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Abstract

The rapid spreading of polymyxin E (colistin) resistance among bacterial strains through the

horizontally transmissible mcr-1 and mcr-2 plasmids has become a serious concern. The

emergence of these genes in Shiga toxin-producing Escherichia coli (STEC), a group of

human pathogenic bacteria was even more worrisome, urging us to investigate the preva-

lence of mcr genes among STEC isolates. A total of 1000 STEC isolates, recovered from

livestock, wildlife, produce and other environmental sources in a major production region for

leafy vegetables in California during 2006–2014, were screened by PCR for the presence of

plasmid-borne mcr-1 and mcr-2. All isolates tested yielded negative results, indicating if

any, the occurrence rate of mcr-1/mcr-2 among STEC was very low in this agricultural

region. This study provides valuable information such as sample size needed and methodol-

ogies for future surveillance programs of antimicrobial resistance.

Introduction

Polymyxin E (colistin) is the antibiotic of last resort for Gram negative multidrug resistant

superbugs [1]. It acts by binding the lipid A component of lipopolysaccharides and subse-

quently disrupting the bacterial membrane. The colistin resistant gene product, MCR, is a

phosphoethanolamine transferase that catalyzes the addition of phosphoethanolamine to lipid

A to decrease colistin’s binding affinity to the lipid A component of bacterial membrane [2–4],

thus reducing colistin’s antibiotic activity. The use of colistin is limited to treating severe infec-

tions by gram-negative bacteria due to its toxicity in humans [5, 6], but it has been used for

decades in veterinary medicine around the world to treat animal intestinal infections [7]. In

2016. Liu et al. [8] reported the first case of plasmid mediated colistin resistance mcr-1 gene,

harbored on a horizontally transmissible plasmid [9]. Since then, the plasmid mediated colistin
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resistance has been reported from different areas around the world in patients, livestock, pet

foods and wild animals [10, 11]. In the United States, MCR-1 mediated colistin resistant

strains have been isolated from patients in six states [12–17] and the resistance mechanism

have even spread to extended-spectrum β-lactamase (ESBL)-producing Shiga toxin-producing

Escherichia coli (STEC) cultured from pigs [18]. STEC O157 and non-O157 are recognized as

leading cause of foodborne outbreaks and are responsible for more than 175, 900 foodborne

illnesses, 2,450 hospitalizations and 20 deaths in humans each year in the United States alone

for a maximum total cost of about 1.2 billion dollars [19]. In particular, fresh leafy vegetables

have been implicated in foodborne outbreaks associated with STEC infections [19–20]. It is

urgent to detect, map and contain the plasmid mediated colistin resistance among STEC iso-

lates in order to prevent its further spreading in animals, produce and environment. In this

study, we investigated the prevalence of the plasmid-borne mcr-1 and mcr-2 among STEC by

PCR analysis of 1000 isolates collected from animal, produce, and environmental sources in a

major agricultural region for leafy greens in California.

Materials and methods

Bacterial strains

The recovery of STEC O157 and non-O157 isolates from livestock, wildlife, produce, soil, and

water samples was performed by subjecting samples to a non-selective enrichment step, fol-

lowed by an immunomagnetic separation, and selection of suspect STEC colonies, based on

colony colors and morphologies displayed on chromogenic selective solid agar, as described in

previous reports [20–22]. A subset of 1000 STEC isolates recovered from wildlife (32%), water-

sheds (24%), leafy vegetables (22%), livestock (18%), sediment (1%), soil (1%), fruit (1%), and

other vegetables (1%) were selected for the present study (Fig 1). The examined STEC isolates

were recovered from leafy greens (lettuce/spinach), soil, water, sediment, and wild animal

feces collected from private produce farms and ranches in Monterey, San Benito, San Luis

Obispo Counties in the central California coast, as described in previous studies [20–22]. Sam-

pling locations sites in private produce farms and ranches were not disclosed for reasons of

confidentiality [21], and voluntary permission was obtained from owners of produce farm and

farmers for collection of samples [21]. Permission from private land owners was obtained for

enabling USDA Wildlife Services or California Department of Fish and Game to conduct wild-

life sample collection, as previously documented [21]. Additional STEC isolates from water-

shed samples, collected from public access sites in Monterrey County in California [22], were

also examined. Given that all of the watershed sampling sites were on public lands, there were

no specific permissions required for sampling [22]. These watershed sites with public access

were selected in collaboration with the Central Coast Water Quality Control Board, as previ-

ously documented in a recent report [22]. The wildlife fecal sources for STEC isolates exam-

ined in the present study were collected from blackbird, cow bird, crow, Canadian geese,

coyote, deer, deer mouse, elk, ground squirrel, kangaroo rat, meadow vole, feral pig, rabbit,

skunk and snakes. The livestock fecal sources were collected from alpaca, cattle, dog, and

goats, as documented in previous reports [20–21]. A small subset of STEC isolates from canta-

loupe were provided by the Microbiological Data Program, which was previously managed by

the U.S. Department of Agriculture-Agricultural Marketing Service. Bacterial cultures were

propagated on Luria-Bertani (LB) agar (Difco, Detroit, MI) and stored in Microbank Vials

with Cryo preservative (Pro-Lab Diagnostics, Round Rock, TX) at -80˚C until further use.

As positive controls for plasmid encoded mcr-1, E. coli strains AR-Bank #0346 and

AR-Bank #0349 were used [23]. These positive-control strains, harboring mcr-1 on a
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multicopy plasmid [23], were kindly provided by FDA-CDC Antimicrobial Resistance Bank,

Atlanta, GA.

Conventional PCR

Single colonies from STEC isolates were grown aerobically in 1mL LB broth (Difco) in Corn-

ing 96-Well Assay Blocks (Corning Life Sciences, Tweksbury, MA) for 24 hr with constant

shaking (200 rpm) at 37˚C. Cell lysates were prepared from 100 μl of the bacterial overnight

cultures, which were collected by centrifugation at 2000 ×g for 5 min. Cell pellets were resus-

pended in 100 μl of HyClone molecular biology-grade water (GE Healthcare Bio-Sciences,

Pittsburg, PA), heated at 95˚C for 20 min, and centrifuged at 2000 ×g for 5 min, and the super-

natants were collected and frozen until further use. To screen for the presence of mcr-1 and

mcr-2 in the STEC isolates, a conventional PCR assay was performed by using primers

CLR5-F and CLR5-R targeting mcr-1 [8] and primers MCR2-F and MCR2-R targeting mcr-2
[10]. Additionally, amplifications targeting stx1 and stx2 genes, encoding Shiga toxin, and the

gadB gene, encoding glutamate decarboxylase, were included as positive controls to confirm

the source and quality of the DNA used for PCR analysis [24]. Each PCR reaction consisted of

12.5 μl of 2× GoTaq Green Master Mix (Promega Corporation, Madison, WI), 0.5 μM of each

Fig 1. Sample sources that yielded the Shiga toxin-producing E. coli strains, examined in the present

study. Wildlife (32%), watersheds (24%), leafy vegetables (22%), livestock (18%), other vegetables (1%),

sediment (1%), soil (1%), and fruit (1%).

https://doi.org/10.1371/journal.pone.0187827.g001
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primer, and 3 μl of the bacterial crude lysate in a total volume of 25 μl with amplification con-

ditions, as previously described [24]. Amplified products were analyzed in 2% agarose gels

containing 0.04 μl/ml GelRed Nucleic Acid Stain (Phenix Research, Candler, NC).

Real-time PCR for mcr-1, mcr-2, and 16S rRNA genes

Cell lysates (3 μL), prepared as described above, were used as DNA template, MCR-CR-F: 5’-

acggcgtattctgtgccgtgtat-3’ and MCR-CR-R 5’- gctgttcttttggtgcaaaggcattt-3’ were used as prim-

ers for PCR analysis of mcr-1/mcr-2 genes and primers UNI338F and UNI1100R [25] were

used as primers for PCR analysis of the 16S rRNA gene. Two steps real-time PCR were per-

formed using QuantiNova SYBR Green mixture and Qiagen Rotor Gene system (Qiagen, Hil-

den, Germany). A typical 20 μL of PCR reaction includes 0.7 μM of each primer, 3 μL of lysate

and SYBR Green mixture (1x). The PCR conditions used are: 95˚C, 10 minute; 30 cycles

including 95˚C, 15 seconds, 60˚C, 1 min; and 72˚C, 30 seconds. PCR cycle threshold (Ct)

value was used to determine the sample’s positive and negative intervals. When the Ct value is

less than the average Ct value of the positive controls plus 3, the sample is considered as posi-

tive. When the Ct value is greater than or equal the average Ct value of the positive controls

plus 3, the sample is considered as negative [26].

Results and discussion

STEC are important food-borne pathogens that cause about 35% of all bloody diarrhea in the

USA and life-threatening systemic complications, including HUS and there is no effective

therapy for this illness [27]. Recent studies have found the presence of transmissible plasmid-

borne colistin resistance gene, mcr-1, in some STEC isolates [28]. Moreover, it has also been

shown that mcr genes have already spread to the environment prior to their detection [29].

Based on these findings, the objective of this study was to assess the prevalence of mcr-1/mcr-2
genes among STEC recovered from multiple types of samples collected in a major produce-

production area in California. A total of 1000 STEC isolates collected between 2006 through

2014 covering a wide-range of collection time and sources were tested. Fig 1 shows the propor-

tion of sources yielding the tested STEC isolates. Since the discovery of the first plasmid-borne

mcr-1 gene in November, 2015, multiple mcr variants have been identified [30, 31], it is possi-

ble that new variants may continue to be identified. Therefore, it is critical to have an analytical

method that is capable of detecting all mcr genes for a surveillance program. We analyzed

more than 100 mcr gene sequences blasted [32] from the Genbank and identified two con-

served regions: 5’-acggcgtattctgtgccgtgtat-3’ and 5’- gctgttcttttggtgcaaaggcattt-3’. These two

conserved regions were named as MCR-CR-F and MCR-CR-R and used as primers in the

real-time PCR analysis of mcr genes present in STEC isolates.

To validate the specificity of the real-time PCR method, lysates from mcr-1 positive strains,

AR-Bank #0346 and AR-Bank #0349, and mcr-1 negative strains, RM10849 and RM10850,

were used as controls. Since E. coli strains harboring mcr-2 gene were not available, the full

mcr-2 gene was synthesized by IDT (www.idtdna.com) based on the published sequence [10]

and used as a positive control to validate the real-time PCR method for amplification of mcr-2
gene fragment. To confirm the source and quality of the lysates used in the real-time PCR,

amplification of the bacterial 16S rRNA was performed using these lysates as templates. Ampli-

cons generated from mcr-1 and 16S rRNA control samples were sequenced for confirmation

purposes. Fig 2 shows the representative plots obtained from real-time PCR amplification of

mcr-1, mcr-2 and 16S rRNA. The mcr-1 positive strains, AR-Bank #0346 and AR-Bank #0349,

have typical Ct values between 8.84 and 9.04, while the mcr negative strains, RM10849 and

RM10850, have Ct values> 23, at least 14 cycles more than mcr-1 positive strains. The mcr-2

STEC mcr resistance screening
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synthetic gene (SG-mcr-2) was used as a positive control for mcr-2 PCR and the Ct value

obtained was around 3 (Note: mcr-2 positive strains were not available), indicating the effec-

tiveness of the real-time PCR for mcr-2 detection. All strains tested for the rRNA gene have

very close Ct values ranging between 4.13 and 4.87, suggesting similar quality of DNA tem-

plates from different isolates.

The results obtained from the real-time PCR showed that all 1000 STEC isolates collected

during 2006 through 2014 were negative for mcr genes, which was also confirmed by conven-

tional PCR, suggesting a very low probability that mcr genes may be currently prevalent in

STEC, recovered from a produce production region in California. An ongoing survey study by

the National Antimicrobial Resistance Monitoring System on animals and meat samples also

indicates the rarity of mcr-resistance in bacteria in the US, only one resistant strain was found

among over 9000 E. coli samples [33]. Additionally, a separate screening of 2,003 samples of

cecal contents from slaughtered animals yielded two single strains of colistin-resistant E. coli,
recovered from a pig intestinal sample [17]. These findings indicate a lower prevalence of

transferable colistin resistance in the United States when compared to other countries [17]. In

the present study, the absence of transferable colistin-resistance gene in the tested STEC iso-

lates, recovered from a leafy vegetable production region, could be due to the lack of selection

pressure from limited use of colistin, giving the fact that colistin has been exclusively used in

food animals, but not in fresh produce field in California [34]. In countries where the use of

Fig 2. The specificity and sensitivity of real time PCR for mcr-1/mcr-2 and 16S rRNA genes. A) Plot of

the amplification of mcr-1/mcr-2 and 16S rRNA genes to calculate their cycle threshold (Ct) values by

analyzing the fluorescence curve of the PCR products. AR-Bank #0346 and AR-Bank #0349 are the mcr-1

positive controls; MCR-2-SG is the synthetic gene of mcr-2, serving as the mcr-2 positive control; RM10849

and RM10850 are the mcr-1 negative controls. B) Ct values obtained from the real time PCR analysis.

https://doi.org/10.1371/journal.pone.0187827.g002
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colistin has been uncontrolled and aggressive in animal treatment, the prevalence rate of mcr
genes was significantly higher and the antimicrobial genes have been observed to spread across

species [28, 30, 35]. It is worth to note that occurrence of new mcr variants could happen in the

future, the conclusion made in this study is based on the PCR results for mcr-1 and mcr-2 only.
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