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Dimension reduction (DR) techniques have become synonymous with single-cell omics data due to their
ability to generate attractive visualizations and enable analyses of high-dimensional data. In this issue of
Patterns, Johnsona et al. develop a statistical approach to assist in selecting high-quality reduced represen-
tations to improve analyses and biological interpretations.
Single-cell RNA sequencing (scRNA-

seq) experiments have revolutionalized

the field of genomics by capturing

gene-expression data at the level of in-

dividual cells and allowing researchers

to uncover biological properties of indi-

vidual cells in complex tissues. In order

to enable such powerful insights, this

high-dimensional sequencing data re-

quires a combination of specific prepro-

cessing steps, including quality control,

normalization, dimensionality reduction

(DR), and clustering.1 Following these

steps, one has the ability to identify

rare cell types, discover trajectories rep-

resenting biological processes, and

identify differentially expressed genes

across conditions for particular cell

types. However, it has been demon-

strated that these analyses and their

biological conclusions are influenced

by different approaches used for pre-

processing.2 Notably, DR has been a

focus in single-cell analysis given its

ubiquitousness among visualization and

computational methods.

In general, DR involves projecting high-

dimensional data into a lower dimensional

space in order to reduce noise signals in

the data while retaining key features. The

traditional and most familiar form of

DR is done via principal component anal-

ysis (PCA), which performs linear transfor-

mations and preserves the Euclidean dis-

tance between features. More recent

nonlinear approaches, such as t-distrib-

uted stochastic neighbor embedding

(t-SNE)3 and uniform approximation

and projection method (UMAP),4 have

become popular in single-cell data and
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are highly regarded for their ability to pro-

duce appealing visualizations of cell clus-

ters. This is because they aim to preserve

the local structure of the data while typi-

cally ignoring or placing less emphasis

on the global structure of the data, i.e.,

the distance between cells. The non-

linear algorithms are also stochastic and

heavily dependent on hyperparameters

chosen by users.5 Besides visualization,

DR is additionally required for the majority

of downstream analyses. Thus, choosing

an appropriate DR method, one that is

able to retain the structure of original

data and impose the least distortion of

biological signals, is a priority.

The concern around DR approaches

used on single-cell data has largely re-

sulted in developing novel DR methods

or heuristic guidelines based on bench-

marking studies.6,7 However, choosing

an optimal DR method for a given dataset

and analysis remains an open question. In

this issue of Patterns, Johnsona et al.8

tackle this problem by developing a

quantitative quality assessment scheme:

empirical marginal resampling better

evaluates dimensionality reduction (EM-

BEDR). EMBEDR distinguishes those

structures in the reduced dimension

embedding consistent with those in the

original high-dimensional data versus

those attributable to noise, allowing users

to determine which DR representation

captures the structure of the original

data most accurately.

The key to EMBEDR’s evaluation is the

introduction of a quality statistic termed

the empirical embedding statistic, which

compares cell-to-cell distance distribu-
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tions between the original data and its

reduced dimension embedding.8 The

quality statistic is generated for each

DR method and compared to the distri-

bution of quality statistics calculated on

null datasets generated via marginal re-

sampling. An empirical hypothesis test

is performed comparing the sample

cell’s quality to the null quality distribu-

tion, with p values calculated as the

probability that the observed data yield

a lower-quality embedding compared to

the null datasets. If the p value for a

cell is small, it indicates the structure of

the cell in the embedding is close to

the structure in the original high-dimen-

sional data.

EMBEDR is implemented in Python

and provides users multiple evaluations

of the DR approaches. For example,

visualizing the cell-specific p values pro-

vides users a measure of where signals

are best preserved in a given embed-

ding and most likely to reflect biological

signal. EMBEDR can also be used to

select the optimal hyperparameters for

a given approach and compare embed-

dings across DR methods. EMBEDR

also allows users to explore the locally

optimal embedding for each cell type.

Johnson et al. emphasize that the glob-

ally optimal embedding does not neces-

sarily mean that the quality in each local

cell type is ideal and that performing

local optimization may facilitate identifi-

cation of rare cell types.8

As interest in scRNA-seq technologies

grows, datasets are increasing in size

and complexity. DR will continue to be

a key step for visualizing and analyzing
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single-cell RNA data, and identifying an

optimal DR method remains a high

priority. Johnson et al. demonstrate EM-

BEDR’s ability to assist users in selecting

the most appropriate DR method objec-

tively by quantitatively measuring each

cell’s quality in embeddings. Given the

increasing number of methodologies

that are being developed for single-cell

analyses, we anticipate a greater emer-

gence and focus on data-driven method-

ology selections9 and comprehensive

evaluation frameworks10 in the com-

ing years.
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