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Abstract

Background: Alzheimer's disease (AD) is a complex progressive neurodegenerative disorder commonly characterized
by short term memory loss. Presently no effective therapeutic treatments exist that can completely cure this disease.
The cause of Alzheimer’s is still unclear, however one of the other major factors involved in AD pathogenesis are the
genetic factors and around 70 % risk of the disease is assumed to be due to the large number of genes involved.
Although genetic association studies have revealed a number of potential AD susceptibility genes, there still exists a
need for identification of unidentified AD-associated genes and therapeutic targets to have better understanding of
the disease-causing mechanisms of Alzheimer's towards development of effective AD therapeutics.

Results: In the present study, we have used machine learning approach to identify candidate AD associated genes by
integrating topological properties of the genes from the protein-protein interaction networks, sequence features and
functional annotations. We also used molecular docking approach and screened already known anti-Alzheimer drugs

against the novel predicted probable targets of AD and observed that an investigational drug, AL-108, had high
affinity for majority of the possible therapeutic targets. Furthermore, we performed molecular dynamics simulations
and MM/GBSA calculations on the docked complexes to validate our preliminary findings.

Conclusions: To the best of our knowledge, this is the first comprehensive study of its kind for identification of
putative Alzheimer-associated genes using machine learning approaches and we propose that such computational
studies can improve our understanding on the core etiology of AD which could lead to the development of effective

anti-Alzheimer drugs.
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annotations, Molecular docking, Molecular dynamics

Background

Alzheimer’s disease (AD) is the most common neurological
disease, accounting for 60-70 % of total dementia cases,
affecting masses of people across the globe [1]. The grow-
ing incidences of this irreversible brain disease is due to
lack of the effective treatment options, with the currently
available drugs being able only to slow down the disease
advancement and not halt it [2]. The neurodegenerative
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AD is characterized by short-term memory loss, challenges
in completing daily activities, bafflement, problems in
speaking and writing, changes in behavior and mood
swings [3]. The socio-economic burden including medical
expenses, costs associated with fulltime caregiving, etc.
linked to the disease is huge which makes the disease as
one of the most costly diseases [4]. Various hypothesis have
been suggested to describe the cause of the disease, that
include amyloid hypothesis, cholinergic hypothesis, tau
hypothesis and genetic factors, yet the mechanism of the
disease is poorly understood [5]. It has been proposed that
genetic factors are mainly responsible for AD cases, and
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thus there have been many studies in quest for the genes
associated with the disease and the unexplored principal
genetic mechanisms [6].

A wide range of population surveys, genetic linkage stud-
ies and genome-wide association studies (GWAS) have
been conducted to identify AD-associated genes and gen-
etic mutations that alter with the expression of the genes in
the brain. Apolipoprotein E (ApoE), Presenilin-1 (PSEN1)
and Presenilin-2 (PSEN2), amyloid precursor protein (APP)
and the linked mutations are some of the strongest risk
factors that were observed to be associated with the brain
disorder, Alzheimer’s [7]. Researchers have proposed that
alteration of the functions of any of these genes results in
enhanced production of amyloid beta peptide (AP) in the
brain, extracellular aggregation of which leads to loss of
synaptic functions and neuronal cell death resulting in AD.
Several other genes that showed significant association with
AD include sortilin-related receptor: L, clusterin, bone
marrow stromal cell antigen 1, leucine —rich repeat kinase
2, complement receptor 1, phosphatidylinositol binding
clatherin assembly protein 1 and Triggering receptor
expressed on myeloid cells 2 and more [8]. A lot of other
genes have been put forward through traditional methods
of gene discovery like GWAS in populations and linkage
studies, however owing to the time and labor consumed
and the high risk rate, there appears the need for the
methods which could significantly reduce the size of the
candidate gene sets for genetic mapping [9]. Recently, a
number of alternative approaches, like genomics, proteo-
mics, bioinformatics and many other computational
methods have been employed to identify the putative
disease genes, mainly for cancer [10-12], decreasing the
number of genes for experimental analysis.

Since the already discovered AD-associated genes do
not cover a significant portion of the human genome,
there can be an innumerable number of disease genes
still left to be discovered. Thus, in spite of the discovery
of many genes responsible for AD, identification of
disease-associated genes in humans still remains a huge
problem to be addressed. Additionally due to the fact
that no cure for AD exists, the identification of novel
AD genes can disclose novel effective therapeutic targets
which could advance the discovery of drugs for the
disease [2]. Lately, network-based methods integrating
properties from protein-protein interaction (PPI) net-
works, have been widely used for prioritization of
disease genes and finding an association between the
genes and the diseases. Liu and Xie, 2013 integrated
network properties from PPI networks, and sequence
and functional properties and generated a predictive
classifier to identify cancer-associated genes [13].
Vanunu et al. [14] also proposed a global network-based
approach, PRINCE, which could prioritize genes and
protein complexes for a specific disease of interest and
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applied the method to prioritize genes for prostate can-
cer, AD and type-2 diabetes mellitus.

In the present study, we have used machine learning ap-
proaches to generate highly accurate predictive classifiers
which could predict the probable Alzheimer-associated
genes from a large pool of the total genes available on the
Entrez gene database. We have investigated the interaction
patterns of the genes from their network properties using
PPI datasets, and the sequence features and the functional
annotations of the genes and employed these properties to
classify disease and non-disease genes. We have used eleven
machine learning algorithms and trained the classifiers
using Alzheimer (Alz) and non-Alzheimer (NonAlz) genes
and examined the relevance of the features in the classifica-
tion task and studied their behavior for both the classes of
the genes. Finally, to identify candidate drugs for the pre-
dicted novel genes we have used molecular docking ap-
proach and screened the already known approved and
investigational Alzheimer specific drugs against the novel
targets. To validate our initial findings and to further
evaluate the affinity of the drugs against the predicted novel
targets we have carried out molecular dynamics (MD) sim-
ulations and MM/GBSA calculations on the ligand-bound
protein complexes. Using the computational approach pre-
sented in the current study, we have identified 13 novel po-
tential Alz-associated genes which could prove beneficial
for the development of drugs and improve our understand-
ing of the AD pathogenesis.

Methods

Dataset source: positive and negative datasets

A total of 56405 genes belonging to Homo sapiens species
were obtained from the Entrez Gene [15] database at the
National Centre for Biotechnology Information (NCBI).
Entrez Gene is an online database that incorporates exten-
sive gene-specific information for a broad range of species,
the information may comprise of nomenclature, genomic
context, phenotypes, interactions, links to pathways for
BioSystems, data about markers, homology, and protein
information, etc. The positive dataset, Alz (AD-associated)
consisted of 458 genes which had been reported as disease
genes that could cause AD. All the other 55947 Entrez
genes, excluding the AD-associated genes, were consid-
ered as NonAlz (not related to AD) genes which com-
prised the negative dataset.

Mining biological features

Network features

To compute topological features of the Alz and NonAlz
genes, human protein-protein interaction (PPI) datasets
were retrieved from Online Predicted Human Interaction
Database (OPID) [16], STRING [17], MINT [18], BIND
[19] and InTAct [20] databases. We calculated 9 topological
properties of the PPI network for each gene: the average
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shortest path length, betweenness centrality, closeness cen-
trality, clustering coefficient, degree, eccentricity, neighbor-
hood connectivity, topological coefficient and radiality
(Additional file 1: Table S1). Average shortest path length
or average distance is the measure of the efficiency of trans-
fer of information between the proteins/nodes in a network
through the shortest possible paths. Betweenness centrality,
closeness centrality, eccentricity and radiality are the indica-
tors of the centrality of a node in a biological network. Be-
tweenness centrality and closeness centrality show the
capability of a protein to bring together functionally rele-
vant proteins and the degree of the transfer of information
from a particular protein to other relevant proteins, re-
spectively. Betweenness centrality is computed by totaling
the shortest paths between the vertices passing through
that node and closeness centrality is the sum total of the
shortest paths between a node and all the other nodes. Ec-
centricity is the extent of the easiness with which other pro-
teins of the network can communicate to the protein of
interest. Radiality is the probability of the significance of a
protein for other proteins in the network. Degree may be
defined as the number of edges connected to a node while
clustering coefficient is the degree of the nodes that tend to
cluster together in a network. Neighborhood connectivity is
a derivative of the connectivity; connectivity is the number
of the neighbors of a node while neighborhood connectivity
is the average of all the neighborhood connectivities.
Topological coefficient is the extent of sharing of a node’s
neighbors with the other nodes in the network. All the
interaction datasets were loaded and integrated into
Cytoscape [21], which is an open-source platform for visu-
alizing molecular interaction networks, and Network
Analyzer [22] plugin of Cytoscape was used for computing
the topological parameters of the networks for 383 Alz and
13699 NonAlz genes.

Sequence features

UniProtKB (Universal Protein Resource Knowledgebase)
[23], a freely accessible database which stores large amount
of information on protein sequence and function, was used
to obtain protein sequences corresponding to Alz and Non-
Alz genes. The protein sequence properties were calculated
using Pepstats [24] program available from Emboss [25]
and 21 sequence properties were extracted. The sequence
features are molecular weight, the number of amino acid
residues, average residue weight, charge, isoelectric point,
molar extinction coefficient (A280), the frequency of the
amino acids (Alanine, Phenylalanine, Leucine, Asparagine,
Proline, Arginine, Threonine and Serine) and the amino
acids grouped as polar and non-polar, small, aliphatic and
aromatic, and acidic and basic (Additional file 1: Table S1).
Only the reviewed protein sequences were considered for
calculating protein sequence statistics, thus we retrieved
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protein sequences and calculated properties for 383 Alz
and 13666 NonAlz genes.

Functional features

Using DAVID (Database for Annotation, Visualization and
Integrated Discovery) [26], functional properties associ-
ated with the 370 Alz and 13549 NonAlz genes were
incorporated. DAVID is an open-source knowledgebase
by which one can obtain Gene Ontology (GO) terms for
large gene lists. Two additional Swiss-Prot functional an-
notation terms, UP_SEQ FEATURE and SP_PIR_KEY-
WORDS, were also included for the Alz- and NonAlz-
associated genes. The number of genes (the Count term)
linked to each functional annotation term was computed
and only those terms were selected which had Count >38
i.e. associated with at least 1 % of the input Alz-associated
genes. Further, the functional annotation terms were fil-
tered based on p-value <0.001 and fold-enrichment >1.5
and the final 62 functional features were retrieved for the
Alz and NonAlz genes. A list of final 62 functional fea-
tures associated with the Alz and NonAlz genes has been
provided as Additional file 1: Table S1.

Feature selection

We employed feature selection techniques, to identify sig-
nificant features contributing efficiently towards predict-
ing the target class and thus extract the smaller subset of
features for classification of Alz and NonAlz genes. Seven
feature selection techniques were used that include a
gain-ratio based attribute evaluation, oneR algorithm, chi-
square based selection, correlation-based selection, infor-
mation gain-based attribute evaluation and relief-based se-
lection, to select the important attributes. Gain-ratio
based attribute selection approach measures the gain ratio
regarding the prediction class [27] while info-gain attri-
bute evaluation [28] uses Info Gain Attribute Evaluator
and measures the information gain with respect to the
prediction class. Chi-squared Attribute Evaluator calcu-
lates the chi-square statistic with respect to the class.
OneR [29] algorithm uses OneR classifier for attribute se-
lection and generates one rule for each attribute followed
by selecting the attribute with smallest-error to be used
for classification. Correlation-based selection employs
CfsSubsetEval and measures the worth of a subset of attri-
butes by evaluating each predictor [30]. The algorithm fi-
nally selects the subset in which the predictors are highly
correlated with the prediction class while are poorly corre-
lated to other predictors. Relief-based selection evaluates
the importance of an attribute by choosing the instances
randomly and considering the value of an attribute for the
nearest neighboring instance [31]. Weka [32], a publicly
available machine learning software, was used for imple-
menting the above mentioned feature selection algorithms
for the purpose of selection of meaningful attributes.
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Additionally, Principal Component Analysis (PCA)
was conducted using FactoMineR [33] package available
from R platform. The first two principal components ex-
plained around 60 % of the variance (Additional file 2:
Figure S1) and attributes having >0.1 value of loadings
in PC1 and PC2 were retained. The attributes selected
by 5 out of the 7 selection methods and had >0.1 value
of loadings in PCA were considered for training the
model systems for Alz and NonAlz genes predictions.

After the extraction of relevant features, the combined
positive and negative datasets were split into 80 % train-
ing set and 20 % test set using ‘create Data Partition’
function available from CARET [34] package of R.

Machine learning based model systems generation
Eleven machine learning algorithms were applied to gen-
erate classifiers using the training dataset which could
predict Alz- and NonAlz-associated genes using the se-
lected network, sequence and functional features [35].
The machine learning methods used include Naive Bayes
(NB) [36], NB Tree [37], Bayes Net [38], Decision table/
Naive Bayes (DTNB) hybrid classifier [39], Random For-
est (RF) [40], J48 [41], Functional Tree [42], Locally
Weighted Learning (LWL (J48 + KNN(k-nearest neigh-
bor)) [43], Logistic Regression [44] and Support Vector
Machine (SVM) [45]. SVM model using Radial Basis
Function (RBF) kernel was generated using the CARET
package of R. Weka package was used to build all the
other classifier models. Default parameter settings were
used for generating all the classifier models.

Ten-fold cross-validation was used for training the
classifier models to overcome the problems of overfitting
of the generated models and to gain insights into the
performance of the models on independent test sets. In
cross-validation, say k-fold cross-validation, the training
data was split into k subsets or folds and the models
were generated using k-1 subsets and the remaining one
set was used as previously unseen test set for the gener-
ated models. This process was repeated until all the k
folds were used as test set at least once. The cross-
validation results reported are the averaged over all the
generated training classifier models.

Cost-sensitive classifier

In order to remove bias in classification of the positive
and negative datasets, misclassification costs were
applied to the classifiers. Costs were introduced through
a 2X2 confusion matrix which was divided into true
positives (TP), false positives (FP), true negatives (TN)
and false negatives (FN). The costs were applied on FN
and a total of 22 classifier models were generated which
include 11 models generated using base classifiers and
11 cost-sensitive models [46, 47].
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Performance assessment of generated classifier models

The performance of the generated 11 cost-sensitive clas-
sifiers in classifying Alz and NonAlz genes was mea-
sured using accuracy, precision, recall, F-measure or
Flscore and Matthews Correlation Coefficient (MCC).
Accuracy (TP + TN/(TP + TN + FP + FN)) is propor-
tion of the correct positive and negative classifications
by the classifier models. Precision (TP/(TP + FP)) is the
percentage of true positives while recall or sensitivity or
TP rate (TP/(TP + EN)) is the proportion of all the posi-
tives predicted correctly. F-measure or F1 score is con-
sidered as an average of precision and recall and can be
calculated as ((2 x Precision x Recall)/(Precision + Re-
call). MCC is a correlation coefficient between the ex-
perimental and the predicted classifications and is
computed to introduce a balance in the predictions
made by the classifiers in case of classes of varying sizes.

Screening of anti-Alzheimer drugs against the novel and
known Alz-associated genes

A list of 45 already existing approved and investigational
drugs specific to Alzheimers was retrieved from the
DrugBank [48] database and chemical structures of a
total of 37 drugs were obtained from the PubChem com-
pound database. DrugBank is a freely available online
database that houses information on a broad category of
drugs and drug targets. Using the Glide [49, 50] docking
module available from Schrodinger [51], we carried out
extra-precision (XP) docking studies using the predicted
and already known Alz-associated genes as drug targets
into which 37 Alzheimer specific drugs were docked. A
thorough Protein Data Bank (PDB) [52] search was per-
formed to download the three-dimensional crystal struc-
tures of the predicted novel targets along with the
structures for the three well-established Alzheimer
genes, APOE, APP and PSENI1. The PDB structures
were preprocessed using Schrodinger’s Protein Prepar-
ation Wizard [51, 53] prior to which the water molecules
and heteroatoms were removed from the structures
using Accelrys ViewerLite (Accelrys, Inc., San Diego,
CA, USA). The protein preprocessing steps included ad-
justment of bond orders, cofactors and metal ions, as-
signment of correct formal charges, hydrogen bonds
addition and protein termini capping followed by a re-
strained energy minimization of the protein. A receptor
grid was generated centered on the active site residues
provided by the user using the Receptor Grid Gener-
ation panel of Schrodinger [54, 55]. The 37 Alzheimer
specific drugs were used as ligands and were prepared
using the LigPrep [56] program available from Schrodin-
ger. The other parameters were kept as default for the
molecular docking studies. The best docked pose of each
ligand was selected for each protein to be used for MD
simulation study further.
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Understanding protein-ligand complex behavior through
molecular dynamics simulations

Post molecular docking, the docked protein-ligand com-
plexes for the novel targets were subjected to MD simula-
tion studies to evaluate the stability of the ligand and
protein in the presence of salt and the solvent [57]. The
MD simulation studies were performed using Desmond
Molecular Dynamics [58] platform. The docked protein-
ligand complexes were first refined using Protein Prepar-
ation Wizard followed by generation of a solvated system
that included the protein-ligand complex as solute and the
water molecules as solvent, using simple point charge as
water model. The box shape was kept as Orthorhombic,
the buffer region containing the solvent molecules was kept
at 10 A distance from the protein atoms and the volume of
the generated solvent was minimized to reduce the
duration of the simulation process. Further, the protein-
ligand complexes were subjected to 2000 steps of energy
minimization using Steepest Descent (SD) algorithm until a
gradient threshold of 25 kcal/mol/A, and Optimized Poten-
tials for Liquid Simulations (OPLS) all-atom force field
2005 [59, 60] with a constant temperature 300 K and 1 bar
pressure. A 25 ns MD simulation was then performed using
Berendsen algorithm and Isothermal—isobaric (NPT) en-
semble at constant temperature (300 K) and pressure con-
ditions (1 atm). Post MD simulation, the protein-ligand
complexes were visualized using Schrodinger’s maestro and
root mean square deviation (RMSD) analysis was carried
out for all the simulated complexes.

MM/GBSA method to calculate binding free energies

To calculate the relative binding affinities of the ligands
with the targets, MM/GBSA calculations were carried
out using Schrodinger [61]. MM/GBSA is a widely used
computationally efficient method to compute the bind-
ing free energy of a set of ligands to a protein and is
based upon

AG (binding) = Energy complex (minimized) -
(Energy ligand (minimized) + Energy receptor (minimized))

The protein-ligand complexes obtained after MD
simulation analysis were used as input for MM/GBSA
calculation.

Results and Discussion

In the present study we have tried to identify potential
Alz genes based on the extraction of their network, se-
quences and functional properties using machine learn-
ing approaches. We have carried out feature selection
using seven different feature selection techniques along
with PCA to extract significant features and used 11
machine learning classifiers to predict candidate Alz
genes. To do so, we have obtained a list of known Alz-
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associated and NonAlz genes from the Entrez Gene
database, which made the positive and negative dataset
respectively. We also performed a series of docking
studies followed by MD and MM/GBSA calculation and
screened the already existing approved and investiga-
tional anti-Alzheimer drugs to identify drugs against
novel candidate genes.

Analysis of various biological features for Alz-associated
and NonAlz genes

Network features

A total of nine topological properties were calculated for
each gene in the PPI datasets and a comparison of the
properties between Alz and NonAlz genes was per-
formed. Our results showed that the mean value of the
degree for the Alz genes was considerably larger than
the NonAlz genes which confirmed a previous finding
that disease genes have higher degree value (P-value =
0.00002) [62, 63]. The median neighborhood connectiv-
ity value was much higher for the non-disease genes
(108.7) as compared to the disease genes (88.4) owing to
the large number of non-disease genes. However, calcu-
lating the average of similar number of samples of dis-
ease and non-disease genes further indicates the greater
likelihood of neighbors of a disease gene being the other
disease genes [62, 64]. We also found that disease pro-
teins have more significant interactions with other pro-
teins in the network as indicated by a very high mean of
radiality for disease genes with a significant P-value of
0.00006. The mean values of the shortest path to Alz
genes, clustering coefficient, topological coefficient, ec-
centricity and closeness centrality were similar for the
Alz and NonAlz gene datasets. Table 1 shows the me-
dians of the network features along with p-values be-
tween the Alz gene and NonAlz gene sets.

Sequence features

A statistical comparison between the sequence properties
for Alz and NonAlz genes was also performed which pro-
vided us interesting results. The mean value of charge on
amino acids was much higher for non-disease genes sug-
gesting that disease genes targets majorly included more
hydrophobic and less polar amino acids (P-value = 1.64E-
07). The more number of arginine residues in non-disease
genes also explains the same. The average number of resi-
dues for disease genes (491) and non-disease genes (443)
confirmed that disease drug targets are longer than non-
disease drug targets. The mean value of molecular weight
of the Alz proteins (54349.54 Da), was also higher than
NonAlz proteins (49547.60 Da) with a significant P-value of
0.01. The mean value of isoelectric point was lower for Alz
proteins as compared to NonAlz proteins with the values
being 6.60 and 7.22 respectively and P-value of 3.06E-08
which was due to more number of positively charged
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Table 1 Lists the medians of the network features along with
p-values between the Alz gene and NonAlz gene sets

Network feature Alz genes  NonAlz genes  p-value
Average shortest path length ~ 4.10 4.19 6.79E-05
Closeness centrality 0.24 0.23 1.88E-04
Clustering coefficient 0.03 0.06 1.91E-08
Degree 19 13 2.29E-05
Eccentricity 18 18 0
Neighborhood connectivity 884 108.7 1.18E-05
Topological coefficient 0.07 0.08 9.17E-02
Radiality 087 0.86 6.37E-05

amino acids. Table 2 lists the medians of the sequence
features and the p-values between the Alz proteins and
NonAlz proteins sets.

Functional features

We retrieved GO terms and Swiss-Prot functional annota-
tion terms using Gene Functional Classification module
implemented in the DAVID tool and obtained GO terms
distributed into three categories, i.e. molecular function,
cellular component and biological process. Among the bio-
logical process, the terms strongly associated with disease/

Table 2 Shows the medians of the sequence features and the
p-values between the Alz proteins and NonAlz proteins sets

Sequence feature Alz genes NonAlz genes  p-value

Molecular weight 5434954 4954760 1.61E-02
Residues 491 443 1.49E-02
Average residue weight 111.83 111.90 3.09E-01
Charge 1 4 1.64E-07
Isoelectric Point 6.60 7.22 3.06E-08
A280 Molar Extinction Coefficients 50880 44380 7.66E-05
A=Al 6.81 6.85 7.98E-01
F =Phe 3.77 3.56 148E-02
L=Lleu 9.38 9.81 2.01E-02
N = Asn 3.78 346 1.22E-04
P ="Pro 533 552 542E-02
R=Arg 5.09 555 4.89E-06
S = Ser 7.53 7.59 2.97E-01
T=Thr 531 5.04 6.63E-04
Aliphatic 27.7 276 6.34E-01
Polar 47.0 472 5.28E-01
Non-polar 529 527 5.28E-01
Small 50 493 3.80E-02
Basic 13.46 13.99 1.82E-04
Aromatic 10.63 10.15 4.97E-02
Acidic 11.94 11.73 3.64E-02
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Alz genes comprised cell death and apoptosis and their
regulation (positive and negative) related terms, response to
endogenous stimulus and organic substance, phosphoryl-
ation and its regulation, and metabolic processes and their
regulation which clearly states that the AD related genes
are largely involved in neuronal death [65]. The NonAlz
genes terms included transcription and regulation of tran-
scription. The terms favored for cellular component, in case
of Alz genes, included plasma membrane part, cell fraction,
membrane fraction and insoluble fraction, enzyme binding,
vesicle, cytoplasmic, membrane-bounded and cytoplasmic
membrane-bounded vesicle, cell projection, and neuron
projection. In case of NonAlz genes, the cellular compo-
nent terms involved organelle membrane, organelle enve-
lope and organelle lumen, nuclear lumen, and cytosolic
part. This indicated that the disease drug targets are not lo-
calized within the organelles as is reflected for non-disease
targets, and are extracellular [66]. For the molecular func-
tion, terms associated with Alz genes are identical protein
binding and enzyme binding which suggests that disease
drug targets are associated with binding and are mostly en-
zymes [67]. The favorable terms for NonAlz genes included
nucleotide binding and purine nucleotide binding.

Extraction of features contributing to Alz genes
classification

In order to detect the features that contribute significantly
towards distinguishing between disease genes and non-
disease genes, we used seven feature selection techniques
on an initial set of 92 features. We identified a final subset
of 33 features which were selected by five out of seven se-
lection algorithms and had loadings value >0.1 in PCA, in-
dicating their association with AD (Table 3). The feature
selection was performed on the combined dataset of Alz-
and NonAlz-associated genes and the complete lists of
features obtained after each selection technique are avail-
able as Additional file 3: Table S2. Post feature selection,
the Alz- and NonAlz-associated genes dataset was divided
into a training set containing 11021 genes and a testing
set of 2755 genes which were used as the input to the clas-
sifier model systems which could predict the potential
disease genes.

Performance of the classifiers generated to predict Alz-
associated genes

Various machine learning algorithms, which have been
widely used for classification purposes, were used to build
the model systems using training set which could classify
the disease genes and non-disease genes from the test set
using the final set of contributing features. Using 11 ma-
chine learning algorithms, a total of 22 model systems were
generated, 11 models using standard classifiers and 11
using cost-sensitive classifiers employing confusion matrix,
and their performances were evaluated using various
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Table 3 Selected features obtained after applying feature
selection techniques

Features category

Network features ~ Sequence  Functional features
features
Clustering Charge GO:0006916 ~ anti-apoptosis
Coefficient
Degree Isoelectric  GO:0010942 ~ positive regulation of
Point cell death
Average Shortest R = Arg GO:0043068 ~ positive regulation of
Path Length programmed cell death
Closeness Acidic GO:0043066 ~ negative regulation of
Centrality apoptosis
Neighborhood GO:0009725 ~ response to hormone
Connectivity stimulus

GO:0009719 ~ response to
endogenous stimulus

GO:0043005 ~ neuron projection
G0O:0010941 ~ regulation of cell death

GO:0010033 ~ response to organic
substance

G0:0032268 ~ regulation of cellular
protein metabolic process

GO:0019899 ~ enzyme binding
Mutagenesis site

GO:0044093 ~ positive regulation of
molecular function

GO:0008219 ~ cell death
Transmembrane protein
Lipoprotein

Active site: Proton acceptor

G0:0016023 ~ cytoplasmic
membrane-bounded vesicle

GO:0042802 ~ identical protein
binding

GO:0031982 ~ vesicle
Disease mutation

G0O:0042127 ~ regulation of cell
proliferation

GO:0000267 ~ cell fraction
GO:0005624 ~ membrane fraction

statistical indices. The 11 cost-sensitive classifier models
outperformed the standard classifier models as can be seen
in Additional file 4: Table S3. Tables 4 and 5 list the num-
ber of prediction by the cost sensitive classifier algorithms
and results of the indices used to measure the performance
of the classifiers, respectively. All the classifiers performed
well having an accuracy of around 75 % and false positive
rate of around 20 % during 10-fold cross-validation.
Another popular measure, F-Measure, was also calculated
which came out to be highest for NB (0.15) classifier
followed by LR (0.14) and SVM (0.14) classifiers. The SVM
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classifier had the highest recall value of 78.8 % followed by
the NB and LR classifiers for which it was 71.8 % and 69 %
respectively, as compared to the other classifiers. The three
classifiers, NB, LR and SVM also had good MCC values,
which were 0.20, 0.19 and 0.20 correspondingly. The re-
sults presented in the current study can be reproduced eas-
ily using the datasets (training set and test set) and the 11
cost-sensitive classifier models generated which are avail-
able as Additional file 5.

The genes predicted to be probable Alz genes by all the
11 cost-sensitive model systems were considered for further
analysis in the study which resulted in a total of 13 genes
(Table 6). The 13 predicted probable Alz genes include
Cadherin 1: type 1 (CDH1), Caspase recruitment domain
family: member 8 (CARDS), Coagulation factor VII (F7),
Intersectin 1 (ITSN1), Janus kinase 2 (JAK2), Nuclear factor
of kappa light polypeptide gene enhancer in B-cells inhibi-
tor: alpha (NFKBIA), Phospholipase C: gamma 2 (phos-
phatidylinositol-specific) (PLCG2), Ras homolog family
member A (RHOA), Receptor-interacting serine-threonine
kinase 3 (RIPK3), Retinoblastoma 1 (Rbl), Signal trans-
ducer and activator of transcription 5A (STAT5A), Tubulin:
beta class I (TUBB) and Vinculin (VCL). The network
topological features, sequence features and functional prop-
erties for the 13 genes have been provided as Additional file
6: Table S4. We could not find experimental evidences in
support of association between all predicted novel Alz
genes and AD, such genes include F7 and VCL.

Understanding association between novel Alz genes and
Alzheimers

We looked for experimental evidences to support the
role of novel Alz genes in AD and found that various
studies have reported that the cadherins play an import-
ant role in regulation of synapses are an important
players in production of AP which is the major hallmark
in AD [68]. The localization of Presinilin-1 (PS1) at syn-
aptic sites and formation of complexes with Cadherin/
catenin regulating their functions and the further dis-
sociation of the complex by a PS1/y-secretase activity
[69, 70] results in the trafficking of N- and E-cadherin in
the cytoplasm which encourages the dimerization of
amyloid precursor protein (APP) resulting in increased
extracellular release of Ap [71].

Caspases, cysteine aspartyl-specific proteases, have
been proposed as potential therapeutic targets for the
treatment of AD brain disorder and a lot of inhibitors
have been investigated [72, 73]. AP has been suggested
to activate caspase-8 and caspase-3 which are the key
players in neuronal apoptosis and thus may be involved
in neurodegenerative disorders [74].

There have been growing evidences which indicate
that the JAK2/STATS3 intracellular signaling pathway has
significant involvement in memory impairment in AD
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Table 4 Confusion matrix. Predictions by the cost sensitive classifier algorithms on the Entrez Gene dataset

Classifier algorithms True positives (TP)

True negatives (TN)

False positives (FP) False negatives (FN)

Bayes Net 47 2110
Decision Table 19 2032
DTNB 21 2133
Functional Tree 46 2004
148 44 2117
Logistic Regression 49 2148
LWL (J48 + KNN) 48 2111
Naive Bayes 51 2151
NB Tree 35 2070
Random Forest 42 2158
SVM 56 2058

574 24
652 52
551 50
680 25
567 27
536 22
573 23
533 20
614 36
526 29
626 15

and have explored the effect of Ap on JAK2/STAT3
pathway [75]. Elevated levels of AP lead to the inactiva-
tion of JAK2/STAT3 pathway in the hippocampal neu-
rons causes’ memory loss and further AD which can be
reversed by a recently proposed novel 24-amino acid
peptide, Humanin (HN), and its derivative, colivelin
(CLN). These studies clearly indicate the role of JAK2/
STATS3 signaling axis in AD and thus JAK2, STAT3 and
STAT5 may be considered as novel targets in AD ther-
apy which could be studied in-length to gain insights
into mechanism of JAK2/STATS3 activation [76—79].

Inflammatory process has been accounted for the
Alzheimer’s disorder since long back and NF-kB has
been considered as an important regulator of inflam-
mation. Activation of NF-kB is involved in many
other neurodegenerative disorders say Huntington
disease, Parkinson disease along with the AD where
AP is accounted for NF-kB upregulation [80]. Acetyl-
cysteine, a FDA-approved drug, is already in use for
the treatment of AD and it has been shown to sup-
press NF-kB activation and thus making NF-kB as
principal target of Acetylcysteine [81].

The overexpression of PLCG2 on phosphatidylinositol
4, 5-bisphosphate (PIP,) stimulates generation of inositol
1, 4, 5-trisphosphate (IP) further resulting in enhanced
Ca?* concentration [82]. Another study also examined
and found increased levels of PLCG2 in brains of AD
patients which puts forwards PLCG2 as an important
target in pathophysiology of AD [83].

Numerous studies have suggested that the Down syn-
drome (DS) patients develop multiple conditions, one
among which is AD and that the genes overexpressed in
case of DS can be considered as novel therapeutic targets
against AD [84]. ITSN1 is one such gene overexpression
of which prevents clatherin-mediated endocytosis which is
an essential process for recycling of synaptic vessels [85].

RhoA, a small GTPase protein known to regulate
synaptic strength and plasticity, has also been pointed
out as a key therapeutic target in AD pathogenesis
through RhoA GTPase/ROCK (Rho-associated protein
kinase) pathway [86]. RhoA-ROCK pathway has been
implicated in AP production and inhibition of neurite
outgrowth by AP thus suggesting Rho-ROCK inhibition
helpful for AD patients [86, 87].

Table 5 Performance of the cost sensitive classifier algorithms on the Entrez gene dataset

Classifier algorithms TP rate/Recall FP rate Accuracy Precision F-measure MCC
Bayes Net 0.662 0214 0.782 0.076 0.136 0.169
Decision Table 0.268 0.243 0.744 0.028 0.051 0.009
DTNB 0.296 0.205 0.781 0.037 0.065 0.035
Functional Tree 0.648 0.253 0.744 0.063 0.115 0.141
J48 0.620 0.211 0.784 0.072 0.129 0.155
Logistic Regression 0.690 0.20 0.797 0.084 0.149 0.190
LWL (J48 + KNN) 0.676 0.213 0.783 0.077 0.139 0.175
Naive Bayes 0.718 0.199 0.799 0.087 0.156 0.201
NB Tree 0493 0.229 0.764 0.054 0.097 0.098
Random Forest 0.592 0.196 0.798 0.074 0.131 0.154
SVM 0.788 0.233 0.767 0.082 0.148 0.203




Jamal et al. BMC Genomics (2016) 17:807

Table 6 List of the candidate genes predicted to be Alzheimer's
associated by all the classifier algorithms

Entrez  Official gene  Official gene name

D symbol

999 CDH1 Cadherin 1, type 1

22900 CARDS8 Caspase recruitment domain family, member 8

2155 F7 Coagulation factor VII (serum prothrombin
conversion accelerator)

6453 [TSN1 Intersectin 1 (SH3 domain protein)

3717 JAK2 Janus kinase 2

4792 NFKBIA Nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor, alpha

5336  PLCG2 Phospholipase C, gamma 2
(phosphatidylinositol-specific)

5925 RB1 Retinoblastoma 1

387 RHOA Ras homolog family member A

11035  RIPK3 Receptor-interacting serine-threonine kinase 3

6776 STAT5A Signal transducer and activator of transcription 5A

203068 TUBB Tubulin, beta class |

7414 VCL Vinculin

Necroptosis is a significant cell death mechanism
which is involved in many neurodegenerative disorders
including AD [88]. RIPK3 is a member of family of
serine-threonine protein kinases and has a critical role
in NF-kB activation and inducing apoptosis [89].

A wide range of studies have reported that increased
levels of a specific miRNA, miR-26b, may play a vital
role in pathogenesis of AD suggesting a connection
amid cell cycle entry and tau aggregation [90, 91]. The
miR26-b also activates cyclin-dependent kinase-5
(Cdk5), dysregulation of which has been implicated in
AD pathogenesis [92].

Rb1 is a tumor-suppressor protein and major target of
miR-26B, which controls cell growth by inhibiting tran-
scription factor, E2F required for further transcription of
genes. Cdk5 causes hyper-phosphorylation of Rb1 upon
which it is unable to bind to E2F and consequently E2F
transcriptional targets, that include genes for cell cycle,
are highly expressed [93]. Thus it becomes clear that al-
teration in Rb1/E2F signaling pathway and therefore
overexpression of Rbl and E2F target genes leads to ab-
normal CCE and enhanced tau-phosphorylation causing
apoptotic death of neurons and AD.

TUBB protein is a principal constituent of micro-
tubules which are formed by polymerization of dimers
of a-tubulin and B-tubulin for which a- and B-tubulin
bind to Guanosine-5'-triphosphate (GTP). It has been
reported that higher levels of B-tubulin can be associated
with aberrant hyper-phosphorylated tau aggregates
which play a major role in etiology of AD [94].
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Exploring interactions between known Alz genes and the

predicted ones

Using STRING database we generated interaction networks
and explored the associations between the already known
Alz genes and the 13 novel Alz genes identified in the
present study. We found the interactions for all the pre-
dicted genes except CDH1, CARD8, RHOA and VCL. F7
was found to be interacting with apolipoprotein B (APOB)
which was present in high concentrations in AD patients
[95]. ITSN1 interacted with dynamin 1 (DNM1) which is
essential for information processing but is depleted by
Abeta in case of Alzheimer’s [96]. JAK2 interacted with
protein tyrosine phosphate (PTPN), the levels of which
were found to be increased in AD [97] and erythropoietin
receptor (EpoR), upregulation of which was observed in
case of sporadic AD [98]. NFKBIA interacted with CDK
which has been discussed earlier and REL which is a sub-
unit of NF-kB and controls the expression of APP [99].
PLCG2 interacted with two Alzheimer associated genes,
fibroblast yes related novel (FYN) gene which codes FYN
kinase and is activated by abeta and is elevated in AD [100]
and ErbB also known as epidermal growth receptor factor.
Insufficient ErbB signaling has been associated with the de-
velopment of Alzheimers [101]. The interaction of Rb1 with
E2F1 and CDK has been discussed earlier in the present
study. STAT5 interacted with EpoR and the upregulation of
EpoR has a significant role in the pathogenesis of Alzhei-
mer’s [98]. TUBB showed interaction with Akt which was
overexpressed in case of AD [102]. Figure 1 depicts the
interaction networks between the already established
Alzheimer genes and the 13 novel genes predicted in the
present study.

Prioritization of anti-Alzheimer drugs against the novel
and known Alz targets

In order to identify drugs against the predicted novel
Alz-associated targets, we employed molecular docking
approach and screened a total of 37 already known
Alz-specific drugs against the novel target genes. Among
the 13 Alz-associated genes identified, the crystal struc-
tures were available only for seven and the same were
downloaded from PDB. A list of the existing approved and
investigational Alz-specific drugs (Additional file 1: Table
S1) and the information on PDB structures (Additional file
3: Table S2) has been provided in Additional file 7. We
observed that an investigational drug, AL108 (PubChem
CID: 9832404) showed high binding affinity (glide score >
—6.5 kcal/mol) towards all the targets excluding NFKBIA
for which another investigational drug, PPI-1019 (Pub-
Chem CID: 44147342) showed significantly greater
binding affinity (glide score, —6.41 kcal/mol). AL108 ex-
hibited highest binding affinity for JAK2 with a binding
score of —10.87 kcal/mol followed by RIPK3 (—8.99 kcal/
mol), RhoA (-8.68 kcal/mol), Cadherin (—8.34 kcal/mol),
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Fig. 1 Depicts the interaction networks between the already established Alzheimer genes and the 13 novel genes predicted in the present study.
a CDH1 (b) CARDS (c) F7 (d) ITSNT (e) JAK2 (f) STATS (g) NFKBIA (h) PLCG2 (i) Rb1 (j) RHOA (k) RIPK3 (I) TUBB (m) VCL
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Rb1 (=7.07 kcal/mol) and lowest for Card8 (—6.90 kcal/
mol). Other than for NFKBIA, PPI-1019 also had strong
binding affinity for all the other targets. Additional file 7
(Additional file 4: Table S3) provides detailed docking
results for all the Alz-associated drug targets. Table 7 pro-
vides the glide docking scores and MMGBSA energy
values for the top scoring compounds against seven novel
candidate Alz-associated genes. Additional file 8: Figure
S2 and Additional file 9: Figure S3 depict the interaction

patterns of the ligands within the active site of the novel
candidate Alzheimer protein targets. Additionally, we
mapped all the 13 candidate Alz-associated genes to the
already known anti-Alzheimer drug targets and identified
the NFKBIA gene to be targeted by the approved drug,
Acetylcysteine. We also performed molecular docking
studies on the already known Alz-genes, APOE, APP and
PSENT1 and it was observed that AL108, an investigational
drug, shown strong binding affinity towards APOE (-5.30
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Table 7 Docking scores and MMGBSA energy values for the top scoring compounds against seven novel candidate Alz-associated

genes
Candidate Alzheimer target Docked compound Glide score AG (binding)
(kcal/mol) (kcal/mol)
Cadherin 1 AL-108 -834 -58.92
Caspase recruitment domain family, member 8 AL-108 -6.90 -36.50
Janus kinase 2 AL-108 -10.87 -74.34
Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha PPI-1019 -641 -13.66
Retinoblastoma 1 AL-108 -7.07 -12.09
Ras homolog family member A AL-108 -868 -49.84
Receptor-interacting serine-threonine kinase 3 AL-108 -899 -77.07

kcal/mol) and PSEN1 (-6.95 kcal/mol). APP showed
strong interaction with another known anti-Alzheimer
drug, Leuprolide (PubChem CID: 657181) with glide
score of —7.67 kcal/mol followed by AL108 having
docking score, —6.97 kcal/mol.

Molecular dynamics simulations analysis

The seven protein-ligand complexes were subjected to 25
ns long MD simulations to understand the dynamic inter-
action behavior of the ligand and the active site residues
of the target in the presence of the explicit salt and solvent
models. We observed that all the complexes had stable
root mean square deviation (RMSD) trajectories and no
major structural changes were observed. Figures 2 and 3
show the RMSD plot where RMSD values have been
plotted against the MD simulation time steps. Stable
trajectories for RIPK3, RhoA and NFKBIA were found
during 18-25 ns, 19-25 ns and 9-15 ns time durations

respectively (Fig. 2). JAK2, Cadherin and Card8 had very
good stability throughout the simulation process with
RMSD values around 1-2 A for JAK2 and Cadherin and
2-3 A for Card8 (Fig. 3). We observed Rbl to be highly
unstable for initial 10 ns after which the complex was
found to be stable till 25 ns with RMSD value 6-7 A
(Fig. 3). The post-MD simulation interaction patters of the
ligands with the residues of the binding sites of proteins
have been shown in Additional file 10: Figure S4 and
Additional file 11: Figure S5.

Binding free energies calculations

The MD simulated protein-ligand complexes were used to
calculate the binding free energies and we found that the
binding of AL-108 was thermodynamically favorable for
all the drug targets. The Rb1-AL108 complex had the
highest free energy value —13.66 kcal/mol followed by

RMSD A

Fig. 2 Shows the RMSD plot of RIPK3, RhoA and NFKBIA

0.15
0.1
—RIPK3
0.05 RhoA
——— NFKBIA
0
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NFKBIA-AL108 with binding energy —12.09 kcal/mol.
Table 7 provides the computed binding free energies for
AL-108 and the novel candidate drug target complexes.

Using the classifiers on human genome epidemiology
network (HuGENet) dataset

The 11 machine learning classifiers generated were
applied to identify the Alz genes from the HuGENet
repository. A total of 1686 Alz-associated genes were
obtained among which 1304 genes were found to be the
part of the training and testing set used for model systems
generation and validation respectively. The resulting 382
genes, which were not the part of disease and non-disease
gene lists, were used to calculate the network, sequence
and functional features. Further, 39 genes were given as
input to the 11 trained classifiers and a majority of the
models gave around 60 % correct predictions among
which the SVM classifier was 97.4 % accurate. Additional
file 12: Table S6 provides the information on the predic-
tions made by the 11 classifiers on 39 HuGENet genes.

Conclusion

Alzheimer’s, a highly complex neurological disorder,
has become the cause of serious global concern owing
to the rapidly increasing number of cases and the
socioeconomic burden associated with it. The patho-
genesis of the disease is still not clear and thus no
effective treatments to cure the disease exist so far.
However, a plethora of studies have stated genetic
factors as the major cause of the disease in light of
which identification of novel Alz genes will be of
great significance to understand disease etiology and
in order to develop effective therapeutics. The

computational predictive models generated in the
present study successfully identified 13 novel candi-
date genes that could have a potential role in AD
pathology. We incorporated various properties of the
genes, network properties from the signaling path-
ways, sequence properties from the corresponding
protein sequences and functional annotations and
employed eleven machine learning algorithms to train
the model systems. Additionally, we used a molecular
docking approach followed by MD simulations and
performed a screening of already available anti-
Alzheimer drugs against the novel predicted Alz drug
targets. Finally, MMMGBSA calculations were per-
formed and the obtained binding free energy values
showed that AL-108, an investigational AD-specific
drug, had strong binding affinity majorly for all the
novel drug targets. The investigational drug, AL-108
can be considered as a probable lead compound having
inhibitory properties against the novel drug targets identi-
fied in the present study. The computational protocol
used in the current study can be successfully applied for
the prediction of disease associated genes and have
insights into the disease mechanisms for the development
of better and effective therapeutic agents.

Additional files

Additional file 1: Table S1. Network, sequence and functional
properties computed using Network Analyzer (Cytoscape), Pepstats
(Emboss) and DAVID, respectively for Alz and NonAlz genes.

Additional file 2: Figure S1. Shows the percent variation explained by.
the first two principal components.
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Additional file 3: Table S2. The complete lists of features obtained
after each selection technique.

Additional file 4: Table S3. Confusion matrix. Predictions by the
individual base classifier algorithms on the Entrez Gene dataset.

Additional file 5: Input datasets (train and test) and the generated
models which can be used to reproduce the results presented in the
current study.

Additional file 6: Table S4. List of the genes, and their features values,
predicted to be Alzheimer’s associated by all the classifier algorithms.

Additional file 7: Table S1. Approved and Investigational anti-
Alzheimer drugs downloaded from DrugBank. Table S2: List of the genes,
whose crystal structure was available, along with the PDB codes. Table
S3: Docking scores of the Approved and Investigational anti-Alzheimer
drugs bound to the 7 candidate Alzheimer associated targets. Top
scoring drug against each target is in bold highlighted in yellow.

Additional file 8: Figure S2. depicts the interaction patterns of the
ligands within the active site of the novel candidate Alzheimer protein
targets, Cadherin, CARDS, JAK2 and NFKBIA.

Additional file 9: Figure S3. depicts the interaction patterns of the
ligands within the active site of the novel candidate Alzheimer protein
targets, Rb1, RhoA and RIPK3.

Additional file 10: Figure S4. Shows the post-MD simulation
interaction patters of the ligands with the residues of the binding sites of
proteins, Cadherin, CARDS, JAK2 and NFKBIA.

Additional file 11: Figure S5. Shows the post-MD simulation interaction
patters of the ligands with the residues of the binding sites of proteins,
Rb1, RhoA and RIPK3.

Additional file 12: Table S6. Predictions made by the 11 classifier
models on the Alzheimer associated genes downloaded from Human
Epidemiology Gene Network (HUGENet). The number in bracket indicates

the number of correct predictions made by the classifier.
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