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Abstract

Metabolic engineering and synthetic biology are synergistically related fields for manipu-

lating target pathways and designing microorganisms that can act as chemical factories.

Saccharomyces cerevisiae’s ideal bioprocessing traits make yeast a very attractive chem-

ical factory for production of fuels, pharmaceuticals, nutraceuticals as well as a wide

range of chemicals. However, future attempts of engineering S. cerevisiae’s metabolism

using synthetic biology need to move towards more integrative models that incorporate

the high connectivity of metabolic pathways and regulatory processes and the inter-

actions in genetic elements across those pathways and processes. To contribute in this

direction, we have developed Metabolic Engineering target Selection and best Strain

Identification tool (MESSI), a web server for predicting efficient chassis and regulatory

components for yeast bio-based production. The server provides an integrative platform

for users to analyse ready-to-use public high-throughput metabolomic data, which are

transformed to metabolic pathway activities for identifying the most efficient S. cerevi-

siae strain for the production of a compound of interest. As input MESSI accepts metab-

olite KEGG IDs or pathway names. MESSI outputs a ranked list of S. cerevisiae strains

based on aggregation algorithms. Furthermore, through a genome-wide association

study of the metabolic pathway activities with the strains’ natural variation, MESSI priori-

tizes genes and small variants as potential regulatory points and promising metabolic

engineering targets. Users can choose various parameters in the whole process such as

(i) weight and expectation of each metabolic pathway activity in the final ranking of the

strains, (ii) Weighted AddScore Fuse or Weighted Borda Fuse aggregation algorithm, (iii)

type of variants to be included, (iv) variant sets in different biological levels.
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Introduction

The suitability of Saccharomyces cerevisiae for the produc-

tion of a range of products, such as alcohols, acids, proteins

and hydrocarbons as well as pharmaceutical and nutraceut-

ical ingredients has been demonstrated numerous times. Its

attractiveness as a cell factory is mainly attributed to the

fast growth on relatively cheap carbon sources, the robust-

ness and tolerance towards harsh industrial conditions (e.g.

high osmotic stress and low pH) and the well-developed

genetics (1, 2). The continuous expansion of the genetic

toolbox available for S. cerevisiae allowing manipulation of

several genetic elements in a single round of transformation

for strain development has placed yeast as the preferred

host for bio-based production. Still, despite the several high-

profile ongoing projects in both academia and industry for

the use of S. cerevisiae to produce butanol, farnesene, stil-

benes and alkaloids, to name just a few products (3), there

is a clear need for the development of novel systemic

approaches for the optimal—in terms of yield, productivity

and final titer—functioning of the yeast metabolic network.

Metabolic engineering is exactly those integrated and

multidisciplinary approaches to regulate the performance

of the metabolic network for the cost-effective biological

manufacturing of industrially relevant products (4–6). The

field has clearly revolutionized by the explosion of infor-

mation regarding metabolic pathways, not only within the

genome of the host organism but essentially all organisms,

the availability of ‘omic’ data and systems level modelling

of function, however the integration with synthetic biology

is expected to offer great power in the design of platform

strains. Even though there has been a lot of debate in the

definition of the fields of metabolic engineering and syn-

thetic biology in principle the two disciplines are synergis-

tic but use fundamentally different approaches (6).

Metabolic engineering is a top-down approach for defining

which pathways and in which direction should be engin-

eered for the development of novel microbial capabilities

(7). On the other hand, synthetic biology, still regarded as

a young discipline, tends to be seen as a bottom-up

approach for improving the design of cell factories.

Propelled by the significant decrease in DNA sequencing

and synthesis cost, the improved understanding on geno-

type-to-phenotype relationships and standardization of

DNA assembly procedures, synthetic biology provides the

toolbox for constructing artificial elements to achieve par-

ticular functions. Applications of synthetic biology in yeast

metabolic engineering are expected to increase dramatic-

ally in the future thus development of publicly available

platforms that aim to capitalize on yeast’s natural diversity

for assembling biological parts with the desired properties

is of utmost importance.

Following this trend we present Metabolic Engineering

target Selection and best Strain Identification tool

(MESSI), a web server for predicting efficient chassis and

regulatory components for yeast bio-based production.

MESSI uses publicly available metabolomic data from

characterized S. cerevisiae strains for computing metabolic

pathway activities and ranks the strains based on user-

defined pathways of interest (single or multiple pathways).

Furthermore utilizing the natural variation between the

S. cerevisiae strains MESSI applies genome-wide associ-

ation mapping for identifying putative genes and other

genetic elements that correlate with the measured pheno-

type (metabolic pathway activity). MESSI is a user-friendly

platform and the output generated is easy to interpret

allowing the users to quickly select the most promising

plug-and-play S. cerevisiae strain for a specific product.

Candidate genes related with the pathway activity, e.g.

regulatory role in controlling metabolic fluxes towards

that product, are also provided.

Materials and methods

MESSI implemented two major tasks. First, metabolic path-

way activities were calculated based on large-scale metabo-

lomic measurements and strain rankings based on pathway

activities were further produced. Second, pathway activities

and genetic variants were used to predict the potential

metabolic engineering targets (variants or genes). The com-

putational pipeline is illustrated in Figure 1. The method-

ology and algorithms are described in detail as follows:

Data source and variant identification

Datasets compatible with MESSI are expected to encom-

pass metabolomic data from large-scale genetic studies.

Whole genome sequencing data are also included for pre-

dicting pathway activity associated variants and identify-

ing metabolic engineering targets.

Since large-scale population studies of yeast with both

genome and metabolome data available are still limited,

we incorporated one major dataset published in 2013 (8).

Based on this yeast database, 21 strains with both compar-

able metabolomic data and genomic data were selected

and this database was named as DB01_SC_21. As pathway

activities are expected to be affected by the growth condi-

tions, including carbon source, medium, temperature and

aeration conditions, all the relevant information are listed

in the server. It is recommended that users apply with cau-

tion the MESSI predictions for engineering strains for

which the cultivation conditions will be significantly differ-

ent from the ones used in the GWAS analysis here.
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To identify genetic variants (SNPs and InDels), all DNA

sequencing reads were mapped to the S288C reference

genome using BWA (9). Variant calling and filtering were

carried out by the Genome Analysis Toolkit (GATK)

(10, 11), with steps including RealignerTargetCreator,

IndelRealigner, UnifiedGenotyper (parameters: -stand_call_

conf 10.0 -stand_emit_conf 0 -deletions 1.0 -glm BOTH

-rf BadCigar) and VariantFiltration (parameters:–

filterExpression ‘ReadPosRankSum<�8.0 jj FS>10.0’).

Variant effect annotation was carried out by SnpEff with

the S. cerevisiae database version EF4.69 (12). Variants

with low allele frequency (<0.05) were filtered due to pos-

sible sequencing or mapping errors, which would be detri-

mental to further analysis on genome-wide association and

linkage disequilibrium (LD).

Pathway activity calculation and pairwise

correlations

The pathway activity profiling (PAPi) algorithm (13) was

employed for calculating pathway activity based on metab-

olomic data. As data normalization is required by PAPi,

compound concentrations were converted into ratios to the

mean value of all strains. Over 100 pathway activity scores

were generated for each strain. Pathways absent in Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

database for S. cerevisiae were removed (14).

To provide users a wider range of potential metabolic en-

gineering targets, MESSI is designed to identify variants and

genes in correlated pathways, which associate significantly

with the target metabolic pathway in terms of the

metabolome-based pathway activities. The universal path-

ways, including ‘Metabolic pathways’, ‘Biosynthesis of sec-

ondary metabolites’, ‘Microbial metabolism in diverse

environments’, ‘Carbon metabolism’, ‘2-Oxocarboxylic acid

metabolism’, ‘Fatty acid metabolism’, ‘Biosynthesis of

amino acids’, ‘Degradation of aromatic compounds’, ‘ABC

transporters’ and ‘Aminoacyl-tRNA biosynthesis’, were

excluded in pathway activity correlation analysis. The pair-

wise Pearson correlation coefficients and P values were cal-

culated with R (15). P values were further adjusted to Q

values using Bonferroni correction for multiple compari-

sons, and the significance level was set to Q<0.05. Around

7% (78/1081) of the pairwise comparisons were shown sig-

nificant correlation, calculated for 47 non-universal path-

ways with activity scores in the DB01_SC_21 database.

Pathway activity aggregation and strain ranking

To generate a unified ranking of strains based on user-

defined pathways, pathway activity aggregation is

performed. Since the raw pathway activity scores (PA)

generated from PAPi for different pathways are not

comparable, they are further linearly normalized to 0–1, as

normalized pathway activity scores (PAN), before aggrega-

tion. For strain i and pathway j, PANi,j is calculated by the

following formula:

PANi;j ¼
PAi;j � PAmin;j

PAmax;j � PAmin;j

For each target pathway, two parameters, pathway ac-

tivity expectation (E) and weight (W), are provided from

Figure 1. The computational pipeline of the MESSI server. Green boxes represent inputs and outputs. Data inside the blue dotted box have been pre-

calculated from the exsisting database (DB01_SC_21) on the MESSI server. Steps inside the orange dotted box are user defined analysis.
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the user. Expectation (E) is to characterize how active the

target pathway should be. Three options are available,

including Very Active, Medium and Very Weak. Their cor-

responding values in the aggregation algorithm are E¼ 1,

0.5 and 0, respectively. For example, when E is set to 1,

the strain with the highest pathway activity score

(PAN¼1) will rank first for the selected pathway; while if

it is set to 0, the strain with PAN¼ 0 will rank the first;

when it is set to 0.5, the strain with PAN nearest to 0.5

will rank the first, and the strains with strongest or weakest

pathway activity will be in the bottom. The transferred

pathway activity score (PAT) generated for strain i

and pathway j is calculated as follows:

PATi;j ¼ 1� jEj � PANi;j j

Another important parameter, weight (W), is to charac-

terize the relative importance of a particular pathway com-

pared with other pathways in aggregation. It can be any

non-negative number used as weight during aggregation.

When more than one pathways are targeted, aggregation

will be carried out for strain ranking. By default, universal

pathways defined in the previous section, like ‘Metabolic

pathway’, will receive a weight of 0 in aggregation. Users

can also revise this default setting to a positive number

when universal pathways are taken into consideration.

Two optional algorithms for aggregation are provided

and they are the Weighted AddScore Fuse (WASF) (the de-

fault option) and Weighted Borda Fuse (WBF) (16). In the

ranking process, WBF only considers pathway activity

rankings (based on scores), while WASF directly uses the

scores (PAT).

For WASF, the final fused score (FS) for strain i will be:

FSi ¼
X

j

ðPATi;j �WjÞ

When WBF is used for strain i and pathway j, Bi,j is the

sum of strains with lower PAT than strain i. The fused

score for strain i will be:

FSi ¼
X

j

ðBi;j �Wj Þ

Finally, a strain ranking based on user-defined path-

ways will be generated based on FS.

Genome-wide association study on pathway

activities

MESSI incorporated information of compounds, pathways

and genes and their relationships from KEGG database

using KEGG API REST.

To identify candidate pathway activities affecting vari-

ants and genes, which could serve as potential metabolic en-

gineering targets, an association study was performed. The

variant information for different strains is retrieved and

integrated from the variant calling pipelines described in the

previous section. The pathway activities calculated for

diversified pathways are used for different phenotypic indi-

cators. Among the 21 strains in DB01_SC_21, GWAS was

performed for 54 sets of pathway activities. The number of

yeast strains used for the GWAS in the present study is com-

parable to previous studies reported in the literature (8, 17).

At variant (SNP or InDel) level, the efficient mixed-

model association (EMMA) method was adopted to calcu-

late genetic relatedness to pathway activities (18). As

adjusted permutation test P values are provided by

EMMA, the significance threshold is set to P< 0.05, for

further gene-level variant statistics.

To prioritize gene level targets, gene-level association

P values were calculated based on significant LD blocks

and proxy clusters (19). LD blocks were generated by the

Haploview by applying the Four Gamete Rule (20). In gen-

eral, by applying this method, the most significant variant

in overlapping LD blocks were considered as the true asso-

ciation of a gene.

Besides gene-level P values, other indices, such as statistics

on variant quantities of diverse effects, and variant signifi-

cant level accumulated score (AS), are also provided to users.

They serve as alternative candidates for potential metabolic

engineering targets. ASi is defined by the following formula:

ASi ¼
X

j

� logPi;j

Li

Where Li stands for the length of the gene i region (800 bp

upstream sequence is included as potential regulatory re-

gion), and Pi,j stands for the P value for significant variant

j in gene i.

Server description

MESSI was written in R and PHP, running under the

Debian 7 Linux environment. Stylesheets and functions of

Shiny R package were introduced (21). There is no login

requirement to use MESSI. Finished jobs are stored for two

years and can be viewed using job ID. The interface and

workflow of MESSI are illustrated in Figure 2. There are

three main steps to run MESSI as follows:

Input: pathway or compound list and parameters

Two input formats, KEGG pathway names and KEGG

compound IDs, are acceptable in MESSI (Figure 2A). Users

Page 4 of 9 Database, Vol. 2015, Article ID bav076



can select the input pathways from a candidate list on the

web server. Examples for the two types of input are avail-

able for testing.

Variants and genes associated with input pathways or

compounds could be summarized and demonstrated in dif-

ferent biological levels, serving as potential metabolic engin-

eering targets. Optional levels include: (i) level 0, no variant

and gene information will be processed; (ii) level 1, variants

and genes in metabolic reactions of target compounds (only

when input is a compound list); (iii) level 2, variants and

genes in target pathways associated with their pathway ac-

tivity score; (iv) level 3, variants and genes in correlated

pathways associated with their activity scores; (v) level 4,

variants and genes in whole genome level associated with

activity in target pathways. When a higher level is chosen,

data from lower levels are automatically processed.

Variants (SNPs and InDels) could be filtered optionally

according to their mutation effects/positions, including up-

stream non-coding variants, synonymous coding (including

synonymous amino acid coding codon or synonymous stop

codon), missense coding, nonsense variants (stop-codon

gained, start- or stop-codon lost situations), frame shifts,

codon insertions or deletions, variants in intron and vari-

ants in splice sites.

Second step: pathway expectation and weight

adjustment

In this step, ‘Expectation’ of pathway activity, defined as

how active the target pathway should be, and ‘Weight’ of

pathway activity, defined as the relative importance of the

pathway compared with others in aggregation, are seleted

Figure 2. The interface of MESSI and the workflow of running a task. (A) Create a new task by the following steps: name a job, select a strain database,

input target pathway list or compound list, and set the parameters on the potential metabolic engineering targets identification and variant calling.

(B) Set the pathway expectations and weights and choose an aggregation algrithm. (C) Check for the results, including job information, best strains,

metabolic engineering targets (gene-level and variant-level, respectively), fused score, ranking and variant list of each strain.
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for target pathways (Figure 2B). When the input is a path-

way list, all recognized pathways will be listed as target

pathways. If the input is a compound list, pathways associ-

ated with target compounds in KEGG database will be

listed. There are four reasons why pathways or compounds

may be marked as ‘unrecognized or unused compounds or

pathways’: (i) their input IDs or names could not be recog-

nized by KEGG; (ii) the input IDs or names are recognized

but are not part of the S. cerevisiae KEGG database; (iii)

no pathway activity scores could be calculated due to data

incompleteness in the metabolomic profiling of these path-

ways; (iv) for recognized compounds, pathway activity

scores are not available for all associated pathways (similar

to (iii)).

For recognized pathways, expectation (E) can be set as

very weak, medium or very active. Weight (W) can be any

non-negative value. Weight for universal pathways is set to

0 by default. ‘Call Variants’ should be selected if metabolic

engineering targets (variants and genes) are supposed to be

presented for the target pathways.

Users can also select two optional pathway activity ag-

gregation algorithms, WBF and WASF in this step (16).

Output: strain ranking, variants and gene-level

metabolic engineering targets

In the result page, job information including job ID, input

type, database and parameters are provided (Figure 2C).

Based on the fused scores, the best strains (top 5) are iden-

tified and a table with scores and rankings of all strains

will be listed (Figure 2C).

If the user would like to search for potential metabolic

engineering targets, two types of information, variant and

gene-level information, will be provided in the results.

Generally, variant information may include three main

parts, (i) an eight-column basic information (including

chromosome, position, variant type, reference genotype,

variant genotype, gene id, variant effect and amino acid al-

teration), (ii) a data matrix of strains (for database

DB01_SC_21 it is a 21-column matrix, with 0/1 represent-

ing the variant is/is not observed in the corresponding

strain, respectively) and (iii) a matrix of P values of associ-

ations with pathway activities. For strain-specific variant

list, the data matrix of strains is not presented and only

variants captured in the target strain will be listed. For

pathway-specific variant list, there will be only one column

of association P values of the specific pathway. The variant

list will be sorted by P values, so significantly associated

variants will be shown first.

Gene-level information includes gene IDs, gene-level P

values, significance level AS, gene region lengths, total

variant numbers, significant variant numbers and statistics

for diverse effects. This information is sorted by P values

thus genes with the highest significance levels from their

LD blocks will rank first.

In the score and ranking table, strain-specific variant

lists are shown in selected biological levels. In the

‘Metabolic Engineering Target Selection’ table, relation-

ships among compounds, pathways, correlated pathways

and genes are available (Figure 2C). All input and corre-

lated sources are listed in a tree structure with hyperlinks

to the corresponding KEGG information. Variant and gene

lists have been generated for different sources. Top 3 asso-

ciated genes of P value-based and AS-based rankings

are listed, with hyperlinks to the corresponding informa-

tion in Saccharomyces Genome Database (SGD) (22).

Strain names are also attached with hyperlinks to the

British National Collection of Yeast Cultures (23), for

facilitating downstream wet-lab engineering strategies.

Evaluation

Experimental verification using published studies

To evaluate the reliability of MESSI in the prediction of

metabolic engineering targets, we run a number of tasks

and confirmed the correlations with experimental studies

in the literature. All the studies presented here were per-

formed under the same aeration condition (aerobic) and

carbon source (glucose) as the strain characterization in

our current pathway activity database.

Metabolic engineering to enhance fatty acid production

in S. cerevisiae is a ‘hot’ topic for years. We created a job

named ‘eg_fattyacid’, with the input pathway list including

‘Fatty acid metabolism’, ‘Fatty acid biosynthesis’, ‘Fatty

acid degradation’ and ‘Fatty acid elongation’. ‘Fatty acid

degradation’ was marked as unused pathway and ‘Fatty

acid metabolism’ was marked as a universal pathway. For

the ‘Fatty acid biosynthesis’, the pathway ‘Biosynthesis of

unsaturated fatty acids’ was found as correlated pathway

based on their activity scores. For ‘Fatty acid elongation’,

‘Biosynthesis of unsaturated fatty acids’ and ‘Arginine and

proline metabolism’ were captured as significantly corre-

lated. Two lists of top 3 genes (in P value-based or AS-

based rankings, respectively) were generated for the two

target pathways and the two correlated pathways. In a re-

cently published study (24), eight genes were experimen-

tally verified to be strongly correlated with fatty acid

production by either gene deletion or overexpression. The

genes FAA1, FAA2 (24, 25), FAS1 and FAS2 (26) were

shown to have direct correlation with fatty acid produc-

tion. In FAA1 and FAA4 disrupted strain, approximately

80 mg/l fatty acids can be produced (25) whereas knock-

outs of FAA2, PXA1 and POX1, increased the
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intracellular fatty acids levels by 55% (24). Similarly, the

levels of lignoceric acid and cerotic acid were largely

increased (40 and 50%, respectively) by the fas1D strain

(26). Among these, FAA2 and FAA1 were successfully cap-

tured by MESSI in the top 3 in target pathway ‘Fatty acid

biosynthesis’, and POX1 was found in the top-3 in corre-

lated pathway ‘Biosynthesis of unsaturated fatty acids’.

PXA1, which was also experimentally shown as a regula-

tory point of fatty acid production, is not part of any of

these pathways, however, in our analysis it was found sig-

nificantly associated with the pathway activity of ‘Fatty

acid biosynthesis’ and was ranked fourth in the whole-gen-

ome level statistics. DGA1 is a similar to the PXA1 case

and was found significantly associated to the pathway

‘Fatty acid elongation’ in the whole-genome level statistics.

Another example is the NADþ/NADH metabolism,

with the levels of NADþ/NADH to play important roles in

yeast lifespan and have significant influence on efficient

carbon source utilization (27). The job ID of this test ex-

ample was ‘eg_NAD’ and the input was compound list

(C00003: NADþ). Three target pathways, ‘Nicotinate and

nicotinamide metabolism’, ‘Thiamine metabolism’ and

‘Oxidative phosphorylation’, were identified and pro-

cessed. In the most relevant pathway, ‘Nicotinate and nico-

tinamide metabolism’, all the five genes from the two top 3

lists (with one gene shared by both rankings) have been ex-

perimentally shown to be strongly correlated with the

NADþ concentration [HST1, HST4 (28), PNC1 (29),

NRK1 (30) and BNA6 (31)]. More specifically, the dele-

tion of HST1 resulted in up to 71% increase in NADþ lev-

els (28). On the contrary, the Dnrk1 and Dpnc1 double-

mutant strain incapable of incorporating supplemented

nicotinamide riboside (NR) into NADþ in nicotinic-acid-

free media (30). The Dpnc1 mutant contributed to 69.9%

decrease in the intracellular NADþ concentration in sta-

tionary phase (29), while kynurenine and 3-(OH)-kynure-

nine in the cell, which are precursors of NADþ from

kynurenine pathway, were absent in the Dbna6 mutant

(31).

In silico verification from Genome-scale metabolic

model (GEM) simulations

We carried out in silico simulations to evaluate the univer-

sal gene ranking results systematically. Null mutant simu-

lations were executed using the yeast genome-scale

metabolic model iTO977 (32) by the RAVEN Toolbox

(33). The glucose uptake rate was set to 10 mmol/g/h and

the simulations were optimized for maximum growth. For

the original model and each single gene deletion simula-

tions, all reaction fluxes were calculated and then summar-

ized by individual non-universal pathways. Reactions

without any perturbation in all simulations, and pathways

without valid activity information or with less than 6 simu-

lated reactions were removed in the statistical analysis. 40

pathways were processed, with 21.5 genes, 28.8 reactions

and 10.7 reserved reactions on average. We assumed the

fluxes of a reaction among all 977 single gene deletion

simulations have a normal distribution (with the popula-

tion mean the flux of the original model) thus we con-

verted all fluxes into Z-scores and calculated their

P values. The proportions of significantly altered fluxes

(P< 0.05) were compared between the top 3 genes from

the P value-based ranking, and the rest of the genes for

each pathway, respectively. It was observed that the pro-

portions of significantly altered fluxes of the top ranked

genes are significantly higher than the rest ones in single

gene deletion simulations (3.49% versus 1.87, T-test

P¼ 0.022), illustrating the potential regulatory role of the

MESSI output.

Conclusions and future directions

The ability to perform deep sequencing of industrially rele-

vant microbial species at increasingly affordable costs can

help to revolutionize microbial cell factory engineering in a

similar way that revolutionized fields like human genetics

and epigenetic studies. With this in mind, we developed

MESSI, a S. cerevisiae web server, where we incorporated

bioinformatics methods—that are being employed in NGS-

based human genetics—for prioritizing genetic changes

that need to be experimentally tested. The ultimate goal of

MESSI is to provide a more solid and comprehensive basis

for selecting the most promising host for desired pheno-

types and discover which mutations would be expected to

contribute most to that phenotype for metabolic engineer-

ing efforts. We believe that MESSI offers new opportuni-

ties for establishing links between genotype and phenotype

in S. cerevisiae strains and can be efficiently used for

searching genome-wide spaces for small variants and genes

conferring phenotypic characteristics of interest.

The first version of MESSI contains 21 S. cerevisiae

strains for best strain selection and genotype-to-phenotype

mapping. Even though the number of yeast strains is com-

parable with other studies in the literature (8, 17) we in-

tend to significantly expand the S. cerevisiae strain

database to achieve higher confidence in the GWAS map-

ping and improve the prediction of regulatory points in the

different metabolic pathways. Towards that objective we

have initiated a collaborative effort to sequence the gen-

omes and perform metabolomic profiling of >35 S. cerevi-

siae strains, including several industrial strains. To deal

with the limitation of KEGG database and the ready-made

definition of its pathways, a further direction of MESSI
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may be a comprehensive expansion of pathway databases

(for instance, Reactome (34), SGD (22), etc.).

Furthermore, based on the better-defined pathways and

the in-house strain set, we will work on an algorithm de-

velopment to compute the optimized pathway expectation

(E) and weights (W) automatically from the pathway top-

ology, and then evaluate the method with downstream en-

gineering in our strain set. Last but not least, we will

continuously add more strain databases from different cul-

tivation conditions, for instance, diverse carbon sources

(ethanol is next in the pipeline) and cultivation conditions

(batch cultivation, anaerobic, etc.), to improve the prac-

tical value of MESSI in industrial bioengineering.
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