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Abstract: Long-term exposure to nicotine causes a variety of human diseases, such as lung dam-
age/adenocarcinoma, nausea and vomiting, headache, incontinence and heart failure. In this work,
as a surface-enhanced Raman scattering (SERS) substrate, zinc oxide (ZnO) tips decorated with
gold nanoparticles (AuNPs) are fabricated and designated as ZnO/Au. Taking advantage of the
synergistic effect of a ZnO semiconductor with morphology of tips and AuNPs, the ZnO/Au-based
SERS assay for nicotine demonstrates high sensitivity and the limit of detection 8.9 × 10−12 mol/L is
reached, as well as the corresponding linear dynamic detection range of 10−10–10−6 mol/L. Addition-
ally, the signal reproducibility offered by the SERS substrate could realize the reliable determination
of trace nicotine in saliva.

Keywords: SERS; ZnO tips; nicotine; AuNPs

1. Introduction

Nicotine, as one of pyridine alkaloids mainly existing in tobacco and cigarette smoke [1,2],
facilitates neurotransmitter release (dopamine and others), deriving pleasure, mood mod-
ulation, stimulation of the central nervous system, cholinergic nerves, and sympathetic
nerves of smokers [3]. In addition, nicotine is often used as a variety of nicotine replacement
therapies (NRT), such as nicotine transdermal patches, nasal sprays, inhalers, sublingual
tablets, and lozenges [4]. However, overexposure to nicotine causes a variety of human
diseases, including lung damage/adenocarcinoma, nausea and vomiting, headache, incon-
tinence and heart failure [5–8], which is in close connection with mortality rate based on
published data in literature [9], and nicotine has been considered as one of the most highly
toxic alkaloids [10]. E-cigarettes have boomed in the smoker market because a nicotine-
free e-liquid (cigarette oil) with a specific odor (containing flavoring or coloring agents,
vegetable glycerin, propylene glycol, etc.) is used [11]. E-liquids containing nicotine have
been banned in many countries including the Taiwan region [12]. However, occasionally,
nicotine is detectable in e-liquids, leading to inadvertent nicotine inhalation [13–16]. This
calls for on-market detection of nicotine in the commercial products.

To date, fluorescence [17], liquid chromatography/mass spectrometry (LC-MS) [18],
gas chromatography/mass spectrometry (GC-MS) [19], electrochemistry [20–22], electro-
chemiluminescence [23], flow injection analysis [24] and high-performance liquid chro-
matography (HPLC) [25,26] have been explored as nicotine assays. As an example, GC-MS
as a standard method for detecting e-liquid has been adopted in the laboratory [27]. The
requirement of expensive instruments and skilled operators as well as the low-throughput
and cumbersome sample pretreatment procedures make laboratory-based analysis tech-
nique inconvenient for onsite inspection aims [28]. Therefore, it is urgently necessary to
develop a highly sensitive, onsite and rapid protocol for the detection of nicotine.

A portable infrared meter has been used for field-testing, but its poor sensitivity
has failed to detect nicotine present in low amounts in the products or in the liquid
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samples [29]. In recent years, surface-enhanced Raman scattering (SERS) spectroscopy
for onsite detection applications has aroused attention [30–33] because of its high Raman
signal enhancement and the fast development of portable Raman systems. Especially,
some stable SERS materials for the detection of nicotine have been reported, such as thiol-
terminated molecular imprint microspheres [34], colloids [35–37], and Au-nanoparticle-
coated paper [38] but the sample pretreatment process is still complicated. We reported that
the gold-dotted magnetic composite was prepared and used to detect nicotine in saliva by
using a magnetically optimized SERS strategy, but the quantitatively analytic performance
needs further improvement [39].

Zinc oxide (ZnO), due to its good biocompatibility and high resistance to environ-
mental pH or temperature changes, has been used to prepare semiconductor/noble metal-
composite substrates [40], which show both electromagnetic enhancement and charge
transfer effects, thus improving SERS’ detection sensitivity [41,42]. In this work, ZnO with
abundant tips was synthesized and then loaded with dense gold nanoparticles into the
gaps of tips (designated as ZnO/Au), creating a larger surface area for capturing target
molecules via chemical interaction and improving Raman scattering enhancement due to
the presence of numerous hotspots. As a result, ZnO/Au-based SERS method could be
used to determine trace nicotine in saliva.

2. Experimental Section
2.1. Materials

Sodium hydroxide (NaOH), Trisodium citrate, nicotine and zinc acetate (Zn (CH3COO)2)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). HAuCl4·4H2O and ethanol were
bought from National Pharmaceutical Chemical Reagent (Shanghai, China). Rhodamine
6G (R6G) was obtained from Adamas Reagent. All chemicals were of analytical grade.
Ultrapure water (18.2 MΩ cm) was used throughout all experiments. Glassware was
embathed in aqua regia and then thoroughly rinsed with ultrapure water.

2.2. Instrumentation

UV-vis spectra were collected by a UV-vis spectrophotometer (Shimadzu, Kyoto, Japan,
UV-1800). Raman experiments were carried out by using a Dilor confocal laser Raman
system (French, SuperLabRam II) equipped with a 633 nm He-Ne laser and semiconductor-
cooled CCD detector. A field-emission scanning electron microscope (SEM, JEOL6380LV)
was used to observe morphologies of materials.

2.3. Synthesis of ZnO/Au

Under the optimum conditions, ZnO/Au was synthesized by a hydrothermal method.
In brief, 0.2 g of Zn(CH3COO)2 was dispersed in 70 mL ultrapure water by ultrasonication
for 30 min. With sonication, 10 mL NaOH (2 mol/L) was added into the Zn(CH3COO)2
solution under constant stirring, and then transferred to an autoclave. The reaction temper-
ature and time were set at 120 ◦C and 20 h, respectively. After cooling to room temperature
naturally, samples were washed with ultrapure water several times to remove residual
ions and molecules, and dried at 70 ◦C under vacuum. The prepared ZnO of about 0.015 g
was dissolved in 25 mL ultrapure water and heated until slightly boiling while stirring.
Then, 1 mL of 10−3 mol/L HAuCl4 solution and 2 mL of 1% trisodium citrate were injected
under stirring for 30 min until the solution turned dark purple, to obtain ZnO tips/AuNPs
successfully. With the same protocols, 1 and 2.5 mL of 1% trisodium citrate were added to
prepare the ZnO dotted with different sizes of AuNPs, named as ZnO/Au1 and ZnO/Au3.

2.4. SERS Measurement

For SERS detection, the solution containing analyte was mixed with ZnO/Au com-
posite suspension by using a volume ratio of 1:1. The Raman test was conducted by using
a 633 nm laser line with power 5 mW and collection time of 3 s with 2 accumulations. For
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each substrate, 5 points in the coffee ring area were randomly selected for evaluating the
relative standard derivation of detections.

3. Results and Discussion
3.1. Characterization of ZnO/Au

The three-dimensional (3D) ZnO/Au prepared by hydrothermal method is given in
Scheme 1. In Figure 1A,B, the scanning electron microscopic (SEM) images show that the
obtained 3D ZnO nanoparticles with regular tips have uniform morphology with a diameter
of approximately 6 µm. For ZnO/Au, as shown in Figure 1C,D, the gold nanoparticles
were evenly and densely distributed on the surface of ZnO tips, which is beneficial to
formation of the nanogaps between the AuNPs, generating “hotspots” which contribute to
strong electromagnetic enhancement on Raman scattering of target molecules [43,44].
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In Figure 2, the EDS mapping further confirms the presence of AuNPs in the composite
substrate, and clearly, AuNPs are evenly distributed throughout the ZnO system.



Biosensors 2021, 11, 465 4 of 10

Biosensors 2021, 11, x 4 of 11 

 

In Figure 2, the EDS mapping further confirms the presence of AuNPs in the compo-
site substrate, and clearly, AuNPs are evenly distributed throughout the ZnO system. 

 
Figure 2. EDS mapping of ZnO Tips/Au. 

3.2. Optimization for Preparation of ZnO/Au 
The morphologic effect of ZnO on the optical properties of semiconductor was inves-

tigated. Therefore, tips-like ZnO and litchi-like ZnO (Figure 3) were synthesized simulta-
neously. In Figure 4, compared with litchi-like ZnO, the UV–vis spectrum of tips-like ZnO 
has strong absorption in the range of 400–800 nm. Therefore, tips-like ZnO was picked to 
prepare the composite ZnO/Au, which increased the adsorption of the laser line at 633 
nm. 

 
Figure 3. SEM image of litchi-like ZnO. 

Figure 2. EDS mapping of ZnO Tips/Au.

3.2. Optimization for Preparation of ZnO/Au

The morphologic effect of ZnO on the optical properties of semiconductor was investi-
gated. Therefore, tips-like ZnO and litchi-like ZnO (Figure 3) were synthesized simultane-
ously. In Figure 4, compared with litchi-like ZnO, the UV-vis spectrum of tips-like ZnO
has strong absorption in the range of 400–800 nm. Therefore, tips-like ZnO was picked to
prepare the composite ZnO/Au, which increased the adsorption of the laser line at 633 nm.
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The SERS performance of gold nanoparticles of different sizes reduced on ZnO has
been compared by optimizing the volume (1, 2, and 2.5 mL) of reducing agent (1% trisodium
citrate solution) added, as seen in Figure S1. Their UV-vis spectra are presented in Figure
S1A and the surface plasmon resonance bands from AuNPs are clearly visible in the region
from 500 to 600 nm. The diameter of AuNPs was evaluated according to the equation in the
Supplementary Material, and the diameters of AuNPs are estimated at about 71.5, 43 and
15 nm, respectively. In Figure S1B, in the case of R6G (10−7 mol/L solution) as the Raman
probe, the SERS signal recorded on ZnO Tips/AuNPs has the greatest intensity. This might
be due to the SPR band from AuNPs in ZnO/Au matching the excitation line of 633 nm
and the suitable aggregation of AuNPs forming the hotspots at the surface of ZnO tips.
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3.3. SERS Performance of ZnO/Au

It can be seen from Figure S2A that the SERS peaks of R6G could be still observed when
the concentration is even as low as 1 × 10−11 mol/L, confirming the superior enhancement
effect of ZnO/Au. In Figure S2B, a linear concentration dynamic range of R6G is located
between 10−11–10−6 mol/L, with a correlation coefficient (R2) of 0.9624. The Raman
enhancement factor (EF) was evaluated according to the equation in the Supplementary
Material, and the EF of 1.07 × 108 was reached.

For checking the enhancement effect of ZnO tips, SERS spectra of R6G were acquired
on ZnO Tips/Au and pure AuNPs, respectively. As clearly seen in Figure 5, SERS’ effect
for R6G recorded on ZnO tips/Au is much greater than that of gold nanoparticles. It
depicts that the ZnO tips improve the SPR enhancement effect of AuNPs through effective
aggregation of nanoparticles and mutual interaction of ZnO and AuNPs to optimize the
electronic structure of composite SERS substrate. In addition, the chemical enhancement
effect of ZnO also contributes to the SERS detection sensitivity. The reason is that the work
function of ZnO (5.2 eV) is larger than that of Au (5.1 eV) and the Fermi energy level of
ZnO is lower than that of Au, resulting in electron transfer from AuNPs to ZnO that occurs
until their level of Fermi energy attains equilibration. As a result, it is beneficial to the im-
provement of the chemical interaction between target molecules and ZnO. Simultaneously,
it is conducive to more molecules closely approaching the vicinity of the hotspot region,
further providing an enhancement effect.
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For investigating the signal reproducibility of ZnO tips/Au composite material, three
different substrates were selected for examining preparation reproducibility. For each
substrate, five points in the coffee ring area were randomly selected for evaluating the
relative standard derivation of detections (Figure 6A). The statistic bars based on the
Raman intensity at 613 cm−1 are presented in able 6B, and the computed relative standard
derivation (RSD) is 8.92%, indicating that the ZnO/Au substrate has good uniformity and
acceptable detection reproducibility.
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3.4. SERS Detection of Nicotine

The concentration-dependent SERS spectra of nicotine in aqueous solutions were
obtained by using ZnO tips/Au composite material. In Figure 7A, the SERS intensity of
the nicotine increases as the nicotine concentration increases. The SERS band at 1589 cm−1

corresponding to the stretching of the pyridine ring of nicotine was selected for quan-
titative analysis according to the previously reported work [45]. Compared with the
normal Raman bands [45], the SERS bands of nicotine recorded on ZnO tips/Au sub-
state experienced blue-shifts, which hints at the adsorption of nicotine on the substate
surface in physical and chemical fashions. In Figure 7B, a linear concentration dynamic
range is located from 10−10–10−6 mol/L (Based on the corresponding regression equation:
y = 4524.33214x + 46,355.33316, where x is the concentration of nicotine and y represents
the normalized Raman intensity at 1589 cm−1, a correlation coefficient (R2) = 0.9657). The
limit of detection (LOD, S/N = 3) of 8.9 × 10−12 mol/L and limit of quantitation (LOQ,
S/N = 10) [46–48] of 2.9 × 10−11 mol/L could be achieved, due to the composite ZnO
tips/Au possessing a larger surface area with physical adsorption capability. Furthermore,
the interaction of ZnO and the pyridine moiety of nicotine allows the target species to reach
the hotspot region [49,50]. Meanwhile, the SERS bands at 1031 cm−1 were also used for
quantitative analysis and a linear concentration dynamic range from 10−10–10−6 mol/L
with a correlation coefficient (R2) of 0.9663 could be reached.
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For real applications, ZnO tips/Au SERS spectra of nicotine with different amounts
spiked into saliva samples were acquired, and the peak at 1589 cm−1 due to easy obser-
vation without any spectral interference was chosen for determination of nicotine. The
assignments of the main SERS bands for nicotine are tabulated in Table S1. As presented in
Figure 8, clearly, the nicotine level in saliva could be detected at as low as 1 × 10−10 mol/L.
As tabulated in Table 1, the RSDs are in the range of 6.86–8.43%, and the reasonable
recoveries are in the range from 96.14 to 100.75%, remarking the robustness of the ZnO-
tips/Au-based SERS assay for detection of nicotine in saliva.
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tips/Au substrate.

Table 1. ZnO-tips/Au-based SERS determination of nicotine in saliva.

Samples Adding Amount (mol/L, lgC) SERS Results (mol/L, lgC) Recovery ± SD (%)

1 −7.00 −6.73 96.14 ± 8.43
2 −7.30 −7.22 98.90 ± 6.86
3 −8.00 −8.06 100.75 ± 6.95

Herein, the reported methods for determining nicotine such as high-performance
liquid chromatography, electrochemistry, fluorescence, and other methods, were summa-
rized in Table 2. Clearly, the proposed ZnO-tips/Au-based SERS assay exhibits superior
sensitivity and reasonable quantitative analysis performance due to interaction between
AuNPs and ZnO tips improving the SPR effect. In addition, the ZnO tips/Au substrate
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demonstrates good stability under ambient conditions, which is beneficial to real applica-
tions.

Table 2. Comparison of the developed SERS assay for nicotine with other reported methods in the literature.

Methods Linear Range LOD Real Sample Reference

HPLC 0.78–50 µg mL−1 0.07 a µg mL−1 E-cigarette [51]
Fluorescent 0.1 to 10 µg mL−1 0.01 µg mL−1 Tobacco [52]

LC-MS 0.001–0.06 µg mL−1 0.001 µg mL−1 Rat plasma [18]
Electrochemistry 10−5–10−3 mol/L 2 × 10−6 mol/L Cigarette [25]

SERS (AuNPs-coated paper) 1–2.5 µg mL−1 0.2 µg mL−1 Aqueous solution [38]
SERS (Au NBPs-AAO) 10–3000 µg mL−1 2.2 µg mL−1 Cigarette [53]

SERS (AuNPs-containing threads) 2–6 µg mL−1 0.18 µg mL−1 Aqueous solution [54]
This work 10−10–10−6 mol/L 8.9 × 10−12 mol/L Saliva

a 0.07 µg mL−1 is the same as 4.3 × 10−7 mol L−1.

4. Conclusions

In summary, the ZnO tips/Au composite was successfully fabricated through a hy-
drothermal synthesis method. ZnO tips/Au as a SERS substrate showed high sensitivity
and signal reproducibility. The amplification of the Raman signal for nicotine should
be attributed to the optimal SPR field (hotspots), and the promoted adsorption of tar-
get molecules by ZnO tips. The ZnO-tips/Au-based SERS assay was used to directly
determine nicotine, and a satisfactory linearity for the concentration dynamic range of
10−10–10−6 mol/L (R2 = 0.9657) was reached, and the LOD was 8.9 × 10−12 mol/L, which
meets the requirements of national standards. As a practical application, the concentration
of nicotine in saliva as low as 1 × 10−10 mol/L was detectable, and the detection recovery
was located within the accepted degree. It is our view that an ZnO-tips/Au-based SERS
assay could be advanced to realize the inspection of nicotine abuse in market-available
products.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/bios11110465/s1, Figure S1: (A) UV-vis spectra of ZnO/Au substrates, prepared by adding
1, 2, and 2.5 mL of 1% trisodium citrate solution, which denoted as ZnO/Au1, ZnO-Tips/Au and
ZnO/Au3, respectively. (B) SERS spectra of R6G (10−7 mol/L) acquired on different ZnO/Au
substrates, Figure S2: (A) SERS spectra of R6G solutions with different concentrations recorded on
ZnO/Au. (B) Calibration plot based on Raman intensity at 1363 cm−1 for R6G based on ZnO-Tips/Au
substrate, Table S1: Main SERS Band Assignments of Nicotine.
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