation analyses of DES incidence rates in nationwide and regional data by Gender and age ranges.
The highest correlation coefficient of M (or W) (0.898 or −0.898) shows that changes in population
rate by Gender significantly affected the DES incidence rate. M1 and W1 shows the highest negative
correlation coefficients in both nationwide (M1: −0.954; W1: −0.957) and regional (M1: −0.744; W1:
−0.739) analyses, while M6 and W6 have the highest positive correlation coefficients in both national
(M6: 0.952; W6: 0.952) and regional (M6: 0.822; W6: 0.806) analyses, indicating their significant impacts
on DES incidence rates.

Table 4. Correlations between incidence and population rates of nationwide and administrative district
by sex and age.

District M M1 M2 M3 M4 M5 M6 M7 M8 M9

Nationwide −0.898 −0.954 −0.565 −0.963 −0.947 0.788 0.952 0.949 0.944 0.920
Administrative district 0.215 −0.744 −0.174 −0.508 −0.390 0.346 0.822 0.249 0.359 0.040

District W W1 W2 W3 W4 W5 W6 W7 W8 W9

Nationwide 0.898 −0.957 −0.616 −0.961 −0.942 0.752 0.952 0.927 0.946 0.935
Administrative district −0.215 −0.739 −0.304 −0.457 −0.290 0.388 0.806 0.012 0.215 −0.060

3.2. Dry Eye Syndrome Incidence Rate Prediction Model

Based on the results of the correlation analyses, we developed a nationwide DES incidence rate
prediction model using the population rate for all Men, M, the 10s, MW1 (M1 and W1), and 60s,
MW6 (M6 and W6) age ranges as model variables. To minimize independent factors, M1 and M2,
M6 and W6 were each combined into one independent variable. M was used to indicate the difference
between Men and Women. Model 1 shows the DES incidence rate prediction model using general
linear regression. Added to the Gender and age factors, x1–3 (PM10, NO2, SO2) and z2 (RH), which are
considered factors related to DES incidence rates, also were tested; x1–3 was not significant for Model 1;
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among them, z2 was the most appropriate variable. The following equation indicates the nationwide
DES incidence rate prediction model. Model 1:

y = −1.817 + 3.644×M− 0.129×MW1 + 0.09439×MW6− 0.00001139× z2 (4)

Considering 2002–2013, two-thirds of the data were randomly selected for the development of
Model 1 (in-sample); the remaining one-third of the data were used to validate Model 1 (out-of-sample).
Table 5 summarizes Model 1 test results. The results of Model 1 validation showed a statistically
significant p-value (<2.2× 10−16) for DES incidence rate prediction. The in-sample and out-of-sample R2

values (0.9443 and 0.9388, respectively) were both above 93%, indicating that Model 1 was appropriate
for predicting the DES incidence rate.

Table 5. Model 1 test results.

In-sample test
R2 0.9443

p-value <2.2 × 10−16

Out-of-sample test R2 0.9388

Figure 6 shows the in-sample and out-of-sample DES incidence rates of prediction using Model 1.
The prediction results show similar tendencies between in-sample and out-of-sample incidence rates.
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To assess regional deviations in the DES incidence rate model, we categorized the data into 16
administrative districts based on area codes (Table 6). South Korea was divided into seven metropolitan
areas and nine state areas.

Table 6. Area codes for each administrative district.

District Area Area Codes

Metropolitans Seoul, Busan, Daegu, Incheon, GwangJu, Daejeon, Ulsan 11, 26, 27, 28, 29, 30, 31

States Gyunggi, Gangwon, Choongbuk, Choongnam,
Jeonbuk, Jeonnam, Kyungbuk, Kyungnam, Jeju 41, 42, 43, 44, 45, 46, 47, 48, 49

Model 2 for regional deviation analysis was developed using the same method as that for Model 1.
Correlation analyses considering local deviation (Table 3) tested x1, x2, x3, and z2 as model variables.
The variables most significantly affecting regional deviation, x2 and z2, were included as variables
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in Model 2. Since x2 was positively correlated with x1 and x3 during correlation analyses (Table 2),
Model 2 was suitable even if x1 or x3 were used rather than x2; however, x2 was used to develop a
more optimized model. Like Model 1, Model 2 also was developed by randomly extracting two-thirds
of the data from 2002 to 2013 (in-sample), with the remaining data (out-of-sample) used to validate
the model.

Model 2:

y = −0.07266 + 0.1247×M + 0.01715×MW1 + 0.1228×MW6 + 0.0001718× x2− 0.0001036× z2 (5)

Table 7 shows Model 2 test results. Validation of Model 2 showed a statistically significant p-value
(<2.2 × 10−16); the in-sample and out-of-sample R2 values (0.7085 and 0.7219, respectively) were over
70%, confirming that Model 2 was suitable for predicting DES incidence rates.

Table 7. Model 2 test results.

In-sample test
R2 0.7085

p-value <2.2 × 10−16

Out-of-sample test R2 0.7219

Figures 7 and 8 show the model results for regions 29 and 49, where Model 2 fit the best among
the 16 regions. Although not as good as the results of Model 1, the prediction of the DES incidence rate
and the in-sample and out-of-sample incidence rates showed similar trends in both regions.
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Regarding the case of Model 2, rather than predicting the DES incidence rate, it is significant to
verify the variables x2 and z2 that affect regional deviations. When more accurate predictions of DES
incidence rates are desired, the data for each region should be used separately to make a prediction
model using the same methods used to develop the nationwide model.
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4. Conclusions

Here, Model 1 was developed to predict the DES incidence rate from nationwide data. Model 1
confirmed the significant impact of change in population rate and Gender-to-population ratios on the
DES incidence rate. The use of Model 1 may allow for accurate prediction of the DES incidence rate.
To analyze regional deviations in the prediction model, air pollutants, meteorological factors, and DES
incidence rate data were classified by administrative district, and correlation analysis was performed
to analyze the effect of regional deviation on the DES incidence rate. NO2 and RH were identified as
the factors most influencing regional variation. Model 2 was developed by adopting NO2 and RH
as variables and was verified in a general regression model. However, these variables alone did not
account for all regional deviations and require further study. More accurate incidence rate prediction in
each region requires the use of statistical methods in the regional DES incidence rate prediction model.

Author Contributions: Conceptualization, J.-S.Y. and J.-W.S.; Methodology, W.P.; investigation, K.-J.J.;
writing—original draft preparation, J.-S.Y. and J.-W.S.; writing—review and editing, S.P. and K.-J.J.; visualization,
W.P.; supervision, K.-J.J.; funding acquisition, S.P. and K.-J.J. All authors have read and agree to the published
version of the manuscript.

Funding: This study was funded by the Korea Ministry of Environment (MOE), as the Environmental Health
Action Program (2016001360005), and was supported by a 2019 Research Grant from Kangwon National University.

Acknowledgments: The authors thank the editors and anonymous reviewers for their constructive comments
and valuable suggestions on this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lekhanont, K.; Rojanaporn, D.; Chuck, R.S.; Vongthongsri, A. Prevalence of dry eye in Bangkok, Thailand.
Cornea 2006, 25, 1162–1167. [CrossRef] [PubMed]

2. Tong, L.; Waduthantri, S.; Wong, T.Y.; Saw, S.M.; Wang, J.J.; Rosman, M.; Lamoureux, E. Impact of symptomatic
dry eye on vision-related daily activities: The Singapore malay eye study. Eye 2010, 24, 1486–1491. [CrossRef]
[PubMed]

3. Le, Q.; Zhou, X.; Ge, L.; Wu, L.; Hong, J.; Xu, J. Impact of dry eye syndrome on vision-related quality of life
in a non-clinic-based general population. BMC Ophthalmol. 2012, 12, 22. [CrossRef] [PubMed]

4. Baudouin, C.; Messmer, E.M.; Aragona, P.; Geerling, G.; Akova, Y.A.; Benítez-Del-Castillo, J.; Boboridis, K.G.;
Merayo-Lloves, J.; Rolando, M.; Labetoulle, M. Revisiting the vicious circle of dry eye disease: A focus on
the pathophysiology of meibomian gland dysfunction. Br. J. Ophthalmol. 2016, 100, 300–306. [CrossRef]

http://dx.doi.org/10.1097/01.ico.0000244875.92879.1a
http://www.ncbi.nlm.nih.gov/pubmed/17172891
http://dx.doi.org/10.1038/eye.2010.67
http://www.ncbi.nlm.nih.gov/pubmed/20489740
http://dx.doi.org/10.1186/1471-2415-12-22
http://www.ncbi.nlm.nih.gov/pubmed/22799274
http://dx.doi.org/10.1136/bjophthalmol-2015-307415


Int. J. Environ. Res. Public Health 2020, 17, 4969 11 of 12

5. Zhong, J.Y.; Lee, Y.C.; Hsieh, C.J.; Tseng, C.C.; Yiin, L.M. Association between dry eye disease, air pollution
and weather changes in Taiwan. Int. J. Environ. Res. Public Health 2018, 15, 2269. [CrossRef]

6. Sharma, A.; Hindman, H.B. Aging: A predisposition to dry eyes. J. Ophthalmol. 2014, 2014, 1–8. [CrossRef]
7. Moss, S.E.; Klein, R.; Klein, B.E.K. Prevalance of and risk factors for dry eye syndrome. Arch. Ophthalmol.

2000, 118, 1264–1268. [CrossRef]
8. Chia, E.M.; Mitchell, P.; Rochtchina, E.; Lee, A.J.; Maroun, R.; Wang, J.J. Prevalence and associations of dry

eye syndrome in an older population: The blue mountains eye study. Clin. Exp. Ophthalmol. 2003, 31,
229–232. [CrossRef]

9. Uchino, M.; Schaumberg, D.A.; Dogru, M.; Uchino, Y.; Fukagawa, K.; Shimmura, S.; Satoh, T.; Takebayashi, T.;
Tsubota, K. Prevalence of dry eye disease among Japanese visual display terminal users. Ophthalmology 2008,
115, 1982–1988. [CrossRef]

10. Jie, Y.; Xu, L.; Wu, Y.Y.; Jonas, J.B. Prevalence of dry eye among adult Chinese in the Beijing eye study. Eye
2009, 23, 688–693. [CrossRef]

11. Farrand, K.F.; Fridman, M.; Stillman, I.Ö.; Schaumberg, D.A. Prevalence of diagnosed dry eye disease in
the United States among adults aged 18 years and older. Am. J. Ophthalmol. 2017, 182, 90–98. [CrossRef]
[PubMed]

12. Yamada, M.; Mizuno, Y.; Shigeyasu, C. Impact of dry eye on work productivity. Clin. Outcomes Res. 2012, 4,
307. [CrossRef]

13. Cuevas, M.; González-García, M.J.; Castellanos, E.; Quispaya, R.; La Parra, P.D.; Fernández, I.; Calonge, M.
Correlations among symptoms, signs, and clinical tests in evaporative-type dry eye disease caused by
Meibomian Gland Dysfunction (MGD). Curr. Eye Res. 2012, 37, 855–863. [CrossRef] [PubMed]

14. Smith, J.A.; Albenz, J.; Begley, C.; Caffery, B.; Nichols, K.; Schaumberg, D.; Schein, O. The epidemiology of dry
eye disease: Report of the epidemiology subcommittee of the international Dry Eye WorkShop. Ocul. Surf.
2007, 5, 93–107.

15. Hyon, J.Y.; Yang, H.K.; Han, S.B. Association between dry eye disease and psychological stress among
paramedical workers in Korea. Sci. Rep. 2019, 9, 1–6. [CrossRef] [PubMed]

16. Bakkar, M.M.; Shihadeh, W.A.; Haddad, M.F.; Khader, Y.S. Epidemiology of symptoms of dry eye disease
(DED) in Jordan: A cross-sectional non-clinical population-based study. Contact Lens Anterior Eye 2016, 39,
197–202. [CrossRef]

17. Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.S.; Schaumberg, D.; Uchino, M.;
Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [CrossRef]

18. Man, R.E.K.; Veerappan, A.R.; Tan, S.P.; Fenwick, E.K.; Sabanayagam, C.; Chua, J.; Leong, Y.Y.; Wong, T.Y.;
Lamoureux, E.L.; Cheng, C.Y.; et al. Incidence and risk factors of symptomatic dry eye disease in Asian
Malays from the Singapore Malay Eye Study. Ocul. Surf. 2017, 15, 742–748. [CrossRef]

19. Yu, D.; Deng, Q.; Wang, J.; Chang, X.; Wang, S.; Yang, R.; Yu, J.; Yu, J. Air pollutants are associated with
dry eye disease in urban ophthalmic outpatients: A prevalence study in China. J. Transl. Med. 2019, 17, 46.
[CrossRef]

20. Mo, Z.; Fu, Q.; Lyu, D.; Zhang, L.; Qin, Z.; Tang, Q.; Yin, H.; Xu, P.; Wu, L.; Wang, X.; et al. Impacts of air
pollution on dry eye disease among residents in Hangzhou, China: A case-crossover study. Environ. Pollut.
2019, 246, 183–189. [CrossRef]

21. Calonge, M.; Pinto-Fraga, J.; González-García, M.J.; Enríquez-De-Salamanca, A.; López-De La Rosa, A.;
Fernández, I.; López-Miguel, A. Effects of the external environment on dry eye disease. Int. Ophthalmol. Clin.
2017, 57, 23–40. [CrossRef] [PubMed]

22. Ravilla, T.D.; Gupta, S.; Ravindran, R.D.; Vashist, P.; Krishnan, T.; Maraini, G.; Chakravarthy, U.;
Fletcher, A.E. Use of cooking fuels and cataract in a population-based study: The India eye disease
study. Environ. Health Perspect. 2016, 124, 1857–1862. [CrossRef] [PubMed]

23. Novaes, P.; Hilário do Nascimento Saldiva, P.; Matsuda, M.; Macchione, M.; Peres Rangel, M.; Kara-José, N.;
Berra, A. The effects of chronic exposure to traffic derived air pollution on the ocular surface. Environ. Res.
2010, 110, 372–374. [CrossRef]

24. Moen, B.E.; Norbäck, D.; Wieslander, G.; Bakke, J.; Magerøy, N.; Granslo, J.; Irgens, Å.; Bråtveit, M.;
Hollund, B.; Aasen, T. Can air pollution affect tear film stability? a cross-sectional study in the aftermath of
an explosion accident. BMC Public Health 2011, 11, 1–6. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/ijerph15102269
http://dx.doi.org/10.1155/2014/781683
http://dx.doi.org/10.1001/archopht.118.9.1264
http://dx.doi.org/10.1046/j.1442-9071.2003.00634.x
http://dx.doi.org/10.1016/j.ophtha.2008.06.022
http://dx.doi.org/10.1038/sj.eye.6703101
http://dx.doi.org/10.1016/j.ajo.2017.06.033
http://www.ncbi.nlm.nih.gov/pubmed/28705660
http://dx.doi.org/10.2147/CEOR.S36352
http://dx.doi.org/10.3109/02713683.2012.683508
http://www.ncbi.nlm.nih.gov/pubmed/22632103
http://dx.doi.org/10.1038/s41598-019-40539-0
http://www.ncbi.nlm.nih.gov/pubmed/30846779
http://dx.doi.org/10.1016/j.clae.2016.01.003
http://dx.doi.org/10.1016/j.jtos.2017.05.003
http://dx.doi.org/10.1016/j.jtos.2017.04.004
http://dx.doi.org/10.1186/s12967-019-1794-6
http://dx.doi.org/10.1016/j.envpol.2018.11.109
http://dx.doi.org/10.1097/IIO.0000000000000168
http://www.ncbi.nlm.nih.gov/pubmed/28282312
http://dx.doi.org/10.1289/EHP193
http://www.ncbi.nlm.nih.gov/pubmed/27227523
http://dx.doi.org/10.1016/j.envres.2010.03.003
http://dx.doi.org/10.1186/1471-2458-11-235
http://www.ncbi.nlm.nih.gov/pubmed/21492464


Int. J. Environ. Res. Public Health 2020, 17, 4969 12 of 12

25. Torricelli, A.A.M.; Novaes, P.; Matsuda, M.; Braga, A.; Saldiva, P.H.N.; Alve, M.R.; Monteiro, M.L.R.
Correlation between signs and symptoms of ocular surface dysfunction and tear osmolarity with ambient
levels of air pollution in a large metropolitan area. Cornea 2013, 32, e11–e15.

26. Um, S.B.; Kim, N.H.; Lee, H.K.; Song, J.S.; Kim, H.C. Spatial epidemiology of dry eye disease: Findings from
South Korea. Int. J. Health Geogr. 2014, 13, 31. [CrossRef] [PubMed]

27. Hwang, S.H.; Choi, Y.H.; Paik, H.J.; RyangWee, W.; KumKim, M.; Kim, D.H. Potential importance of ozone
in the association between outdoor air pollution and dry eye disease in South Korea. JAMA Ophthalmol.
2016, 134, 503–510. [CrossRef]

28. National Health Insurance Service of South Korea. Key Statistics of National Health Insurance. Available
online: http://www.nhis.or.kr/menu/boardRetriveMenuSet.xx?menuId=F3322 (accessed on 1 March 2020).

29. Seo, J.W.; Youn, J.S.; Park, S.J.; Joo, C.K. Development of a conjunctivitis outpatient rate prediction model
incorporating ambient ozone and meteorological factors in South Korea. Front. Pharmacol. 2018, 9, 1135.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/1476-072X-13-31
http://www.ncbi.nlm.nih.gov/pubmed/25128034
http://dx.doi.org/10.1001/jamaophthalmol.2016.0139
http://www.nhis.or.kr/menu/boardRetriveMenuSet.xx?menuId=F3322
http://dx.doi.org/10.3389/fphar.2018.01135
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Enviromental Data 
	Dry Eye Syndrome Hospitalization Data 
	Dry Eye Syndrome Incidence Rate Prediction Model 

	Results and Discussion 
	Monthly Average of Dry Eye Syndrome Incidence Rates, Air Pollutant Levels, and Meteorological Factors 
	Dry Eye Syndrome Incidence Rate Prediction Model 

	Conclusions 
	References

