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ABSTRACT: An implementation of the Interacting Quantum
Atoms method for crystals is presented. It provides a real space
energy decomposition of the energy of crystals in which all energy
components are physically meaningful. The new package ChemInt
enables one to compute intra-atomic and inter-atomic energies, as
well as electron population measures used for quantitative
description of chemical bonds in crystals. The implementation is
tested and applied to characteristic molecular and crystalline
systems with different types of bonding.

■ INTRODUCTION

Nowadays, many interesting materials, e.g., intermetallic
compounds, belong to the families of chemical systems,
where the usual valence approaches based on pure ionicity,
covalency with 2-center 2-electron bonds, or “metallic
bonding” are no longer valid. The interplay of all these
features challenges our understanding with the emergence of
new bonding scenarios beyond the well-accepted concepts.1−6

Since chemical bonding analysis represents a way to under-
stand inter-atomic interactions, it is also a way to understand
material properties and their relations to specific electron
counts or partial structures. For this sake, chemical bonding
parameters like atomic charges and bond orders must be
consistently related to their energetic counterparts.
This is achieved in the Interacting Quantum Atoms (IQA)

method.7−9 It represents an ideal framework to investigate
covalent and ionic interactions on an equal footing. The sum of
the individual atomic interaction energies forms a part of the
recoverable total energy of the system. All routinely used
quantum mechanical packages yield the total electronic energy.
Usually this energy is given in terms of kinetic and potential
energy contributions. Additionally, the potential energy is split
into Coulomb and exchange-correlation parts. For deeper
insight into the mutual interactions between the atoms, a
suitable analysis of the total energy, respectively the wave
function and its components, must be performed. A number of
tools and methods are available for this task, but only the
periodic energy decomposition analysis (pEDA)10 has been
used to decompose the total energy of extended systems. The
decomposition is done in Hilbert space. Also the Crystal
Orbital Hamilton Populations (COHP)11 analysis does the
decomposition in Hilbert space but decomposes the band
structure energy instead. An alternative and appealing method
to decompose the total energy components into contributions

of and between position-space atomic regions is the approach
of IQA. Unique features of IQA are that it is orbital invariant,
methodologically independent of the type of basis set,
applicable to correlated wave functions, and does not depend
on an external reference state.
The IQA scheme is based on the idea that the one- and two-

electron energy integrals computed over the total coordinate
space can be evaluated separately over any set of non-
overlapping spatial domains. The connection to a sound
chemical description is achieved by the utilization of domains
defined by the Quantum Theory of Atoms in Molecules
(QTAIM), i.e., by the atomic basins determined by the density
gradient field.12 With this, by successive integration of the one-
electron components over each atomic basin, the total one-
electron energy is decomposed into atomic contributions. The
contributions describe the kinetic energy of the atomic domain
as well as the attractive energy between the electrons and the
nucleus enclosed within the atomic domain. The integration of
the two-electron energy components over the atomic basins
yields the intra-atomic and inter-atomic contributions that are
used in the bonding analysis to judge the ionic and covalent
bonding character. The whole procedure was adopted for
molecular wave functions based on the Gauss-type of basis sets
in the program Promolden.13

Until now, the IQA method has not been implemented for
solids. Nevertheless, on the basis of careful calibration studies
using a zeroth order approximation of the full IQA interaction
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energies, the so-called point-charge approximation of the
covalent interaction energy and the ionic interaction energy
(Madelung energy), was employed to understand chemical
bonding and site occupation in ternary half-Heusler (MgAgAs-
type) phases.5 Finally, this scheme was employed to predict
new phases with this kind of structure.6 This may show the
strength and scientific potential of the solid-state implementa-
tion of the exact methodology to be presented below.
The developed ChemInt software is coupled with the DGrid

package.14 This extends the capability to evaluate the
molecular Gauss-type orbitals also to the utilization of Slater-
type based molecular wave functions, as used in the ADF
package,15 as well as to access the numerical atomic orbitals
expanding the wave functions for molecular and crystalline
solid state systems computed with the FHI-aims code.16

ChemInt is also capable to compute the delocalization indices
for all those types of basis sets, including crystalline systems.17

In particular, the bielectronic exchange energy integrals
between position-space atomic regions for solid state wave
functions are extremely challenging due to the huge number of
participating orbitals, which made parallelization of ChemInt a
necessary feature.
Theory and implementation of IQA for crystalline solids are

outlined, reliability of the code is tested with an extensive set of
molecules, and the method is applied to prototype solid-state
compounds exhibiting different bonding scenarios.

■ METHODS
The total electronic energy of a molecule or solid with pairwise
Coulomb interactions comprises the kinetic energy of the
electrons T, electron−nucleus interactions Ene, electron−
electron interactions Eee, and nucleus−nucleus interactions Enn

E T E E Eel ne ee nn= + + + (1)

Given access to the first order density matrix ρ1(r; r′) and the
pair density ρ2(r, r′), the energy can be written as

r r
r r

r r
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Suppose that the space is partitioned into a set of domains that
exhaustively recover the total volume and are mutually
exclusive. Then, the total energy can be decomposed as
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The above energy terms can be written in compact form as the
sum of domain self-energies and interdomain energies,
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Domain self-energies are
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where α ∈ A stands for all nuclei enclosed in domain A, and
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Interdomain energies are
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Notice that intradomain electron−electron terms are halved to
represent total energies whereas interdomain terms represent
nonequivalent interaction energies.
The approach to the energy decomposition given by eq 4

considers the crystal to be formed by interacting atoms,
molecules, etc. One may, otherwise, take a reference unit
formed by one or more domains, embedded in the crystal. We
collect, in an additive manner, E = ∑GE(G), all energy
contributions E(G) of reference unit G,
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The interaction energy for reference unit G shall be organized
by coordination spheres i,
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,
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where there are f AB i( )
number of B neighbors in the

coordination sphere i of domain A of the reference unit. The
last term condenses the sum over the coordination spheres for
each domain in the reference unit into a single sum over
coordination shells j for all domains in the reference unit and,

with m AB( ) j
interaction contributions E AB

int
j( )
within that shell.

The multiplicity factor m AB( ) j
for the shell of those interactions

(i.e., Li−Cl(1) or Cl−Li(1)) takes the form
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where

A B
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1 for symm. equiv.

0 for not symm. equiv. ,A B,

l
moo
n
ooδ =

(14)

and nA, nB are the numbers of symmetry equivalent atoms A
and B in the reference unit, respectively.
The pair density can be viewed as the product of two quasi-

independent densities minus a term accounting for the
difference with the true pair distribution ρ2(r, r′) = ρ(r)ρ(r′)
− ρxc(r, r′).18 This leads in eq 8 to the Coulomb energy
contribution

r r
r r

r rE
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The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c06574
J. Phys. Chem. A 2021, 125, 9011−9025

9012

pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c06574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and the exchange-correlation energy contribution

r r

r r
r rE
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= −

′
| − ′|

′
(16)

With the exception of the exchange-correlation energy, all
interdomain terms are classical. Thus, the interaction energy
can be arranged as a sum of a classical electrostatic energy Ecl

AB

and a covalent energy Exc
AB,

E E E E E E E E( )AB AB AB BA AB AB AB AB
int nn ne ne Coul xc cl xc= + + + + = +

(17)

In the special case of the monodeterminantal wave function,
the exchange-correlation density is directly given by the first
order density matrix, ρxc = ρx = |ρ1(r; r′)|2.
Atomic Boundaries. Atomic domains defined by QTAIM

theory are delimited by surfaces S that satisfy the zero-flux
condition

r n r r S( ) ( ) 0ρ∇ · = ∀ ∈ (18)

where ρ(r) is the density at point r in the surface and n(r) is a
normal vector to the surface. The manifold of all steepest
ascent paths

r r rt t t t( ) ( 0) ( ( )) d
t

0
∫ ρ= = + ∇

(19)

terminating at given attractor (the common destination limt→∞
r(t)) constitutes an atomic (QTAIM) basin. In the following,
the QTAIM basins are used as the spatial domains over which
the energetical decomposition is performed.
We note at this point that a representation of the surface

compatible with atomic-centered grids is required to use the
multi/bipolar expansions presented in the following sections.
To alleviate the expense of the computation, we precomputed
a trust sphere using the algorithm described by Rodriǵuez et
al.19

Of fundamental relevance for solid state systems is achieving
electroneutrality in the unit cell. In contrast to molecules, all
atomic basins determined for a solid state system have finite
volume. Thus, the atomic basins must recover the unit cell
volume, a circumstance that seems to be problematic in case of
atom-centered radial grids. We decided to use radial rays with
symmetric spherical t-designs.20

Energy Integrals in the IQA Framework. The energy
integrals for a system with perfect periodicity are performed
over complex crystal orbitals ϕn,k for given band index n and
reciprocal vector k

r k R r Ri( ) exp( ) ( )k
R

kn n, ,∑ϕ ψ= · −

with R given by the unit cell vectors and the linear
combination ψn,k(r − R) = ∑jcn,j(k) χj(r − aj) of atomic
orbitals χj(r − aj), centered at aj = rj + R, and with coeficients
cn,j(k) to be determined. In this paper, electronic structure
calculations were done with FHI-aims, utilizing numerical
atomic orbitals.
The band and translational symmetry labels are condensed

here to a single label i ≡ (n, k). With this, the crystal orbitals ϕi

determine the electron density r r r( ) ( ) ( )i i iρ ϕ ϕ= ∑ * as well

as exchange pair density r r( ) ( )x i j i j i j, , ,ρ ρ ρ= ∑ * ′ , where

r r r( ) ( ) ( )i j i j,ρ ϕ ϕ= * are overlap densities.

The density is replaced in eq 15, and the exchange pair
density in eq 16,
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with domains being now QTAIM atoms. Recall from eq 7 that
B = A integrals have a 1

2
prefactor.

Intra-atomic Coulomb integrals (A = B) are computed with
the Laplace expansion of 1/|r − r′| around the position of the
atomic nucleus7
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weighted by real spherical harmonic Sl,m. The discriminant r

r

l

l 1
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+ ,

with r< = min(r, r′) and r> = max(r, r′), ensures the
convergence of the expansion.
The expansion is valid also for the exchange integral7
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. Atomic overlap

densities ρi,j
A are zero outside of the basin like the atomic

density above.
The integral evaluation is more efficiently performed in the

basis of overlap densities r( )ij j iρ{ }≥ . The exchange term is

diagonal in this basis with coefficients dij = 2(2 − δij) for
monodeterminantal wave functions,9 and no monadic
diagonalization is required.
Two-center integrals (A ≠ B) are expanded around two

poles, one at each atomic position, with a bipolar
expansion21−23
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The exchange integral between two different basins is
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Once the electronic structure problem is solved by whatever
method, the self-energy of each atom (or fragment) in the unit
cell is obtained. The interaction energy of each of them, e.g., A,
with the rest of atoms of the lattice, appropriately classified by
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increasing distance, B, is obtained (E EA
B A

AB
int int= ∑ ≠ ). This

infinite sum contains quickly convergent terms Ex
AB, which

decay exponentially in insulators and polynomially in metals,
and a potentially divergent series made up of Ecl

AB electrostatic
interactions. By separating Ecl into a short-range, penetration-
like exponentially decaying term and a multipolar one that is
summed via the Ewald construction, one gets rid of
divergences. We have applied the Ewald construction with
the QTAIM monopoles (net atomic charges) via the Environ
program24 and have summed directly the higher order
multipolar corrections from the IQA integrations up to near
neighbors. Even if the QTAIM monopoles are zero, those
terms remain and constitute the well-known electrostatic
interaction between uncharged atoms or molecules.
Approximations Based on Population Measures.

Inter-atomic bielectronic integrals are a particularly expensive
step. As seen in eqs 24 and 25, they involve a bipolar
expansion. For classic electrostatic energy integrals of distant
basins it is equivalent to use a multipolar expansion25
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is a real multipole moment of the net charge density ρt(r) =

∑AZ
Aδ(r − RA) − ρ(r) in basin A. C R( )l m l m

AB
, , ,A A B B ̂ is an

angular factor (cf. eq 25 in ref 7). Technically, this
approximation is invalid if the circumsphere of the basin A
(centered at the nuclear position) intersects the circumsphere
of basin B (with center at nucleus B). As a remark, solid state
systems normally have compact basins. This limits the extent
of the spheres, and it is safe to say that classic interactions with
neighbor atoms of the second and higher coordination spheres
are well approximated with a multipolar expansion in these
cases. Also, internuclear distances in the solid state systems are
often large, exceeding 2 Å.

On the other hand, exchange integrals were proven
numerically to lead to asymptotic convergent multipolar
expansions, with low-order terms being a good approximation
for second and further nearest neighbors.26 The appropriate
expression has the same structure as for classic interactions
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but in terms of the sum of overlap density multipoles
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Further approximation of bielectronic integrals is to consider
only the first term in the multipolar expansion. For the classic
electrostatic term it is the same as assuming spherical density
distribution in the atomic domain. By Gauss law, a point
charge located at the nucleus position (for A and B) produces
a physically equivalent classic force. The classic electrostatic
energy,

E
Q Q

R
AB

A B

ABcl =
(30)

is proportional to the product of QTAIM net charges
Q Z NA A A

el= − ⟨ ⟩ for both basins, where NA
el⟨ ⟩ is the average

electron population in basin A.
Inter-atomic exchange integrals also admit a similar

expression26

E
R2

AB
AB

ABx
δ= −

(31)

that instead involves the delocalization index (DI) δAB between
the atomic domains A and B

r r r r2 ( ) ( ) d d .AB

i j A B ij ij
,

∫ ∫∑δ ρ ρ= * ′ ′
(32)

Table 1. Crystallographic Information and Brillouin Zone Sampling for the Calculated Materialsa

system space group type lattice parameters [Å] calculated cell k-point mesh

β-N2
b P63/mmc a = 4.050c 1 × 1 × 1 5 × 5 × 3

c = 6.604
CO2 Pa3̅ a = 5.494235 1 × 1 × 1 4 × 4 × 4
diamond Fd3̅m a = 3.56660636 1 × 1 × 1 4 × 4 × 4
BN (zincblende) F4̅3m a = 3.6137 1 × 1 × 1 4 × 4 × 4
graphite P63/mmc a = 2.46438 2 × 2 × 1 4 × 4 × 3

c = 6.711
BN-b P63/mmc a = 2.50432339 2 × 2 × 1 4 × 4 × 3

c = 6.658852
MgB2 P6/mmm a = 3.084640 2 × 2 × 1 3 × 3 × 5

c = 3.5199
LiCl Fm3̅m a = 5.1295241 1 × 1 × 1 4 × 4 × 4
NaCl Fm3̅m a = 5.791542 1 × 1 × 1 4 × 4 × 4
MgO Fm3̅m a = 4.21343 1 × 1 × 1 4 × 4 × 4
Al Fm3̅m a = 4.049438 1 × 1 × 1 4 × 4 × 4
Na Im3̅m a = 4.23544 1 × 1 × 1 4 × 4 × 4

aLattice parameters are given for the crystallographic cell, and calculated cells are specified as multiples of the crystallographic cell. bThe z
coordinate for the Wyckoff site is calculated assuming a bond length of 1.108 Å and that the molecule center is located at the symmetry center of
the space group P63/mmc, as in ref 45. cLattice parameters taken from ref 46.
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The delocalization index measures the number of electrons
shared between domains (A and B) and is complemented by
the localization index (LI)

r r r r( ) ( ) d d .A

i j A A ij ij
,

∫ ∫∑λ ρ ρ= * ′ ′
(33)

Localization and delocalization indices must obey the following
sum rule

N A

A

1
2

( )

( )

A A

B A

AB A

A

el
2

2

∑

∑

λ δ λ σ

λ σ

⟨ ⟩ = + = +

= +
α

α

≠

(34)

The fluctuation of electron population σ2(A) in basin A is the
result of electron pair sharing with atoms of the first
coordination shell σ1

2(A), second coordination shell σ2
2(A),

and so on.
Expressions 30 and 31 are the basis for our more generic

scaled point-charge approximation (sPCA) for classic ionic and
exchange (covalent) inter-atomic interactions. The scaling
parameters scl and sx approximate the exact classic and
exchange energy, respectively, with a scaled zeroth order
multipolar approximation:

E s
Q Q

R
E s

R
andAB

A B

AB
AB

AB

ABcl cl x x
δ= = −

(35)

■ COMPUTATIONAL DETAILS
Density functional theory calculations (PBE functional27) for
crystalline solids were performed with FHI-aims, an all-
electron full-potential electronic-structure code. The numeric
atom-centered basis sets used were of standard “tight” type.
The computed unit cells and Brillouin zone samplings are
listed in Table 1. An external output option of FHI-aims
(version 200112) is used to generate DGrid compatible wave
function information. ChemInt interfaces DGrid to evaluate
wave function properties at discrete points in space, determines
the atomic QTAIM basins, and performs the IQA analysis with
this space partitioning.
The set of molecules taken for the validation were computed

with GAMESS,28 ADF,15 and FHI-aims,16 employing HF,
LDA,29−31 PBE,27 BLYP,32,33 and B3LYP34 functionals. The
basis set taken within each program is cc-pvtz (GAMESS),
TZ2P (ADF), and standard “tight” (FHI-aims). For each
molecule, the geometry was optimized before integrating the
energy components. The geometry was fixed for molecules
used for comparison against the solid phase (N2, CO2,
neopentane, and phenalene). Only the four central atoms of
phenalene were fixed while the positions of the other atoms
were optimized.

■ RESULTS AND DISCUSSION
IQA energy terms are examined for a number of molecular
systems to evaluate the energy error. In subsequent exemplary
application studies, some prototype compounds (diamond and
zincblende structures, honeycomb networks, rocksalt struc-
tures, closest packings) covering covalent, ionic, and metallic
situations were investigated.
Validation of the Implementation. Three approaches

are explored to validate our implementation. First, similar
results should be obtained with alternative implementations

when comparable (molecular wave functions expanded with
GTOs). In this document only the ethane system is shown
(Table 2), but the equivalence was tested also with other

simple systems reaching always similar accuracy. Second,
properties like the volume, exchange-correlation energy, and
total energy in the cell were checked against FHI-aims. The
total energy requires an exhaustive computation of long- range
interactions to be recovered. The electron count sum for the
(crystallographic) unit cell provide a third way to check the
validity of our implementation. Only the first is examined in
this section and the other two in the next sections.
For the first check, we take the same molecular wave

function and perform an energy decomposition analysis with
two independent IQA implementations: our code and the
Promolden code.13 We see that the integrated quantities have
similar accuracy to those of Promolden and are consistent,
beyond the chemical accuracy of approximately 1 mHa, with
accurate full space integrations given by GAMESS (Table 2).
The precision of IQA decomposition is mainly determined

by errors in the atomic boundary, the quality of the grid, and
the truncation of the Laplace/bipolar expansion. Another
possible source of error can be differences in the evaluation of
the energy in ChemInt with respect to the SCF program. The
energy difference between reconstructing the total energy from
IQA components against the SCF energy is a measure of the
error of our method. For the evaluated molecular systems, this
energy error per atom is always below chemical accuracy (see
Figure 1) with a modest choice of integration parameters. The
boundary is determined with a precision of more than 5 × 10−4

Å normal to the surface using an ODE integrator that preserves
a local relative error of the same magnitude. The grid has 600
radial points and 5780 points distributed on a symmetric
spherical t-design grid. A maximum expansion order of l = 4 (l
= 6) for regions near (far from) the nucleus is chosen.
Increasing the precision of the surface determination does not
yield a better integration. As well, the length of the expansion
chosen here is enough to approximate bielectronic integrals.
From our observations, the quality of the grid is the most
determining factor once the rest of the parameters have been
fixed like here.
Nevertheless, it is important to realize that periodic systems

require a significantly larger number of orbitals than molecular
systems. Computations with maximum resolution are not
always feasible, and one must find a balance of precision and
speed. Therefore, we are interested in the minimum required
computation needed to achieve a reasonable accuracy level.
For all the systems tested, we found that a surface represented
with approximately 6000 points is enough to integrate the total

Table 2. Total Energy Components of Ethane Computed
with ChemInt, Promolden, and GAMESSa

energy ChemInt Promolden GAMESS

total energy, E −79.731 −79.732 −79.730
kinetic energy, T 79.243 79.243 −79.244
total potential energy, Ene −158.974 −158.975 −158.974
electron−electron energy, Eee 67.551 67.552 67.551
Coulomb energy, ECoul 80.528 80.529 80.528
exchange-correlation energy, Exc −12.977 −12.977 −12.977

aThe evaluated number of electrons per formula unit are 17.9992
(ChemInt) and 18.0001 (Promolden). Ex was re-scaled from the
integration of the PBE functional.47 Energy in Ha units.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c06574
J. Phys. Chem. A 2021, 125, 9011−9025

9015

pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c06574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


volume in the crystallographic unit cell with a volume error
ΔVcell = ∑AV

A − Vcell below 0.200 Å3 if we combine it with a
radial grid of at least 200 points (Table 3). The symmetrical t-

design quadrature offers a more robust integration, devoid of
occasional (large) volume integration errors present with
Lebedev−Laikov grids. In particular, for half-Heusler LiMgN,
the cell volume error would be 2.027 Å3 using a 5810-point
Lebedev grid. Instead, it is 0.010 Å3 with a 5780-point t-design
grid. The distribution of points offered by the new grids is
more homogeneous, thus providing a better overall represen-
tation of basin surfaces. Besides this, volume errors take place
at the boundary of the basins so the integration of the charge
can, and this is the case from our observations, still be within
chemically reasonable accuracy error (<0.01).

Molecular Crystals. Molecular crystals are a suitable
example to examine the type of strong bonds that one finds in
molecules before shifting to the highly diverse bonds present in
crystalline materials. For that matter, we analyze β-N2, and
CO2 crystals. A priori, N−N and C−O bonds are only
expected to differ slightly from a gas phase molecule. Indeed,
covalent intramolecular energies in the solid phase bear a
striking resemblance to bonds of equal internuclear distance
between atoms in gas phase, as shown in Table 4.
Intermolecular interactions in the solid barely debilitate the
covalent stabilization provided by the N2 triple bonds. As well,
the classic interaction Ecl

NN between two nearest nitrogen atoms
is almost unaltered. In this regard, the triple bond exhibited by
a N2 molecule is transferable to a triple bond in β-N2.
On the other hand, while the C−O bond is similar in both

environments, the strong polarization of this bond permits
ionic interactions with neighbor molecules, with O−O being
the most intense interaction. The C−O bond is mainly altered
by its classic ionic component, which varies by 0.126 Ha in
comparison to 0.018 Ha for the covalent energy Ex

CO. In both
scenarios, a strong contribution from dipolar and quadrupolar
components to the classic energy is found. The same effect is
observed for intramolecular O−O interactions but is more
attenuated.

Diamond and Zincblende Structure. Convergence of
Bielectronic Integrals. A steady convergence with increasing
multipolar order is observed for intra-atomic bielectronic
integrals in diamond and zincblende BN (Figures 2 and 3).
The Coulomb energy ECoul

AA shows a dominating monopolar
term (l = 0) followed by zero l = 1, 2 terms as demanded by
symmetry.48 The l = 3, 4 terms are nonzero due to
nonspherical distribution of electrons in the basin. The l = 5
term vanishes again due to symmetry. These observations for
diamond atoms are in close agreement with those of a carbon
atom in methane or the quaternary atom in neopentane (cf.
Supporting Information, Figure S2 and Figure S3).
Convergence with l of nearest-neighbor inter-atomic

electron−electron terms in diamond is slower than for intra-
atomic terms (see Figures 2 and 4). The convergence of
Coulomb and exchange components with the order of the

Figure 1. Energy difference (per atom) between the reconstructed
IQA energy and the SCF energy (energy error). The white band
denotes the median. Boxes delimit the lower and upper quartiles Q3
and Q4, and fences delimit all energy errors from a sample that takes
wave functions computed with GAMESS, ADF, or FHI-aims,
employing HF, LDA, PBE, BLYP, and B3LYP functionals for every
system. Ex was rescaled from the integration of the corresponding
functional.47 All errors fall below 1 mHa.

Table 3. Reconstructing the Crystallographic Unit Cell
Volume from QTAIM Basin Volumes: Volume Error, ΔVcell,
and Cell Charge, Qcell

compound structure type ΔVcell [Å3] Qcell [e]

LiCl NaCl 0.104 −0.005
NaCl NaCl 0.168 0.009
MgO NaCl 0.039 0.002
CsCl CsCl 0.004 −0.000
C diamond −0.004 0.007
BN zincbende 0.020 0.000
C graphite 0.017 0.001
BN BN-b 0.009 0.001
Na α-W (bcc) −0.028 0.001
Al Cu (fcc) 0.010 0.000
MgB2 AlB2 0.014 0.002
LiMgN MgAgAs 0.010 0.006
N2 β-N2 −0.007 0.008
CO2 CO2 −0.073 0.000

Table 4. Comparison of IQA Two-Center Terms for Covalent Bonds in Molecular and Solid Phases β-N2 and CO2
a

system A−B RAB δAB Enn
AB Ene

AB Ene
BA ECoul

AB Ecl
AB Ex

AB

N2 (mol.) N−N 1.108 3.041 23.399 −21.944 −21.944 20.716 0.227 −0.906
N2 (solid) N−N(1) 1.108 3.000 23.399 −21.952 −21.953 20.726 0.220 −0.903
CO2 (mol.) C−O 1.149 1.396 22.114 −25.443 −13.413 15.453 −1.289 −0.444
CO2 (solid) C−O(1) 1.149 1.323 22.114 −25.646 −13.152 15.269 −1.415 −0.426
CO2 (mol.) O−O 2.297 0.433 14.743 −16.981 −16.981 19.563 0.343 −0.054
CO2 (solid) O−O(2) 2.297 0.407 14.743 −17.081 −17.081 19.793 0.373 −0.052

aNearest-neighbor interactions are denoted with A−B(1), second neighbors with A−B(2), and so on. Energies in Ha; distances in Å.
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multipolar expansion was examined to assess the possibility of
truncating the series. Storage of higher-order terms contributes
to a substantial increase of computation time, specially due to
the increasing number of averaged overlap densities Rl,m

i,j .
Coulomb and exchange terms show the expected convergent
behavior. However, terms of order l = 3, 4 are still important
for the Coulomb integral. This forces us to take several orders
in the expansion. This behavior could, as well, vary for other
systems. Therefore, it is only a preliminary observation.
The Coulomb integral ECoul

AB between a boron atom and a
nearest N atom is well approximated from the (lA, lB) = (0, 0)
term (Figure 5). Higher order terms L = lA + lB > 0 clearly
reflect the characteristics of the electron distribution in their

respective basins. Terms with order L = 1, 2 result from the
combinations {(0, 1), (1, 0), (1, 1), (2, 0), (0, 2)}. As we have
seen above, since the symmetry in B and N sites is tetrahedral,
l = 1, 2 terms are zero (Figure 3). The same argument justifies
the absence of L = 5 terms. Thus, only with L = 0, 3, 4, and 6
are the corrresponding bicentric Coulomb terms nonzero.
Only due to numerical accuracy are they nonzero. More
distant interactions like the closest N−N and B−B exhibit the
same pattern, but their contribution from higher L order terms
is already small, especially for B−B interactions.

Self-Energies and Near Neighbor Interactions. Having a
generic method to decompose atomic energies allows us to
compare molecular and solid systems on the same footing.

Figure 2. Diamond: Convergence of bielectronic integrals inside the basin of the carbon atom, with increasing multipolar order l, E EAA
l

AA l
Coul Coul

,= ∑
and E EAA

l
AA l

x x
,= ∑ . Only their magnitude is plotted. Dashed lines indicate the trend of convergence for symmetry allowed terms. Disconnected

dots are not allowed by symmetry and are nonzero due to numerical errors. Terms below 10−5 Ha are represented as dots at the bottom.

Figure 3. BN (zincblende): Convergence of bielectronic intrabasin integrals with increasing multipolar order l. For point and lines explanations, see
Figure 2.
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Diamond is a prototype of a covalent network with bonded
quaternary carbon atoms. A carbon atom with the same
coordination in a molecule is the quaternary carbon of
neopentane.
Table 5 compares the population and intra-atomic energy

components of this atom in the two environments. The
average electron population of the quaternary C atom in
neopentane is slightly lower than that in diamond carbon
atoms. Both intra-atomic classic Ecl

CC and exchange energies
Ex
CC are larger in diamond due to the higher population of the

atomic basins.
Carbon atoms have a similar inter-atomic distance in

diamond and neopentane, approximately 1.545 Å. To facilitate
the discussion, the C − C distance in neopentane is fixed to be
exactly the same as in diamond. This way, the nucleus−nucleus
repulsion is identical. Full relaxation of the geometry does not
change our conclusions. Inter-atomic interaction energies are
presented in Table 6. As for intra-atomic terms ECoul

CC ,
electron−electron Coulomb energies are larger in the solid
phase. This is counterbalanced by Ene

CC to finally yield a smaller
classic energy. In diamond, electron−nucleus interactions are
symmetrical, Ene

AB = Ene
BA. The sum of all classic electrostatic

terms nearly cancels to yield Ecl
CC = 0.019 Ha for neopentane

and Ecl
CC = 0.014 Ha for diamond because the electroneutrality

of the atom makes the L = 0 term vanish. The classical L > 0
energy term Ecl,L≠0

AB has to be positive for neutral non-
overlapping charge distributions.8

Exchange energies Ex
CC are almost identical in neopentane

and diamond. Conversely, the nearest-neighbor DI δCC in
diamond is smaller due to higher delocalization of the wave
function (more distant neighbors) in the solid.
Diamond presents a DI of δCC = 0.914 between nearest-

neighbor atoms. The delocalization goes down to δCC = 0.044

for second nearest-neighbors. The variation of DIs for the third
coordination shell obtained for equivalent interactions is too
large to prevent a detailed numerical examination. Up to first
and second nearest neighbors the sum rule (34) is shown in
Table 7.
Boron nitride represents an example of a diamond-type

structure with polar bonds. While the nearest-neighbor
electrostatic interaction Ecl

CC=0.014 Ha in diamond represents
a destabilization, in B−N it is a stabilizing classic interaction
between opposite charged atoms with an energy contribution
of Ecl

BN=−1.586 Ha (Table 6).
The nearest-neighbor exchange interaction Ex

BN is only one-
third of the analogous nearest neighbors interaction Ex

CC in
diamond. Note that this decrease can be estimated (31) from
the strong decrease of the delocalization index from δCC =
0.957 to δBN = 0.357.
For BN, in overall, classic electrostatic energies between

nearest neighbors are much larger than the exchange ones.
This fact reveals the high importance of classic interactions in
the short-range regime.
The closest B−N interactions involve 0.36 electron pair

sharing (Table 7) that parallels the value of 0.37 obtained
before.49 Nitrogen atoms share 0.15 electron pairs with any
other nearest nitrogen atom (to be compared with 0.35
electron pairs). The sum-rule for N is approached including
interactions up to the second coordination shell (see Table 7).
On the other hand, boron atoms have no significant electron
sharing with other boron atoms. There are, however, 0.038
electrons still missing to recover the average number of
electrons in the boron basin.
The localization indices are in agreement with results

obtained before by some of us (Table 6).

Figure 4. Diamond: Convergence of bielectronic interbasin integrals with increasing bipolar order L = lA + lB. Labels in the top right indicate an
interaction of atom A with an atom B of the ith coordination sphere as A−B(i).
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Additive Interaction Energies. The additive interaction
energy (cf. equation 11) for a 2-atom reference unit G = {C1,
C2} ≡ C1C2 in diamond can be approximately obtained as

follows. The covalent interaction energies E (C1C2)x
CC(1)

between nearest neighbors (−0.284 × 4 = −1.136 Ha) and

E (C1C2)x
CC(2)

between second nearest neighbors (− 0.006 ×
12 = −0.072 Ha) sum to a total covalent interaction energy of
Ex(C1C2) = −1.208 Ha. Higher neighbors are omitted due to
a very small value of remaining bond fluctuations

N( (C) (C) 0.090)C
el 1

2
2

2σ σ⟨ ⟩ − − = . A kind of lower bound
of the neglected covalent interaction can be estimated with the
zeroth order approximation if we assign all remaining electrons

to the third coordination shell, 0.016
R

0.090
CC(3) = Ha. The

stabilizing covalent interactions are counterbalanced by
electrostatic interactions Ecl(C1C2) = 0.014 × 4 + 0.001 ×
12 = 0.068 Ha (in diamond) from contributions between first
and second nearest neighbors, respectively. The total
interactions considered amount to Eint(C1C2) = −1.140 Ha.

Figure 5. BN (zincblende): Convergence of bielectronic interbasin integrals with increasing bipolar order L = lA + lB. For point and lines
explanations, see Figure 2.

Table 5. IQA Monocentric Integrals Inside Basins with Td Point Symmetrya

system A ⟨Ne
A⟩ λA σ2(A) TA Ene

AA ECoul
AA Ecl

AA Ex
AA

neopentane C 5.929 3.775 2.154 37.781 −89.694 19.154 −70.540 −4.566
diamond C 5.999 3.820 2.180 37.917 −90.128 19.522 −70.606 −4.602
BN B 2.839 2.075 0.765 23.700 −51.753 7.923 −43.830 −3.008

N 9.161 7.517 1.643 55.650 −138.162 36.638 −101.524 −7.019
aEnergies in Ha units.
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For zincblende, again, a diatomic reference unit G = {B1,
N1} ≡ B1N1 is chosen. The approximate covalent interaction
energy up to second nearest neighbor terms sums nearest
neighbor B−N(1) interactions (− 0.106 × 4 = −0.424 Ha),
second nearest neighbors N−N(2) interactions (− 0.030 × 6 =
−0.180 Ha), and second nearest neighbor B−B(2) interactions
(0.000 × 6 = 0 Ha) giving Ex(B1N1) = −0.604 Ha. While the
electron sum rule is already well satisfied for N, some 0.038
electrons are missing on B. If we use this number to

approximate the maximum additional covalent energy, the
third nearest neighbor B−N(3) interaction with a distance

RBN(3)
may be estimated to contribute maximally

R

0.038
BN(3)

. It is

interesting that a non-negligible covalent N−N(2) interaction
has been found, which makes up 30% of the covalent bond
energy. It can be considered as the residual bonding of the
incompletely occupied N2.161− atoms, which is a necessary
consequence of the polar bonding B−N(1) leading to the small
DI δBN = 0.357.
The procedure applied for the covalent part is not feasible

for the electrostatic part, because of the long-range of the
electrostatic interactions and the well-known resulting non-
convergence of the simple coordination series energy in real
space. The electrostatic part of the interaction per reference
unit can only be approximated by the point charge
approximation using the Madelung constant of zincblende
f M,R = 1.63806. The validity of the PCA for this procedure can
be estimated by determining the PCA scale factor scl for the
computed first and second nearest neighbor Ecl(B1N1)
energies using Q atomic net charges and the corresponding

distances RBN(1)
, and RBN(2)

. It turns out that the PCA energy

values are rather close to the exact IQA ones (s 1.004cl
(1) = ,

s 0.999cl
(2) = ), such that the PCA is well justified. The
Madelung energy per unit cell G = B1N1 is calculated

according to E f(B1N1) 2.591M R
Q
Rcl

Madelung
,

2

= − × = − Ha,

Table 6. IQA Two-Center Terms for Relevant Interactions in Neopentane, Diamond, and Zincblende BNa

system A−B m RAB δAB Enn
AB Ene

AB Ene
BA ECoul

AB Ecl
AB Ex

AB

neopentane C−C(1) 4 1.544 0.957 12.335 −12.058 −12.094 11.836 0.019 −0.288
diamond C−C(1) 4 1.544 0.914 12.335 −12.217 −12.217 12.113 0.014 −0.284

C−C(2) 12 2.522 0.042 7.554 −7.551 −7.551 7.549 0.001 −0.006
BN B−N(1) 4 1.563 0.357 11.848 −15.502 −6.697 8.765 −1.586 −0.106

N−N(2) 6 2.553 0.152 10.158 −13.290 −13.291 17.390 0.967 −0.030
B−B(2) 6 2.553 0.002 5.183 −2.943 −2.943 1.671 0.968 −0.000

am m AB( )i
≡ is the number of equivalent interactions A−B per reference unit (G = C1C2 or G = B1N1) (eq 13). Energies in Ha; distances in Å

units.

Table 7. Cumulative Electron Populations
N A( )A

A i iel cum 1
2λ σ⟨ ⟩ = + ∑α α

= of Atomic Basins in Diamond
and Boron Nitride (Zincblende) from Successive Inclusion
of Delocalization Shells α with DI δα

a

α coordination sphere δα ⟨Nel
A⟩cum

α

0 C − 3.820
1 C−C(1) 0.914 5.648
2 C−C(2) 0.044 5.912
0 B − 2.075
1 B−N(1) 0.357 2.789
2 B−B(2) 0.002 2.801
0 N − 7.517
1 N−B(1) 0.357 8.231
2 N−N(2) 0.155 9.161

aThe sum rule of eq 34 approaches ⟨Nel
A⟩=6 as delocalization with

more distant atoms is included. Boron has ⟨Nel
A⟩ = 2.839 electrons,

and nitrogen has ⟨Nel
A⟩ = 9.161 electrons.

Table 8. IQA Two-Center Terms for Relevant Interactions in Hexagonal Graphite, BN, and MgB2
a

A−B m RAB δAB Enn
AB Ene

AB Ene
BA ECoul

AB Ecl
AB Ex

AB

C−C(1)ab 3 1.423 1.202 13.391 −13.098 −13.102 12.846 0.037 −0.372
C−C(2)ab 6 2.464 0.054 7.731 −7.692 −7.692 7.655 0.002 −0.007
C−C(3)ab 3 2.845 0.037 6.696 −6.679 −6.681 6.665 0.001 −0.004
C−C(4)c 1 3.356 0.019 5.677 −5.709 −5.709 5.746 0.004 −0.003
C−C(5)c 6 + 3 3.645 0.006 5.227 −5.245 −5.247 5.266 0.001 −0.001
B−N(1)ab 3 1.446 0.452 12.810 −16.751 −7.065 9.244 −1.762 −0.135
B−B(2)ab 3 2.504 0.004 5.283 −2.936 −2.935 1.632 1.043 −0.000
N−N(2)ab 3 2.504 0.212 10.354 −13.604 −13.605 17.877 1.021 −0.040
B−N(3)ab 3 2.892 0.008 6.405 −8.419 −3.564 4.685 −0.893 −0.001
B−N(4)c 2 3.329 0.006 5.563 −7.329 −3.110 4.101 −0.776 −0.001
N−N(5)c 3 3.630 0.024 7.144 −9.411 −9.410 12.403 0.726 −0.003
B−B(1)ab 3 1.781 0.983 7.429 −8.392 −8.392 9.522 0.166 −0.249
B−B(3)ab 6 3.085 0.052 4.289 −4.953 −4.953 5.722 0.106 −0.006
B−B(5)ab 3 3.562 0.017 3.714 −4.303 −4.303 4.987 0.095 −0.002
Mg−B(2)c 12 2.504 0.061 12.681 −14.830 −10.964 12.824 −0.290 −0.013
Mg−Mg(3)ab 3 3.085 0.003 24.704 −21.364 −21.364 18.475 0.450 −0.000

aThe reference units corresponding to m m AB( )i
≡ are G = C1C2, G = B1N1, and G = MgB1B2. Energies in Ha; distances in Å units. Key: ab,

intralayer interaction; c, interlayer interaction
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where R is the first-neighbor B−N distance. Although l = 1, 2
(dipoles, quadrupoles) are forbidden by symmetry, there are
contributions from classic electrostatic terms with L > 0 due to
the large atomic net charges present in the system. Owing to
their absence in the Madelung formula, they must be
accounted at least for nearest neighbors. We compute them
with Ecl(G) − Ecl,L=0(G) = −0.026 Ha, where the last term is
just the point-charge contribution (eq 30). The total
electrostatic energy is then Ecl = −2.617 Ha. From these
values, the total interaction energy amounts to Eint(B1N1) =
−3.221 Ha. The fraction of covalent bond energy per G =
B1N1 with respect to the total interaction energy 0.604

0.604 2.617+
yields a 19% contribution of covalent interaction. Based on this
fraction, the interaction in BN (zincblende) is characterized by
dominating 81% ionic interactions. Still, the covalency is non-
negligible, and it represents the local type of bonding, while the
electrostatic Coulomb interaction is a collective type of
bonding as discussed previously.50 While the covalent bonding
A−B is a local property of A and B, the electrostatic interaction
A−B has long-range consequences, alternating stabilizing and
destabilizing terms. These two different types of bonding
cannot be discussed on the same footing, i.e., in a local picture.
For this reason, the energies per reference unit have been
calculated for characterization.
Honeycomb Networks. Honeycomb networks can be

found in graphite, hexagonal boron nitride, and the
intermetallic superconductor MgB2. Table 8 shows nearest-
neighbor interactions in the three hexagonal systems. In
addition to the σ bonds discussed in the previous section, they
might exhibit a certain degree of π double bond character. In
graphite, it has been shown,51 based on delocalization indices,
that the shortest C−C bonds with a DI δCC = 1.20 have partial
double bond character, whereas in MgB2 the number of shared
electron pairs is the same as for a single bond δBB = 1.00. For
comparison, similar values of δCC = 1.202 in graphite and δBB =
0.983 in MgB2 are obtained.
Graphite nearest-neighbor C−C bonds display higher Ex

AB

energies (covalent bond energies) than in the other systems
with honeycomb networks. The nearest-neighbor B−N
covalent bond is particularly weak. In the honeycomb layer,
the Ex proportion of the B−N covalent bond compared to the
C−C covalent bond, 0.135

0.372
, parallels the proportion seen in

diamond and zincblende BN, 0.106
0.284

. Conversely, classic

electrostatic interactions are different for each system studied
here. BN is largely stabilized from collective classical
interactions between ions. This finding provides conclusive
support for interpreting B−N as a very polar bond. However,
destabilizing second-neighbor ionic interactions overcome the

stabilization achieved by nearest neighbors. In the long-
distance limit, those classic ionic interactions would tend to
partially cancel.50 Graphite only has high order multipole
contributions to the classic electrostatic energy. Thus, already
for first neighbors, a low value of Ecl = 0.037 Ha is obtained. In
MgB2, nearest B−B interactions display a considerable classic
(interionic) destabilization that is compensated by Mg−B
classic electrostatic stabilization.
As in zincblende BN (Ex

NN = −0.030 Ha), among second-
neighbor interactions only N−N still has a notable exchange
contribution Ex

NN = −0.040 Ha in the hexagonal phase.
Phase Stability: Cubic versus Hexagonal Structures.

Diamond and graphite are the main allotropes of carbon. The
experimental difference in enthalpies is known to be quite
small, ΔH298 K = +1.895 kJ/mol,52 requiring an exquisite
degree of accuracy that challenges DFT functionals. Albeit the
relative stability problem is already solved,53 the internal forces
leading to a greater stability of graphite are not completely
known. The additional stability might result from the
delocalized π bonding framework. However, it is not clear if
the higher coordinated carbon atoms (via σ bonds) in
diamond should be less stable. The origin of graphite stability
could as well be attributed to a particular local property like a
different hybridization. In the spirit of a recent publication that
includes those contributions in an analytical model,54 we
perform a numerical exploration to elucidate why nature
chooses graphite over diamond.
Similar to the case of diamond discussed in the Diamond

and Zincblende Structure section, the case of graphite involves
a combination of stabilizing covalent bond contributions

E (C1C2) 0.372 3 0.007 6ab
x = − × − × − 0.004 × 3 =

−1.170 Ha for ortho, meta, and para neighbors for the chosen
C1C2 reference unit. The covalent part of the C−C interaction
i n t h e c d i r e c t i o n amo u n t s t o E (C1C2)x

c =
0.003 1 0.001 9 0.012− × − × = − Ha to be added to yield

final Ex(C1C2) = −1.182 Ha. The destabilizing electrostatic
i n t e r a c t i o n s a m o u n t t o E (C1C2)ab

cl =
0.037 3 0.002 6 0.001 3+ × + × + × = +0.126 Ha (intra-

layer) and E (C1C2) 0.004 1 0.001 9 0.013c
cl = + × + × = +

Ha (interlayer) summing up to Ecl(C1C2) = +0.139 Ha. A
total interaction energy of Eint(C1C2) = −1.043 Ha is
obtained. Comparison of the total interaction energy to that
of the diamond modification Eint(C1C2) = −1.140 Ha
(Ex(C1C2) = −1.208 Ha, Ecl(C1C2) = +0.068 Ha) reveals
that the covalent interactions up to third nearest neighbors are
energetically smaller, and the destabilizing electrostatic ones
are larger. This yields an interaction energy preference for the
diamond structure of ΔEint(C1C2) = 0.097 Ha.

Table 9. Relative Phase Stability of Cubic and Hexagonal Phases for C and BN Compoundsa

phase Ex(G) Ecl(G) ΔEint(G) ΔEself(G)
b ΔE(G) ΔEFHI‑aims(G)

C (cubic) −1.208 0.068 0 0.146 0.049 0.009
C (hex.) −1.182 0.139 0.097 0 0 0
BN (cubic) −0.604 −2.617 0 B: 0 0.012 0.005

N: 0.120
BN (hex.) −0.539 −2.645 0.037 B: 0.071 0 0

N: 0
aValues for a reference unit: G = C1C2 and G = B1N1. ΔE(G) values are referred to the most stable phase. Energies in Ha units. bDue to
numerical difficulties integrating the total kinetic energy with mHa accuracy, atomic kinetic energies TA were scaled to recover the total kinetic
energy from FHI-aims.
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Thus, the interaction energies do not explain the obtained
total energy difference ΔEFHI‑aims(C1C2) = 0.009 Ha between
both modifications giving a preference to the graphite
modification. This finding suggests that, at least for the current
calculation, the preference of the graphite modification is
caused by intra-atomic electron reorganization terms. Indeed,
inclusion of the intra-atomic energies using ΔE(C1C2) =
E(C1C2, diamond) − E(C1C2, graphite) = ΔEself(C1C2) +
ΔEint(C1C2) resolves this seeming discrepancy and yields the
energetical preference of the hexagonal phases (Table 9). In
the framework of Valence Bond Theory, one would argue, the
sp3 hybridization of carbon in diamond requires more energy
than the sp2 hybridization in graphite. Just as in the solid phase,
the 4-connected central carbon atom in neopentane and the 3-
connected one in phenalene display a consistent self-energy
difference of ΔEself(2 × C1) = 0.068 Ha, thereby
demonstrating that the hybridization of the carbon atom is
related to the stability of graphite over diamond. This indicates
that the relative stability of carbon allotropes is not ruled by
nonlocal contributions (π delocalization) but by intra-atomic
electron redistribution energies often coined as “hybridization
energies”.
The covalent interaction part per diatomic unit G = B1N1 is

c a l c u l a t e d a c c o r d i n g t o E (B1N1)ab
x =

0.135 3 0.000 3 0.040 3 0.001 3− × − × − × − × =
−0.528 Ha for ortho (3 B−N(1)), meta (3 B−B(2) + 3 N−
N(2)), and para neighbors (3 B−N(3)) respectively. The B−
N(4) and N−N(5) interactions in the c direction amount to
E (B1N1) 0.001 2 0.003 3 0.011x

c = − × − × = − Ha to yield
a total covalent bond energy Ex(B1N1) = −0.539 Ha. Since
the Madelung constant for this structure is not fixed by
symmetry, it cannot be found tabulated in the literature.
Therefore, the ionic electrostatic interaction energy

E (B1N1) 2.768cl
Madelung = − Ha was computed with the

Environ program using the QTAIM net charges. This value

is slightly larger than E (B1N1) 2.591cl
Madelung = − Ha obtained

for cubic phase. The low symmetry of hexagonal BN allows
classic contributions not present in the cubic phase
Ecl,L>0(B1N1) = 0.123 Ha that in sum counteract the point-
charge Madelung energy. Thus, classic energy components
account for Ecl(B1N1) = −2.645 Ha. The portion of covalent
interactions 0.539

0.539 2.645+
of 17% is smaller than 19% obtained for

the cubic variant. The total interaction energy obtained
amounts to Eint(B1N1) = −3.184 Ha, which is of smaller
size than Eint(B1N1) = −3.221 Ha obtained for cubic BN by
37 mHa. In contrast, the total energy difference per BN unit
computed with FHI-aims is ΔEFHI‑aims(B1N1) = 0.005 Ha

energy preference to hexagonal BN. So, the total energies
obtained from FHI-aims yield a preference for the hexagonal
variants for both cases: carbon, and BN. In contrast, for both
cases, the summed interaction energies yield a preference of
the cubic structures. This seeming discrepancy is resolved
again taking the intra-atomic energies into account as well.
According to this finding it is the intra-atomic energies and not
the interaction ones that are responsible for the preferred
stability of the hexagonal phases (Table 9). For BN, an
interesting competition between B and N species is found.
Intra-atomic energies indicate a preference of B species for the
zincblende environment, while N species prefer the hexagonal
environment. In the end the higher stabilization of the N
species in the hexagonal environment dominates, and from
ΔE(B1N1) = E(B1N1, cubic) − E(B1N1, hex.), the
preference for the hexagonal phase is obtained.

Rocksalt-Type Structures. Ionic crystals should present
situations with extremely polar bonds. As a case in point we
consider LiCl, NaCl, and MgO.
Table 10 shows short-range interactions in the rocksalt-type

structure for various compounds. Even nearest-neighbor inter-
atomic interactions have a small energy contribution from
electron sharing. One can foresee from the delocalization
indices that this is the case. Classical interactions take over the
exchange component for those systems. As expected from their
large QTAIM charges, the classic energy only converges when
long-range interactions are also included.
The additive energy for a reference unit G = LiCl is

computed as follows. The covalent interaction energy from
interactions with the first and second coordination sphere is
Ex(LiCl) = −0.007 × 6 + 0.0 × 6−0.012 × 6 = −0.114 Ha
where six Li−Cl(1), six Li−Li(2), and six Cl−Cl(2) interactions
are considered. The lattice electrostatic energy assuming point

charges is E (LiCl) 0.292cl
Madelung = − Ha based on a Madelung

summation. The effects of nonsphericity of the charge
distribution around ions has an effect that is appreciated
only for nearest neighbor interactions, as seen from their
scaling factors of scl

(1)=0.98 and scl
(2) = 1.00. To correct the

classic energy for first-neighbors, Li−Cl(1), higher order
multipolar contributions, taken from the IQA inter-atomic

energy as E6 0.008Lcl , 0
LiCl(1)

× =≠ Ha, are included. The total
electrostatic energy is therefore Ecl(LiCl) = −0.2848 Ha. Thus,
the covalent part contributes 29%0.114

0.284 0.114
=+

to the

interaction energy Eint(LiCl) = −0.398 Ha.
Similarly, for a G = NaCl reference unit, covalent

interactions contribute with Ex(NaCl) = −0.09 Ha. The
c l a s s i c e n e r g y , a s s um i n g p o i n t c h a r g e s , i s

Table 10. IQA Two-Center Terms for Relevant Interactions in LiCl, NaCl, and MgOa

A−B m RAB δAB Enn
AB Ene

AB Ene
BA ECoul

AB Ecl
AB Ex

AB

Li−Cl(1) 6 2.565 0.044 10.523 −11.076 −7.374 7.762 −0.165 −0.007
Li−Li(2) 6 3.627 0.000 1.313 −0.920 −0.920 0.645 0.118 −0.000
Cl−Cl(2) 6 3.627 0.084 42.164 −44.393 −44.393 46.741 0.118 −0.012
Na−Cl(1) 6 2.896 0.063 34.173 −35.919 −31.452 33.061 −0.138 −0.010
Na−Na(2) 6 4.095 0.000 15.635 −14.391 −14.391 13.246 0.099 −0.000
Cl−Cl(2) 6 4.095 0.044 37.344 −39.274 −39.272 41.301 0.100 −0.005
Mg−O(1) 6 2.106 0.125 24.116 −29.218 −20.674 25.050 −0.725 −0.029
Mg−Mg(2) 6 2.979 0.001 25.579 −21.931 −21.931 18.803 0.520 −0.000
O−O(2) 6 2.979 0.090 11.368 −13.803 −13.803 16.759 0.522 −0.014

aThe net charges of QTAIM atoms are ±0.90e, ± 0.88e, and ±1.71e in LiCl, NaCl, and MgO, respectively. Energies in Ha; distances in Å units.
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E (NaCl) 0.247cl
Madelung = − Ha, that is corrected by non-

spherical terms E6 0.017Lcl , 0
NaCl(1)

× =≠ Ha. The corrected classic
energy Ecl(NaCl) = −0.230 Ha entails a 72% percent of the
interaction energy Eint(NaCl) = −0.320 Ha.
MgO exhibits a stronger covalent stabilization than either

LiCl or NaCl, Ex(MgO) = −0.258 Ha. However, this increase
i s para l l e l ed by st ronger c lass ica l in terac t ions
E (NaCl) 1.284cl

Madelung = − Ha generated by interacting point
charges of ±1.71 e. The correction from nonspherical terms is

also enhanced, E6 0.069Lcl , 0
MgO(1)

× =≠ Ha. In overall, the total
classic energy is Ecl(MgO) = −1.215 Ha. Thus, the covalent
part contributes less, 17%0.258

0.258 1.215
=+ , to the interaction

energy Eint(MgO) = −1.473 Ha than the previous systems with
rocksalt-type structure.
With respect to interaction energies, the sequence of

increasing covalent character is MgO (17%) < NaCl (28%)
< LiCl (29%).
Scaled Point-Charge Approximation (sPCA). The kind

of approximation discussed here has been used previously to
predict the stability of phases with highly symmetric MgAgAs
structure6 and to discuss Fe−Fe bonding in FeGa3.

4

The validity of those approximations is tested against
formally exact integrals from IQA method. Table 11 compares
the zero order (point charge) approximation for interactions
where largest deviations are expected, that is, between nearest
neighbors.
Molecular crystals like β-N2 or CO2 present rather short

interactions that can not be modeled with the point-charge
approximation. Rather like molecules, both solids show very
strong covalent bonds as evidenced by their DIs and inter-
atomic Ex

AB. This is in agreement with chemical wisdom.
Covalent bonds break the spherical symmetry of the density
leading to larger contributions from higher order multipoles to
the classic energy. Even more, in N2 the atomic charge is zero
but there is still a 0.220 Ha classic destabilization.
Graphite and diamond feature fractional double bonds and

covalent single bonds, respectively, which display a corre-
sponding increase of inter-atomic distances that leads to a
corresponding decrease of Ecl

CC.

An inflection point is seen for zincblende BN. Despite
having also covalent single bonds like diamond, the classic
energy closely follows the point-charge approximation scl ≈ 1,
indicating that the electron density is close to the spherical
one.
Ionic and metallic crystals typically display longer inter-

atomic distances and conceptual bond orders <1. Therefore,
their covalent and ionic interactions are expected to be
accurately approximated with the simple scaled point-charge
equations applying an intermediate scaling factor sx ≈ 0.75−
0.85.

■ CONCLUSIONS

The new software package ChemInt was developed to
decompose the energy of crystalline solids according to the
Interacting Quantum Atoms approach. The QTAIM basins are
chosen as domains for the energy decomposition. Other
possible spatial partitions (i.e., Becke fuzzy atoms, Hirshfeld
atoms, ...) deserve future research and will assess the
robustness of our conclusions. A number of key issues were
addressed which limited the accuracy of the integration. The
package ChemInt was used for the examination of some
prototype crystalline solids. For the ionic solids studied,
covalent interactions contribute 15−30% to the interaction
energy. The scale parameters of our scaled point-charge
approximation were obtained from the formally exact
integration of covalent and classic inter-atomic interaction
energies. While certain trends for these parameters are already
visible, further investigations are needed to faithfully predict
them for all kinds of bonding situations. The phase stability of
graphite over diamond and hexagonal BN over zincblende BN
was obtained in terms of chemically meaningful energy
components. Future explorations along this line are a
promising area of research. The obvious limitations of the
application to very large systems can be significantly reduced in
the future with the exploitation of crystal symmetries and
treating only valence electrons. The new program may
contribute toward a better understanding of interactions in
crystalline materials, in particular in those which do not follow
traditional valence rules. Extending the IQA method to
planewave bases is perfectly possible, and it can be

Table 11. Scaled Point-Charge Approximation (sPCA) (See Eq 35) of Inter-Atomic Bielectronic Integrals for Nearest-
Neighbor Interactionsa

System RAB QA QB δAB Ecl
AB scl Ex

AB sx

β-N2 1.108 0.003 0.003 2.999 0.220 b −0.903 0.630
CO2 1.149 2.280 −1.140 1.323 −1.415 1.182 −0.426 0.699
Graphite 1.422 0.000 −0.001 1.202 0.037 b −0.372 0.832
BN (hex.) 1.446 2.214 −2.213 0.452 −1.762 0.982 −0.135 0.816
Diamond 1.545 0.001 0.001 0.914 0.014 b −0.284 0.907
BN (cubic) 1.561 2.160 −2.160 0.357 −1.587 1.004 −0.106 0.881
MgB2 1.782 −0.813 −0.813 0.983 0.166 0.845 −0.249 0.852
MgO 2.106 1.711 −1.712 0.129 −0.725 0.984 −0.029 0.884
LiCl 2.566 0.897 −0.899 0.044 −0.165 0.991 −0.007 0.819
Al 2.863 0.000 0.000 0.273 0.0013 b −0.054 1.071
NaCl 2.896 0.875 −0.878 0.064 −0.1376 0.980 −0.010 0.866
CsCl 3.540 0.826 −0.827 0.126 −0.1019 0.996 −0.017 0.915
Na 3.667 0.000 0.000 0.108 0.0008 b −0.013 0.836

aEnergies in Ha, distances in Å, and charges in e units. bFor interactions between (nearly) noncharged atomic species, the scaling parameters scl
become quite large, because the electrostatic interaction is then no longer dominated by a monopolar Q

R

2
term. Nevertheless, the absolute error of

this assumption is typically small, because the interactions are weak.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c06574
J. Phys. Chem. A 2021, 125, 9011−9025

9023

pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c06574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


implemented on any electron structure package because it does
not depend on the representation of the wave function in
terms of atomic orbitals.
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