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Tumor–host interactions extend beyond the local microenvironment and cancer development largely depends on the ability of

malignant cells to hijack and exploit the normal physiological processes of the host. Here, we established that many genes

within peripheral blood cells show differential expression when an untreated breast cancer (BC) is present, and harnessed

this fact to construct a 50-gene signature that distinguish BC patients from population-based controls. Our results were

derived from a series of large datasets within our unique population-based Norwegian Women and Cancer cohort that allowed

us to investigate the influence of medications and tumor characteristics on our blood-based test, and were further tested in

two external datasets. Our 50-gene signature contained cytostatic signals including the specific suppression of the immune

response and medications influencing transcription involved in those processes were identified as confounders. Through anal-

ysis of the biological processes differentially expressed in blood, we were able to provide a rationale as to why the systemic

response of the host may be a reliable marker of BC, characterized by the underexpression of both immune-specific pathways

and “universal” cell programs driven by MYC (i.e., metabolism, growth and cell cycle). In conclusion, gene expression of

peripheral blood cells is markedly perturbed by the specific presence of carcinoma in the breast and these changes simultane-

ously engage a number of systemic cytostatic signals emerging connections with immune escape of BC.

Cancers are not simply autonomous masses of cells; they
secrete soluble factors that elicit systemic responses from the
host, and the host responses, in turn, affect cancer cells.1–4

Several studies support the notion that tumors act systemi-

cally to modulate overall cancer progression5–7 and that can-
cer development largely depends on the ability of malignant
cells to hijack and exploit the normal physiological processes
of the host.3,4
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Despite the emerging appreciation for cancer–host interac-
tion in cancer, our understanding of how the host responds
to cancer signals and in turn affects tumor progression and
prognosis is rudimentary. There is growing evidence that
gene expression profiling of peripheral blood cells is a valua-
ble tool for assessing gene signatures related to solid
tumors.8–11 Several groups including ours have defined intra-
and interindividual variability of blood gene expression in
healthy individuals12,13 and established standardized proce-
dures for blood sample collection and gene expression profil-
ing.14,15 In this study, we selected a large number of breast
cancer (BC) patients and women representative of the general
population matched on birth year and time of follow-up in
the Norwegian Women and Cancer study (NOWAC).16,17 To
the best of our knowledge, this is the first study in this
domain that accurately represents the actual situation of
identifying BC patients from women representative of the
general population. We followed a strict experimental design
where each case sample was processed with an age-matched
control throughout all steps of the laboratory procedures
from RNA amplification to hybridization. Paired analyses
within two training sets and one validation set were carried
out to ablate any technical bias and help ensure generalizabil-
ity of the results. The accuracy of the identified 50-gene blood
signature was first evaluated with respect to lifestyle exposures
and tumor characteristics. The signature was then further
tested in two additional external gene expression datasets using
profiles of blood cells or isolated immune cells from BC
patients, and women with suspect mammograms or diagnosed
with benign breast diseases. The behavior of our multigene sig-
nature was also evaluated in other cancer types to assess the
specificity of the system to BC. Finally, we investigated the
molecular processes involved in the systemic response of the
host and provide a rationale as to why blood-based gene
expression may harbor a reliable signal of the presence of BC.

Methods
The NOWAC study

The NOWAC study consists of 172,471 women 30 to 70
years of age at recruitment from 1991 to 2006 who answered
one to three questionnaires on diet, medication use and life-
style.18 Ten of the largest Norwegian hospitals participate in
collecting blood and tumor tissue from incident BC cases.16

In collaboration with the Norwegian Breast Cancer Group,
every woman born between 1943 and 1957 participating in

the NOWAC study who is admitted to a collaborating hospi-
tal for a diagnostic biopsy or for surgery of BC was asked to
donate, before surgery and treatment, a tumor biopsy and
two blood samples, one collected into PAXgeneTM tube (Pre-
AnalytiX GmbH, Hembrechtikon, Switzerland) for gene
expression analysis and another in a citrate tube. Participants
were also asked to answer a two-page questionnaire eliciting
information mainly on current use of hormones and medica-
tions, alcohol and smoking habits. Biological samples were then
mailed overnight for biobanking at 270�C in Troms�. In paral-
lel, five controls were approached for each BC case in order to
obtain blood samples from at least two controls per case. The
controls were drawn at random but matched by time of inclu-
sion in the NOWAC cohort and birth year. The human biologi-
cal material has been approved by Regional Committees for
Medical and Health Research Ethics in Norway and is in
accordance with the Norwegian law on biobanking.

In 2009, 96 blood samples from cases and two matched
controls for each case were selected from the postgenome
biobank (CC1). In 2010, 63 blood samples received within 4
days after blood collection from cases and one matched con-
trol for each case were selected from the postgenome biobank
(CC2). In 2011, 90 blood samples received within 4 days after
blood collection from cases and one matched control for
each case were selected from the postgenome biobank (CC3).

Microarray data acquisition

To control for technical variability such as different lot varia-
tions of reagents and kits, day to day variations, microarray
production batches and effects related to different laboratory
operators, each case was grouped with one corresponding
matched control through RNA extraction (except in CC1
where RNA extraction was run randomly), amplification and
hybridization. Total RNA from cases and matched controls
for each case were isolated using the PAXgene Blood miRNA
Isolation Kit according to the manufacturer’s manual at the
NTNU Genomics Core Facility in Trondheim, Norway. RNA
quantity and purity was assessed using the NanoDrop ND-
8000 spectrophotometer (ThermoFisher Scientific, Wilming-
ton, Delaware) and Agilent bioanalyzer (Palo Alto, CA),
respectively. RNA amplification was performed in 96 plates
using 300 ng of total RNA and the IlluminaVR TotalPrepTM-96
RNA Amplification Kit (Ambion, Austin, TX). Cases and
controls included in CC1 and CC2 were run on the
IlluminaHumanAWG-6 version 3 expression bead chips.

What’s new?

Blood cells are dynamic warehouses of information. In the case of cancer, studies have indicated that blood cells house

genetic signatures related to solid tumors. In the present study, genes in peripheral blood cells were found to be differentially

expressed in women with untreated breast cancer, enabling the development of a 50-gene signature capable of identifying

women with the disease. The gene signature included signals specific to immunosuppression. The association of breast cancer

with the underexpression of immune-specific pathways and with MYC-driven “universal” cell programs may explain the sys-

temic response of the host.
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Cases and controls included in CC3 were run on the
IlluminaHumanHT-12 version 4 expression bead chips.
GenomeStudio from Illumina (San Diego, CA) was used to
assess the quality of each array.

Microarray data preprocessing

Microarray data preprocessing and analysis were performed
using R (http://cran.r-project.org) and tools from the Biocon-
ductor project (http://www.bioconductor.org), adapted to our
needs.

Data preprocessing was done identically for all three inde-
pendent datasets (Fig. 1). We excluded samples received for
more than 4 days after collection and samples with low RNA
quality (RIN< 7). The datasets were trimmed of samples
found misdiagnosed after update from the cancer registry or
found outliers as called by the lumiR package.19 More pre-
cisely, outliers were identified when their euclidean distance

to the cluster center was larger than twice the median distan-
ces to the center. The cluster center was defined by the aver-
age of all samples after removing 10% samples farthest away
from the center. Finally, resulting unmatched samples from
the above exclusion procedures were excluded from the anal-
yses. Preprocessing of the microarray data was performed in
each dataset separately using the lumiR package. One probe
was defined as present if its intensity was significantly differ-
ent from the background intensity (p value< 0.05), resulting
in the analysis of 48,803 probes in CC1 and CC2, and 47,323
probes in CC3. We excluded all probes that did not have an
expression value in at least 70% of the samples leading to
13,460, 10,341 and 12,519 probes in CC1, CC2 and CC3,
respectively. Variance stabilization20 was performed and the
data were normalized by quantile normalization. We used
the reannotation pipeling for Illumina arrays21 version 3 for
CC1 and CC2, and version 4 for CC3. Intensities of probes

Figure 1. Study flow chart. Sample exclusions are shown for the three independent case–control datasets from the Norwegian Woman and

Cancer (NOWAC) study (CC1, CC2 and CC3). Paired linear analyses were conducted to identify single genes (False Discovery Rate,

FDR<0.005) and gene sets (FDR<0.002) differentially expressed across BC case–control pairs. Prediction of the presence of BC in CC3

based on the expression of the 345 genes differentially expressed in both CC1 and CC2 was conducted using a naive Bayes classifier. Fifty

genes were further selected among the 345-gene list and validated in two external datasets from NCBI’s Gene Expression Omnibus (includ-

ing gene expression profiles of peripheral blood mononuclear cells (PBMC) from BC patients, patients with benign breast diseases, controls,

gastrointestinal and brain cancer patients28 (GSE27562) and gene expression profiles of peripheral blood cells from BC patients and con-

trols with suspect mammograms9 (GSE164430). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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with similar gene symbols were averaged leading to 9,338,
7,898 and 8,529 unique gene symbols in CC1, CC2 and CC3,
respectively. Microarray data have been deposited at the
European Genome-phenome Archive (EGA; https://www.ebi.
ac.uk/ega/) accession number EGAS00000000134.

Technical variability

Amplification date was associated with our gene expression
profiles but this latter remains independent of BC status since
each case was amplified with its control in the same round
and paired analyses were conducted. In CC1, RNA extraction
of blood samples was done by random in CC1 and date of
RNA extraction was significantly associated with disease sta-
tus (v2 test: p value5 0.02). Supporting Information Addi-
tional file 1 shows the ordering of the samples based on the
expressions of the top quintile of most variable genes in CC1.
Overall, the variable coding for six different dates of RNA
extraction did not seem to be strongly associated with blood
gene expression profiles and therefore its effect has not been
adjusted for in further analyses.

Gene-wise paired linear analysis

To identify single gene differentially expressed between cases
and controls, we conducted paired gene-wise linear analysis
with application of empirical Bayes method22 implemented in
the software package Limma in each dataset. False discovery
rate (FDR)23 was calculated to adjust for multiple testing.

Prediction of the presence of BC

Despite the fact that the independence assumptions are inac-
curate, the naive Bayes algorithm24 alleviates problems stem-
ming from the curse of dimensionality and was implemented
as the class prediction method. Indeed, naive Bayes is a well-
established learning approach used for gene expression stud-
ies due to its simplicity, interpretability, and has been shown
to have performance similar to, and sometimes exceeding,
those of much more complex and approaches.25 Gene selec-
tion was performed among the genes commonly differentially
expressed in CC1 and CC2 by the presence of BC (paired lin-
ear analysis FDR< 0.005; N 5345, Fig. 1) in order to opti-
mize robustness of our signature across datasets. One naive
Bayes classifier (NBC) was first built using all genes expressed
in CC3 (N5 341) and tested by leave-one-out cross valida-
tion (LOOCV). Prediction accuracy is the fraction of true
versus all predictions derived from the posterior probability
generated by the NBC. The significance of a NBC was tested
by a Fisher’s exact test measuring the strength of association
between observed and predicted disease status. Our classifier
significance was then compared with the background distri-
bution of significance obtained from 100,000 NBCs including
341 genes randomly chosen from the 8,529 genes expressed
in CC3. Similarly, we constructed NBCs including several
subset sizes (10, 25 or 50 genes) of the 341 overlapping genes
expressed in CC3 where a predictor of size 50 appeared
the most appropriate (Supporting Information Additional

file 4A). We also tested 100,000 NBCs of size 50 randomly
chosen from larger lists of genes commonly differentially
expressed in CC1 and CC2 by the presence of BC (N5 565
genes with FDR< 0.01 and N5 1,426 with FDR< 0.05) but
did not witness any improvement in terms of the predictors
significance (Supporting Information Additional file 4B). The
“best” 50-gene predictor was empirically selected among the
100,000 predictors built using 50 genes among the 341
expressed in CC3 based on its statistical significance in pre-
dicting the presence of BC (Fisher’s test). Its significance was
further compared to the background distribution of 100,000
random 50-gene NBCs.

In all three datasets, we investigated using the student or
chi-square tests whether RNA quality quantified by the RIN
value, individual or exposure variables such as age, BMI or
smoking status, and the use of menopausal hormone thera-
pies or other specific medications could explain the misclassi-
fication of controls (i.e., false positives) and cases (i.e., false
negatives). In the same manner, we investigated whether
tumor receptor status (estrogen and progesterone receptor)
or stage was associated with misclassified cases by our 50-
gene predictor in all three datasets. None of these variables
were associated with misclassification of controls or cases
except for the use of specific medications by controls in CC3
(see Results). Of note, BC were mostly ER positive and of
stage I or II (Supporting Information Additional file 1).
Finally, we investigated perturbagen signatures (n> 10) from
the connectivity map26 significantly enriched in our 50-gene
predictor.

Independent validation of the “best” 50-gene predictor
was conducted using two additional external datasets depos-
ited in NCBI’s Gene Expression Omnibus27 including gene
expression profiles of peripheral blood mononuclear cells
(PBMCs) from BC patients, patients from benign breast dis-
eases, controls, gastrointestinal and brain cancer patients28

(GSE27562) and gene expression profiles of whole blood cells
from BC patients and controls with suspect mammograms9

(GSE164430; Fig. 1). We represented genes by symbols
assigned by the HUGO Gene Nomenclature Committee.

Functional clustering and pathway analysis

Functional clustering of the gene lists associated to BC diag-
nosis was performed with the Database for Annotation, Visu-
alization, and Integrated Discovery (DAVID)29 at http://
david.abcc.ncifcrf.gov/. For each functional cluster, we
selected the terms with FDR< 0.1 and calculated the median
fold enrichment and FDR.

Gene set analysis

Enrichment scores for pathways (size; min5 5 and
max5 500) included in release 3.0 of the C2 (curated gene
sets) and C5 (Gene ontology gene sets) subcollections of the
Molecular Signatures Database30 were calculated for each
sample using the GSVA R package. We build gene sets spe-
cific of immune cell subtypes using CD markers of no more

E
pi
de
m
io
lo
gy

Dumeaux et al. 659

Int. J. Cancer: 136, 656–667 (2015) VC 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC

https://www.ebi.ac.uk/ega/
https://www.ebi.ac.uk/ega/


than three immune cell subtypes31 and transcripts specifically
overexpressed in each differentiated immune cell subtypes,32

and calculated in the same manner enrichment scores for
each sample. We tested whether there is a difference between
the enrichment scores across case–control pairs using paired
linear analysis as described previously.22

The significant contribution of each gene or sample within
a pathway of interest to the overall test statistics for differen-
tial expression was estimated by the global test covariate
analysis.33 Covariate and subject plots in the globaltest R
package estimates the contribution of each (cluster of)
gene(s) (covariate) or sample (subject) to the overall test sta-
tistics for differential expression plotting the p values of the
tests of individual component of the alternative. Samples
were ordered by decreasing order. Genes are ordered in a
hierarchical clustering using correlation as a distance mea-
sure. The hierarchical clustering graph induces a collection of
subsets of the tested covariates between the full set that is the
top of the clustering graph and the single covariates that are
the leaves. Inheritance procedure on all 2k2 1 sets controls
the family-wise error rate while taking the structure of the
graph into account.34

Results
Blood-wide transcriptional signal of BC and its potential to

detect BC

Disease status was associated with substantial differences in
blood gene expression profiles across the case–control pairs
included in CC1 (p5 6 3 1028, global test). This blood-wide
signal of BC is illustrated by the grouping of samples accord-
ing to disease status based on the expression of the most
variable genes (Supporting Information Additional file 2). We
identified 3,479 genes exhibiting significant differences in
expression within the BC case and control pairs
(FDR< 0.005; paired linear analysis) with a relatively low
median absolute value of fold-change equal to 1.13. This
indicates that gene expression changes associated with BC are
of relatively low amplitude but consistent and ubiquitous in
peripheral blood cells.

To test whether these findings were replicable in an inde-
pendent data set (CC2), we investigated blood gene expres-
sion profiles from an additional 49 pairs of BC cases and
controls (Fig. 1). In total, 418 of the 7,898 genes passing
quality controls were differentially expressed in CC2 with a
FDR< 0.005, of which 345 were also differentially expressed
in CC1 (p5 3 3 10260, hypergeometric test; Fig. 2a, Sup-
porting Information Additional file 3). Remarkably, the direc-
tionality of differential expression between BC cases and
controls of all 345 overlapping genes was conserved between
datasets (Fig. 2b). When patients were ranked according to
the sum of expression over the 345 overlapping genes, the
majority of blood samples from BC cases were segregated
from controls in both datasets (Fig. 2c).

Using both CC1 and CC2 to select genes differentially
expressed in blood cells from BC patients compared to con-

trols (N5 345, Supporting Information Additional file 3), we
built a predictor using the 341 genes expressed in CC3 (four
genes were not present in CC3) and accurately predicted dis-
ease status in this validation dataset (p5 8.7 3 1025; Fisher’s
test; Fig. 2d). Of note, amplified RNA from the blood sam-
ples in CC3 was hybridized using a different version of the
Illumina array system. The “best” 50-gene predictor (Fig. 2d,
Supporting Information Additional file 3) chosen among the
341 significant genes had an accuracy of 72.9% to predict the
presence of BC in the validation dataset (sensitivity5 83.1%
and specificity5 62.7%; p5 3.0 3 1029; Fisher’s test). Nota-
bly, gene expression signatures from the connectivity map26

associated with histone deacetylase, Hsp90, tyrosine kinase
and immune response inhibitors were positively enriched with
our 50-gene predictor (Supporting Information Additional file
5). A significant proportion of controls misclassified as cases
in CC3 (36.4%) were currently using either a selective sero-
tonin reuptake inhibitor (ATC N06AB) or a selective beta-
blocking agent (ATC C07AB). Both drugs associated with
misclassified controls in CC3 were previously found to inhibit
the expression of T-cell and adaptive immunity-related
genes.35,36 This may explain the lower specificity of our 50-
gene predictor in CC3. Overall, this indicates that our 50-gene
predictor contains cytostatic signals including the specific sup-
pression of immunity and that medications influencing tran-
scription involved in those processes can be confounder of the
blood-based signal associated with the presence of BC.

To further validate the results, we investigated whether we
were able to predict BC diagnosis in two external datasets
deposited in NCBI’s Gene Expression Omnibus27 including
gene expression profiles of PBMCs from BC patients, patients
with benign breast diseases, controls, gastrointestinal and
brain cancer patients28 (GSE27562), and gene expression pro-
files of peripheral blood cells from BC patients and controls
with suspect mammograms9 (GSE164430; Fig. 1). In the
PBMC dataset, our 50-gene predictor was able to accurately
predict the presence of BC compared to controls (91.5%
accuracy, Supporting Information Additional file 6). This
indicates that our diagnostic profile for BC identified from
peripheral blood cells is found in isolated immune cells
including monocytes, T-cells, B-cells and natural killer (NK)
cells. All PBMC samples from other cancer types were not
predicted as BC, which indicates that our predictor is specific
for carcinoma in the breast. Since our predictor was not
trained to differentiate malignant BC from benign breast dis-
eases, we obtained significantly lower accuracy when we
included those samples (63.4% accuracy; Supporting Informa-
tion Additional file 6). The expression of only 33 genes of
our 50-gene predictor were available in the second dataset
(GSE164430) although we were able to significantly predict
BC diagnosis compared to women with suspect screening
mammograms (p5 0.008; Fisher’s test, Supporting Informa-
tion Additional file 7). In conclusion, our blood-based gene
expression analysis produced uniquely robust and reproduci-
ble results across microarray platforms and external datasets
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to specifically detect BC from population-based controls, war-
ranting further analysis of the processes found deregulated by
the presence of a BC in peripheral blood cells including
PBMC.

Pathway and gene set analyses

Functional clustering showed that our 345-gene list was
enriched for gene ontology categories related to apoptosis,
RNA binding, spliceosome/RNA splicing, protein synthesis,
RNA metabolism, transcriptional regulation, cell cycle,
metabolism and signal transduction (Table 1). Expert curated
functional annotation revealed additional grouping of genes
involved in immune processes, cell growth/proliferation,
cytoskeletal regulation and protein and cell metabolism (Sup-
porting Information Additional file 3).

To further investigate how BC affects gene expression in
blood, we performed gene set variation analysis (GSVA) in
CC1 and CC2 datasets and validate the results in CC3 (Fig.
1). We found 58 gene sets overlapping between the top 200
gene sets differentially expressed across case–control pairs in

CC1 and CC2 (FDR< 2 3 1024). Although we previously
identified a confounding factor with the current use of spe-
cific drugs by controls in CC3, 45 of the 58 significant gene
sets overlapping in CC1 and CC2 were validated in CC3
(FDR< 0.15), and showed remarkably comparable enrichment
scores according to disease status in all three datasets (Fig. 3).
GSVA revealed similar processes seen after functional clustering
of our 345-gene list including transcription and cytoskeletal
regulation, cell cycle, apoptosis and metabolism pathways, but
also identified additional gene signatures notably involved in
antigen processing and presentation (APP) and MYC target
genes (Fig. 3, Supporting Information Additional file 8).

BC and the host’s immune system

Reduced expression of APP pathway in blood cells of BC
patients was the most direct evidence that the presence of BC
affects peripheral immune effector cells (Fig. 3, Supporting
Information Additional file 8). We investigated the overlap-
ping core genes (multiplicity corrected p value <0.1) driving
the observed association of the APP pathway with the

Figure 2. Gene expression changes in peripheral blood cells of breast cancer (BC) patients compared to controls. (a) Venn diagram depicting

the overlap between genes differentially expressed in peripheral blood cells of BC patients compared to controls in the primary (CC1) and the

secondary (CC2) dataset. Differential expression was assessed at an FDR<0.005 by the paired linear analyses in CC1 and CC2. The significance

of overlap between the two gene lists was calculated using the hypergeometric test. (b) Expression fold changes for the 345 overlapping genes

differentially expressed in CC1 and CC2. Log fold-changes (log FC) in CC1 are plotted on the x-axis against the log FCs for the same genes in CC2

on the y-axis. Genes in green are underexpressed by the presence of BC in both data sets. Genes in red are overexpressed by the presence of

BC in both data sets. (c) Ordering of blood samples from BC cases (in red) and controls (in pink) according to the sum of expression over those

345 overlapping genes. Heat map colors represent mean-centered fold change expression in log-space. (d) Significance of naive Bayes classifiers

in the validation dataset (CC3) calculated using Fisher’s test. Vertical green line represents the significance of a naive Bayes predictor based on

the expression of the 345 overlapping genes. The dotted green line represents the distribution of significances that can be obtained from

100,000 naive Bayes predictors built using 345 random genes present in CC3 (N 5 8,529). Plain red line represents the distribution of significan-

ces that can be obtained from 100,000 predictors built using 50 genes among the 341 expressed in CC3 of the 345 overlapping genes. Dotted

red line represents the distribution of significances that can be obtained from 100,000 predictors built using 50 random genes present in the

dataset (N 5 8,529). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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presence of BC within CC1 and CC2 datasets (Fig. 4a, Sup-
porting Information Additional file 9). All core genes that are
part of the MHC class II pathway were underexpressed in
blood samples from BC patients compared to controls

including the interferon gamma-inducible protein 30 and
cathepsin S involved in the endocytic generation of MHC
class II-restricted epitopes as well as CD74 involved in the for-
mation and transport of MHC class II protein, and CD4 a co-

Table 1. Functional annotation clustering of significant enrichments associated with the 345-gene list (false discovery rate, FDR<0.10) differ-
entially expressed across breast cancer case–control pairs

Annotation terms, N Annotation cluster (keywords) Genes,1 N Fold enrichment2 FDR2 (%)

8 Cell death, apoptosis 35 2.7 0.01

11 Regulation of apoptosis 37 2.3 0.01

5 RNA catabolic process 9 10.4 0.07

15 RNA binding, protein synthesis, translation, ribosome 54 3.9 0.05

2 RNA binding protein, RRM 35 3.7 3.80

11 RNA processing, splicing, spliceosome 29 3.1 1.73

3 Protein kinase binding, enzyme binding 23 3.2 3.27

6 Protein phosphatase activity, manganese 11 5.0 2.28

2 Response to inorganic substance or metal ion 12 3.2 6.02

2 Ribosome, ribonucleoprotein biogenesis 11 3.6 3.48

7 Regulation of transcription, macromolecule
metabolic process, nitrogen compound, RNA pol II

41 3.7 2.53

3 Nucleotide or ATP binding 67 1.6 6.82

1 Acetylated amino end 23 4.6 2.44

1 Endoplasmic reticulum 23 1.8 9.00

2 Cell cycle 32 2.1 0.53

1 Myristylation 5 7.4 6.06

2 Generation of precursor metabolites and energy, glycolysis 16 6.0 5.25

1 Oxidoreductase activity, acting on sulfur group of donors 5 6.7 8.72

1 Ras protein signal transduction 8 3.8 8.42

1Number of genes from the 345 gene list involved in the corresponding processes.
2Median value across all significant annotation terms included in the cluster.

Figure 3. Ordering of blood samples based on the enrichment scores of the 45 significant gene sets differentially expressed between breast

cancer cases (in red) and controls (in pink) in the primary (CC1), secondary (CC2) and validation (CC3) case–control series. Heat map colors

represent mean-centered fold change enrichment score in log-space. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 4. Gene set variation analysis of the antigen processing and presentation pathway (APP) and the natural killer (NK) cell gene set.

(a) The APP from KEGG. Overlapping core genes driving the observed association of the APP with the presence of BC within CC1 and CC2

are colored according to their over- (red) or under- (green) expression in BC patients. (b) Boxplot indicating the enrichment scores from

gene set variation analysis for the NK cell gene set associated with the gene expression profiles from BC patients (red) and controls (pink)

included in CC1, CC2 and CC3 (left). List of genes included in the NK gene set significantly associated to disease status in paired linear

analysis with FDR<0.10 in at least two of the three datasets and their corresponding median fold-changes over all datasets (right).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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receptor that assists the T-cell receptor (TCR). Within the MHC
class I pathway, PSME3 of the immune-proteasome was defined
as a core gene in the APP pathway underexpressed in BC
patients. In addition, three genes coding for the proteasome
(PSMB2, PSMB10 and PSMD1) within our 345-gene list (Sup-
porting Information Additional file 3) were underexpressed in
blood cells of BC patients compared to controls. Also, core genes
directly involved in peptide loading onto MHC class I molecules
(TAPBP and CALR) and genes encoding for the heat shock pro-
tein 70 upstream of TAP were underexpressed in BC patients.

Finally, genes specific to NK cells were consistently underex-
pressed within the set and in samples from BC patients com-
pared to controls (Fig. 4b, Supporting Information Additional
file 10). Consistent with this finding, the NK cell-mediated cyto-
toxicity pathway from KEGG was significantly underexpressed
in blood samples from BC patients compared to controls in
CC1 and CC2 (mean FDR5 0.004; paired linear analysis).

Underexpression of Myc and decreased metabolism,

growth and proliferation in peripheral blood cells from BC

patients

We found a decrease in gene set expression of the targets
regulated by Myc according to Myc Target Gene Database37

in blood cells from BC patients (Fig. 3, Supporting Informa-
tion Additional file 8). The Myc targets defined as core genes
were involved in global gene regulatory networks with spe-
cific influence on cell growth and proliferation (ILK, ARPC4,
PP2R4, ERBB2 and CEBPA).

Total RNA levels were compared between groups to inves-
tigate the effect of Myc recently reframed as a general ampli-
fier of gene expression for all active genes.38 Samples from

BC cases had lower RNA levels than blood samples from
matched controls (p value5 8 3 1026; logistic regression).
RNA degradation only, measured by the RIN value, could
not explain the decrease in RNA yield in blood samples from
BC patients compared to controls (data not shown). In a fur-
ther attempt to distill the essentials of Myc action in periph-
eral blood cells of BC patients, the binding and expression
changes among another set of genes accepted as bona fide
Myc targets were highlighted.38,39 We compared RNA con-
centration and the expression of MYC in the top quintiles of
samples contributing the most to the enrichment’s signifi-
cance of the bona fide Myc target gene set (Supporting Infor-
mation Additional file 11). The expression of MYC was
significantly correlated to the RNA concentration with a sig-
nificant underexpression of MYC in blood samples of BC
patients compared to controls (Fig. 5). Consistent with this,
most differentially expressed transcription factors, genes that
are part of the general transcription machinery and involved
in chromatin remodeling were underexpressed in blood cells
from BC patients compared to controls confirming that
steady state transcription rates are reduced (Supporting Infor-
mation Additional file 3).

Even a modest reduction in Myc may be sufficient to
deprive cells of the net anabolic, metabolic and mitogenic
impulse necessary to sustain growth and proliferation. In our
study, we observed a lowered cell metabolism with an overall
underexpression of glycolysis and glucose metabolism path-
ways in blood cells of BC patients (Table 1, Fig. 3, Support-
ing Information Additional file 8). In accordance with this,
two genes promoting autophagy (ATG12 and VPM1) in our
345-gene list were overexpressed in blood cells of BC

Figure 5. RNA concentrations of the top quintile blood samples contributing the most to the differential enrichment of the MYC gene set

between BC patients (in red) and controls (in black) according to the expression of MYC. Spearman correlation (corr) is given for each linear

regression line in the primary (CC1) and secondary (CC2) case–control series. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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patients. Consistent with a decrease in protein synthesis and
consequently cell growth, three components of the eukaryotic
initiation factor 4 complex (EIF4A1, EIF4A3 and EIF4H)
were significantly underexpressed in BC patients compared to
controls. Furthermore, several genes involved in ribosomal
biogenesis (GAR1, SURF6 and RRS1) were underexpressed
while several small (RPS3A and RPS29) and large (RPL4,
RPL5, RPL7, RPL11, RPL15, RPL21 and RPL41) ribosomal
proteins (RPs) were overexpressed in blood cells from BC
patients compared to controls. Finally, several genes (TERF2,
CKAP5, CUL4B, MCM3, HBP1, NUDC, CTCF, TUBB,
USP9X and H2AFX) significantly underexpressed in periph-
eral blood cells of BC patients were involved in regulating
cell cycle (Table 1). GSVA pointed to processes involved in
mitosis checkpoint (centrosome maturation, loss of Nlp from
mitotic centrosomes and G2-M transition, Fig. 3, Supporting
Information Additional file 8). Finally, the integrin signaling
pathway involved in cellular shape, mobility and progression
through the cell cycle was underexpressed in blood samples
from BC patients compared to controls (Fig. 3, Supporting
Information Additional file 8).

Discussion
Gene expression changes associated with BC were of rela-
tively low amplitude but consistent and ubiquitous in periph-
eral blood cells, and clearly identified in isolated immune
cells (i.e., PBMC). Our 50-gene signature contained cytostatic
signals including the specific suppression of the immune
response and medications influencing transcription involved
in those processes were confounder of the blood-based signal
associated with the presence of BC. Our blood-based gene
expression analysis produced uniquely robust and reproduci-
ble results across microarray platforms and external datasets
to specifically detect BC cases from population-based
controls.

Together, our findings uniquely indicate that the presence
of BC is associated with systemic immunosuppression by
underexpression of several immune-specific pathways (i.e.,
APP, NK cell-mediated immunity) and several MYC-driven
“universal” cell programs (i.e., cell metabolism, growth and
proliferation). Mechanisms that regulate APP alter the form
and the quantity of the epitopes that are presented by the
MHC molecules for immune recognition and can dictate
tumor immunogenicity.40 Our study uniquely shows specific
alterations in the APP associated with systemic immunity
and confirms some mechanisms previously identified within
the tumor and its microenvironment including down-
regulation of MHC I molecules, proteasome subunits and
transport associated with antigen presentation (TAP and
Hsp70) and MHC-peptide complexes.41 Reduced expression
of MHC I molecules may induce NK-cell cytotoxicity
although we observed concurrent qualitative impairment of
NK-cell mediated immunity in blood samples from BC
patients. Remarkably, one epidemiological study has previ-
ously associated low peripheral blood NK-cell cytotoxic activ-

ity with increased cancer risk.42 Finally, we observed overall
underexpression of genes involved in MHC-II-restricted anti-
gen presentation as well as CD4 necessary to TCR-mediated
activation of helper T cells.

Our study is the first to show that an overall decrease in
RNA levels in blood cells of BC patients compared to
population-based controls correlates with MYC expression in
certain BC patients. It is thought that Myc is ubiquitously
expressed in proliferating cells38 where it controls RNA proc-
essing, ribosome biogenesis, protein synthesis, metabolism
and the cell cycle for normal cell growth and proliferation.38

Importantly, all those processes were found underexpressed
in blood cells from BC patients compared to controls. Plasma
levels of enzymes involved in glucose, lipid and amino acid
metabolism were previously found altered during tumor
development in mice43 confirming that the presence of a
tumor triggers systemic metabolic dysregulation. While cell
metabolism was limited in blood cells of BC patients, some
genes activating autophagy were found overexpressed to pro-
vide a source of ATP. In our study, the rates of protein syn-
thesis via translation initiation/elongation and ribosome
biogenesis were decreased in blood cells from BC patients
where RPs accumulates possibly due to defects in ribosome
assembly.44 A fine regulation of the cell cycle is also required
to maintain cell homeostasis, although expression of several
genes involved in cell cycle and processes related to mitosis
checkpoint were differentially expressed in blood cells of BC
patients compared to controls.

Our results suggest that processes found deregulated in
blood cells reflect a deficit in immune functions of BC
patients. Although we did not isolate effector immune cells
from blood, we observed a concerted decrease in expression
of genes involved in crucial functions for antitumor immune
response (e.g., APP, NK cell-mediated cytotoxicity).41,45 Fur-
thermore, the observed cytostatic signals in blood cells of BC
patients were correlated with gene expression profiles associ-
ated with exposure to immunosuppressive medications. Of
note, the changes in blood gene expression could represent
altered blood cell composition or changes in gene expression
from distinct cellular populations. Although the effect of
tumor development on peripheral immune cells count has
not been clarified, impairment of APP, activation of negative
costimulatory signals and production of immunosuppressive
factors (or cells) by the tumor may induce lymphopenia in
cancer patients which has been found associated with patient
prognosis.46–48 This study first points to systemic molecular
dysfunction in the host’s immune response to the presence of
BC compared to population-based controls that may reflect
tumor immune escape.

Some questions that remain unanswered are how MYC
expression is repressed in peripheral blood cells by the pres-
ence of a specific BC and how early in tumor development
gene expression changes in blood cells can be detected. Suc-
cessful chemopreventive therapy will depend on the elucida-
tion of the network of signaling pathways that regulate the

E
pi
de
m
io
lo
gy

Dumeaux et al. 665

Int. J. Cancer: 136, 656–667 (2015) VC 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC



systemic immune response to the development and presence
of a specific tumor, which has its own unique set of genetic,
epigenetic and inflammatory changes that evolve with the
advancement of disease. Use of our blood-based gene signa-
ture for screening of BC now require further improvement
for better distinguishing benign breast disease from BC and
further compared it with standard mammographic screening.
Analyses of gene expression profiles in the matched breast
tissue, as well as in blood samples collected within 5 years
prior diagnosis, including patients with atypical and in situ
breast abnormalities have started and hopefully would clarify
some of those questions.

Conclusions
In conclusion, gene expression of peripheral blood cells is
markedly perturbed by the specific presence of carcinoma in

the breast and these changes simultaneously engage a number
of systemic cytostatic signals emerging connections with
immune escape of BC. Further mining of the cancer-
associated blood transcriptome in humans will likely identify
additional regulators, mediators and biomarkers of the evolv-
ing tumor, its microenvironment and the systemic response
to BC and will refine its utility for early detection and treat-
ment of the disease.
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