
FOCUS

ST-AL: a hybridized search based metaheuristic computational
algorithm towards optimization of high dimensional industrial
datasets

Reham R. Mostafa1 • Noha E. El-Attar2 • Sahar F. Sabbeh2,3 • Ankit Vidyarthi4 • Fatma A. Hashim5

Accepted: 23 March 2022
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The rapid growth of data generated by several applications like engineering, biotechnology, energy, and others has become

a crucial challenge in the high dimensional data mining. The large amounts of data, especially those with high dimensions,

may contain many irrelevant, redundant, or noisy features, which may negatively affect the accuracy and efficiency of the

industrial data mining process. Recently, several meta-heuristic optimization algorithms have been utilized to evolve

feature selection techniques for dealing with the vast dimensionality problem. Despite optimization algorithms’ ability to

find the near-optimal feature subset of the search space, they still face some global optimization challenges. This paper

proposes an improved version of the sooty tern optimization (ST) algorithm, namely the ST-AL method, to improve the

search performance for high-dimensional industrial optimization problems. ST-AL method is developed by boosting the

performance of STOA by applying four strategies. The first strategy is the use of a control randomization parameters that

ensure the balance between the exploration–exploitation stages during the search process; moreover, it avoids falling into

local optimums. The second strategy entails the creation of a new exploration phase based on the Ant lion (AL) algorithm.

The third strategy is improving the STOA exploitation phase by modifying the main equation of position updating. Finally,

the greedy selection is used to ignore the poor generated population and keeps it from diverging from the existing

promising regions. To evaluate the performance of the proposed ST-AL algorithm, it has been employed as a global

optimization method to discover the optimal value of ten CEC2020 benchmark functions. Also, it has been applied as a

feature selection approach on 16 benchmark datasets in the UCI repository and compared with seven well-known opti-

mization feature selection methods. The experimental results reveal the superiority of the proposed algorithm in avoiding

local minima and increasing the convergence rate. The experimental result are compared with state-of-the-art algorithms,

i.e., ALO, STOA, PSO, GWO, HHO, MFO, and MPA and found that the mean accuracy achieved is in range 0.94–1.00.

Keywords Sooty tern optimization � Ant lion optimization � Feature optimization � Metaheuristic algorithm �
High dimensional search space

1 Introduction

In the past decades, optimization issues have attracted

extensive attention in several fields, to name a few: com-

puter science, engineering, operational research, energy,

and business (Oliva and Elaziz 2020). In general, opti-

mization techniques aim to identify the best solutions from

a set of available alternatives in the problem search space.

Optimization problems can be categorized into binary or

continuous, static or dynamic, single-objective or multi-

objective, and constrained or unconstrained (Hussien and

Amin 2021). In sophisticated optimization problems, it is

imperative to investigate the search space adequately based

on the problem type (Anand and Arora 2020). Conse-

quently, due to the growing complexity in optimization

problems and the variety in their types, the conventional

mathematical techniques (e.g., Newton and gradient des-

cent) have become worthless due to their substantial time-

consuming and probability of falling in local optima

problem (Hussien and Amin 2021).

Meta-heuristic techniques have been successfully

developed to handle a lot of tough optimization problems
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effectively. They have the ability to exploit significant

information from the search space and determine the

optimal solution rapidly and efficiently (Anand and Arora

2020). Almost all meta-heuristic algorithms have been

inspired by nature, like the behavior of animals, birds,

insects, and even humans (Hussien and Amin 2021).

Genetic algorithm (GA) (Goldberg and Holland 1988),

particle swarm optimization (PSO) (Eberhart and Kennedy

1995), differential evolution (DE) (Storn and Price 1997),

firefly algorithm (Yang 2010), flower pollination algorithm

(FPA) (Yang 2012), artificial bee colony (ABC) (Karaboga

and Basturk 2007), and grey wolf optimization algorithm

(GWO) (Mirjalili et al. 2014) are examples of the original

and prominent meta-heuristic algorithms. Recently, there

are several nature-inspired meta-heuristic techniques have

been innovated, to name a few, Grasshopper optimization

algorithm (GOA) (Mirjalili et al. 2018), selfish herd opti-

mizer (SHO) (Fausto et al. 2017), honey badger algorithm

(HBA) (Hashim et al. 2022), butterfly optimization algo-

rithm (BOA) (Arora and Singh 2019), Sine Cosine Algo-

rithm (SCA) (Mirjalili 2016), Salp Swarm Algorithm

(SSA) (Mirjalili et al. 2017), and Snake Optimizer (SO)

(Hashim and Hussien 2022).

Primarily, the meta-heuristic algorithm contains two

fundamental stages: exploration and exploitation. The

exploration phase is commonly based on randomization

methods used to search effectively in the search space. At

the same time, the exploitation phase concerns finding the

most promising region of the search space. On the other

hand, working on knowledge discovery over high-dimen-

sional datasets is crucial. It needs to prepare the data

through a pre-processing data stage (Anand and Arora

2020). This pre-processing step is used mainly to reduce

the dimensionality of high dimensional data by neglecting

and stripping the irrelevant, redundant, missing, and noisy

features from the data set (Sayed et al. 2018). In general,

the feature selection process is considered a vital data pre-

processing method for coping with the dimensionality

curse. Feature selection strategies aim to pick a subset of

features based on a set of criteria while maintaining the

physical meanings of the original features (Huang et al.

2020). The feature selection process can boost learning

model comprehension and perception by reducing the

search space size to increase learning efficiency (i.e.,

training time and classifier complexity are reduced, and

prediction performance or classification accuracy is

improved) (Zhang et al. 2014).

Commonly, feature selection approaches are divided

into three categories based on the methods used to evaluate

feature subsets: filter, wrapper, and embedding methods

(Neggaz et al. 2020). The intrinsic properties of the data

are used to select features for a filter method (Teng et al.

2017). Filter methods are called classifier-independent

since they evaluate important information for classification

regardless of the machine learning technique (Rani and

Rajalaxmi 2015). Filter approaches are quick since they

don’t use a learning algorithm to analyze attributes, but

they don’t provide enough information to categorize sam-

ples. The Fast Correlation-based Filter (FCBF) and the

minimal-redundancy-maximal-relevance (mRMR) are two

filter types. Wrapper and embedded models, on the other

hand, are dependent on the classifier. The wrapper model

investigates the space of potential solutions using a

machine learning technique (Emary et al. 2016). To eval-

uate the selected subset, the validation accuracy of a certain

classifier is used. Embedded-based approaches discover, as

the classification model is being built, which features have

the greatest impact on its accuracy. A wrapper method

typically outperforms a filter method since the proposed

subset of features is evaluated for accuracy using feedback

from the learning algorithm. However, computationally,

they are more expensive, and in terms of performance, they

depend on the applied learning method.

Accordingly, the most critical aspect of the feature

selection algorithm is searching for an optimal or nearly

optimal subset of features that increase the classifier’s

accuracy and reduce the computational complexity.

Exhaustive search methods like breadth and depth searches

are considered infeasible for discovering a subset of fea-

tures, especially in massive datasets. A dataset containing

M features requires the production of 2M feature subsets.

The quality of these feature subsets needs to be evaluated

(Zhang et al. 2014), which is computationally intensive,

especially in wrapper-based approaches, where the learning

algorithm must be implemented for each subset. The best

way is to treat feature selection as an NP-hard optimization

problem. The objective function minimizes the number of

selected features while preserving the highest classification

accuracy. This means that feature selection problems could

benefit from metaheuristics, which have shown extraordi-

nary performance in tackling various optimization prob-

lems (Motoda and Liu 2002). Metaheuristic algorithms

have the ability to address complex optimization problems

because of their dynamic search behaviors and global

search capability. Indeed, several meta-heuristic algorithms

have been utilized to improve the performance of feature

selection process, to name a few, genetic algorithms (Oh

et al. 2004), particle swarm optimization (Gu et al. 2018),

ant colony optimization (ACO) algorithm (Aghdam et al.

2009), artificial bee colony (ABC) algorithm (Uzer et al.

2013), binary gravitational search algorithm (BGSA) (Papa

et al. 2011), scatter search algorithm (SSA) (Wang et al.

2012), archimedes optimization algorithm (AOA) (Desuky

et al. 2021), backtracking search algorithm (BSA) (Gha-

nem and Layeb 2021), and moth-flame optimization

(MFO) algorithm (Soliman et al. 2018).
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Most of the originally introduced optimization tech-

niques often suffer from some performance shortcomings,

especially when implemented in large-scale datasets. These

shortcomings are due to the imbalance between the

exploration and exploitation stages, leading to falling into

local optima or not converging properly. In this case, most

of the feature selection literature has recently tended to

modify existing metaheuristics algorithms to improve their

performance or hybridize between different metaheuristics

algorithms to take advantage of one technique to improve

the search efficiency of the other. For instance, the

hybridization between Harris hawks optimization (HHO)

algorithm with simulated annealing (SA) (Abdel-Basset

et al. 2021), arithmetic optimization algorithm (AOA) with

genetic algorithm (GA) (Ewees et al. 2021), salp swarm

algorithm (SSA) with sine cosine algorithm (SCA) (Neg-

gaz et al. 2020), and the combination of seagull opti-

mization algorithm (SOA) and Lévy flight and mutation

operator (Ewees et al. 2022).

However, these methodologies have some restrictions

that impact the ultimate solution’s quality. Based on the No

Free Lunch Theorem (NFL) (Wolpert and Macready 1997),

it is concluded that no algorithm is better than all others

with all classes of feature selection problems. Therefore, a

new algorithm or an improved version of an existing one

must be devised to deal with feature selection challenges

more effectively. This is the primary motivation for us to

propose a new feature selection approach based on

enhancing the performance of a novel metaheuristic algo-

rithm, known as the Sooty Tern Optimization Algorithm

(STOA) Dhiman and Kaur (2019). This improvement is

made by using the Ant lion optimization (ALO) (Mirjalili

2015a) algorithm to enhance the exploration of STOA due

to ALO’s capacity to locate the feasible regions that con-

tain the optimal solution.

The STOA algorithm is a new population-based meta-

heuristic algorithm developed by Dhiman and Kaur,

through simulating the migration and attacking behaviors

of sea bird sooty tern in nature (Dhiman and Kaur 2019). It

has gotten a lot of attention in the last few decades and has

been used in a variety of applications (Ali et al. 2021;

Zheng et al. 2021; Kader and Zamli 2022). Despite emi-

nent applications, STOA is still needed more improvement

to overcome its limitations. For example, the STOA

exploration phase is based on the best solution only which

prevents it to explore the search space properly in order to

find the prominent region that contains the optimal solu-

tion. On the other hand, ALO is popular metaheuristic

algorithm proposed by Mirjalili (2015a), and it is inspired

by the hunting mechanism of antlions. It is characterized

by good exploration and exploitation phases, avoidance of

falling into the local optimum level, and rapid convergence

of the optimal solution.

In this study, a novel hybridization technique was pro-

posed based on boosting the performance of STOA through

the use of the ALO algorithm. This hybridization is called

the ST-AL method. The performance of the proposed ST-

AL method was assessed using two experiments; (1)

solving global optimization problems and (2) solving fea-

ture selection challenges. The main contributions of this

paper can be summarized as follows:

1. Developed a novel hybrid method based on Sooty Tern

Optimization Algorithm (ST) and Ant Lion Optimiza-

tion (AL). The proposed method is called ST-AL.

2. Tested ST-AL on CEC’2020 test suite.

3. Employed ST-AL as a wrapper feature selection

algorithm for large and small benchmark datasets

4. Comparing the performance of ST-AL with established

swarm intelligence algorithms such as PSO, GWO,

HHO, MFO, MPA and conventional ST and AL

algorithms

5. Demonstrated the effectiveness and superiority of the

proposed ST-AL in both global optimization and

feature selection problems.

The rest of the paper is organized as follows: Sect. 2 pre-

sented the detailed overview on the related work. To

understand the methodology, a preliminary study about the

algorithms is presented in Sect. 3. The detailed overview

on the proposed methodology is presented in Sect. 4. The

performance evaluation of the proposed algorithm is given

in Sect. 5. At the last, the work is concluded with future

scope in Sect. 6.

2 Related works

Recently, meta-heuristic algorithms have attracted atten-

tion as an efficient technique to find the optimal solutions

and enhance the feature selection process, especially with

the massive increase of the data volume and in the level of

its complexity. To enhance the optimization process, sev-

eral studies have developed robust current meta-heuristic

optimization algorithms to overcome the local optima

problem in the ample solutions space. For instance, some

researchers have used chaotic search to enhance the search

process and solve local optima problems and low conver-

gence rates, such as Arora et al. (2020). In this study, the

authors have presented a novel Chaotic Interior Search

Algorithm (CISA) based on integrating the Interior Search

Algorithm and the chaos theory to solve the entrapment of

both local optima and slow convergence speed. To evaluate

the proposed algorithm, it has been tested on 13 global

benchmark functions. Also, Sayed et al. have adopted

chaos theory to enhance the performance of the Salp

Swarm Algorithm (SSA) and proposed Chaotic Salp
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Swarm Algorithm. This paper has employed ten different

chaotic maps to improve the convergence rate and resulting

accuracy (Sayed et al. 2018). Chaotic search has also

boosted the search process of selfish herd optimizers (SHO)

in Anand and Arora (2020). Anand and Arora have pro-

posed a Chaotic Selfish Herd Optimizer (CSHO) algorithm

with various chaotic maps to substitute the value of each

searching agent’s survival parameter, which helped in

controlling both exploration and exploitation processes.

Likewise, in Oliva and Elaziz (2020) have applied chaotic

maps and opposition-based learning (OBL) to enhance the

Brainstorm optimization algorithm (BSO) performance.

The proposed algorithm was called opposition chaotic BSO

with disruption (OCBSOD). The idea of this algorithm can

be summarized in the following steps: first, the chaotic map

was applied to compute the initial solutions; after that, the

opposition-based learning produced the opposite positions

in the search space, then, the best particles were identified

and applied in the iterative process. The role of the dis-

ruption operator was to update the position of the instance

in the population. Finally, the OBL was applied to enhance

the exploration process of the search domain.

Harris hawks optimization (HHO) is another recent

meta-heuristic algorithm inspired by Harris’s cooperative

manner and chasing behavior. The performance of HHO

has been improved by integrating it with various opti-

mization techniques like opposition-based learning, Chao-

tic Local Search, and a self-adaptive technique in Hussien

and Amin (2021). Wang et al. (2021) also have tried to

enhance the HHO searching performance for global

optimization by developing a hybrid algorithm that com-

bines HHO with Aquila Optimizer (AO).

In the same context, Long et al. have developed a

modified version of the Butterfly optimization algorithm

BOA with adaptive gbest-guided search strategy and pin-

hole-imaging-based learning to overcome the problem of

local optimum, which may occur when solving high

dimensional optimization problems (Long et al. 2021).

This proposed algorithm (PIL-BOA) has been investigated

on 23 classical benchmark test functions, 30 complex

benchmark functions of IEEE CEC2014, 30 latest bench-

marks from CEC 2017, and 21 feature selection problems.

Also, EL-Hasnony et al. (2021) have modified the butterfly

algorithm by combining it with the PSO algorithm to boost

its global optimization performance. In this study, the

authors investigated the performance of the proposed

algorithm on the COVID-19 dataset. Chaotic Local Search

and Opposition-based have also been integrated with to

butterfly optimization algorithm to gain the most optimal or

near-optimal results in Assiri (2021).

Whale optimization algorithm (WOA) based on simu-

lating Humpback Whales’ behavior in their manner in food

searching and migration has also been combined with a

modified conjugate gradient algorithm in Khaleel and

Mitras (2020). This hybrid algorithm is based on deriving a

new conjugate coefficient to enhance the efficacy of global

optimization problem-solving. In another context, WOA

has been used to enhance other optimization algorithms

due to its strong global search ability, like in Che and He

(2021). This study integrated the WOA with the Seagull

optimization algorithm (SOA) and presented a modified

Table 1 Recent approaches of hybrid optimization techniques

References Utilized algorithms Year

Zhang et al. (2016) Firefly algorithm and differential evolution 2016

Sayed et al. (2018) Salp swarm algorithm and chaotic maps 2018

Jia et al. (2019) Seagull optimization algorithm with thermal exchange op-timization 2019

Oliva and Elaziz (2020) Brainstorm optimization algorithm, chaotic maps, and opposition-based learning 2020

Khamees and Al-Baset (2020) Sine cosine algorithm and cuckoo search 2020

Khaleel and Mitras (2020) Whale optimization algorithm with modified conjugate gra-dient algorithm 2020

Anand and Arora (2020) Chaotic search and Selfish Herd Optimizer 2020

Arora et al. (2020) Interior search algorithm and chaos theory 2020

Hussien and Amin (2021) Harris hawks optimization, opposition-based learning, chaotic local search, and self-adaptive technique 2021

Wang et al. (2021) Harris hawks optimization with Aquila optimizer 2021

Long et al. (2021) Butterfly optimization algorithm and Pinhole-imaging-based learning 2021

EL-Hasnony et al. (2021) Butterfly algorithm with PSO 2021

Assiri (2021) Butterfly algorithm, chaotic local search, and opposition-based learning 2021

Che and He (2021) Whale optimization with Seagull optimization algorithm 2021

Adamu et al. (2021) Chaotic crow search and PSO 2021
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version of SOA called WSOA. Thermal exchange opti-

mization was another optimization algorithm combined

with SOA to enhance its exploitation ability and solve

feature selection problems Jia et al. (2019). Several other

types of research have presented the hybridization between

various optimization techniques such as chaotic crow

search and particle swarm optimization algorithm in

Adamu et al. (2021), sine cosine algorithm and cuckoo

search in Khamees and Al-Baset (2020), and Firefly algo-

rithm and differential evolution (Zhang et al. 2016).

According to the various mentioned studies’ findings,

optimization algorithms still worthwhile need to be

developed to enhance the exploitation ability and solve

global optimization problems like tardy convergence, low

computational accuracy, and falling in local optima.

Table 1 displays the recent research that applied the idea of

hybridization to enhance metaheuristic optimization algo-

rithms and solve the feature selection problem. This paper

presents a new approach to pick the most informative

features by boosting the performance of the Sooty Tern

Optimization algorithm (STOA) and hybridizing it with the

Ant Lion algorithm (ALO).

3 Preliminary study about algorithms

3.1 Ant lion optimization (ALO)

The ant lion optimizer (ALO) (Mirjalili 2015a) is a bio-

logically inspired optimizer that models how antlion bugs

behave in nature. Their hunting behavior is very unique

and interesting. Antlions build a sharp-edged cope-shaped

trap to trap ants. Afterward, they hide and wait for ants/

insects to be trapped. The sharp edges prevent the trapped

insects from escaping and easily falling to the bottom of the

Fig. 1 The flowchart of proposed ST-AL method

Table 2 Parameter settings of each experiments

Parameter name Problem Value

Population size (N) CEC2020 30

Feature selection 30

Max iterations (tmax) CEC2020 3000

Feature selection 100

Problem dimension (dim) CEC2020 10 and 20

Feature selection Dataset features

Number of independent runs CEC2020 30

Feature selection 30
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trap. Finally, the antlion consumes the insect, throws the

leftovers, and prepare the trap for the next hunt. It has been

noticed that the higher the antlions’ hunger, the bigger trap

they dig.

The ALO tries to solve optimization problems taking

into consideration the random walk of ants to search for

food, the trap building process, the ants’ entrapment,

catching targets, and the traps re-building. These random

movements over the search space are modelled using

cumulative sum function and a random function applied

through different iterations. Such random behavior force to

find the global optimization solution. An objective function

is employed during optimization to show the model’s goal

to efficiently maximize the resources’ utilization. ALO also

assumes that the antlions hide in the search space which is

restricted using the min–max algorithm. The ALO algo-

rithm simulates the main five steps of the hunting: (a)

random walk of ants, (b) traps’ building, (c) ants

entrapment, (d) sliding preys towards ant-lions, (e) grasp-

ing ants and traps re-building as follows:

1. Random walk of ants. At first, population of ants in the

search landscape is initialized and their positions are

stored in a vectors as follows:

Anti ¼ Ai;1;Ai;2; . . .;Ai;d

� �
ð1Þ

where Anti is the ith ant, Ai;d is the position of the ith

ant in the dth dimension. The position of each ant in

each dimension is updated using a random walk at each

step of the optimization.

xðtÞ ¼
�
0; cumsumð2rðt1 � 1ÞÞ; cumsumð2rðt2 � 1ÞÞ; . . .

. . .; cumsumð2rðtn � 1ÞÞ
�

ð2Þ

rðtÞ ¼
1 rand[ 0:5

0 rand� 0:5

�
ð3Þ

where cumsum is the cumulative sum, n is the maxi-

mum number of iterations, t is a step/iteration of ran-

dom walk, r(t) is a stochastic function, rand is a

random number uniformly distributed between [0, 1].

The random walks of ants are restricted within the

boundaries of the finite search space using min–max

normalization as follows:

xt
i ¼

xt
i � ai

� �
� di � ct

i

� �

dt
i � aið Þ þ ci ð4Þ

where ai is the minimum of random walk of variable i,

bi is the maximum of random walk of variable i, ct
i is

the minimum of variable i at iteration t, dt
i is the

maximum of variable i at iteration t.

2. Ants entrapment The trap is built using a roulette wheel

to select antlions depending on their fitness. ALO

assumes that ants are trapped in only one selected

antlion trap. Antlions construct larger pits based on

their fitness value to catch insects/targets. The impact

of antlions on the movement of ants is modelled as

follows:

Table 3 Parameters setting of

competitive algorithms
Algorithms Parameters setting

PSO wMax ¼ 0:9, wMin ¼ 0:1 (Default)

GWO a decreases linearly from 2 to 0

HHO beta ¼ 1:5 (Default)

MFO b ¼ 1 and a decreases linearly from �1 to �2 (Default)

MPA FADs ¼ 0:2, P ¼ 0:5, b ¼ 1:5

ALO –

STOA Cf ¼ 2;CB 2 ½0; 0:5�; u; v ¼ 1

Table 4 CEC2020 benchmark functions description with fitness score

(Fi*)

No. Function description Fi*

Unimodal function

F1 Shifted and rotated Bent Cigar function 100

Multimodal shifted and rotated functions

F2 Shifted and rotated Schwefel’s function 1100

F3 Shifted and rotated Lunacek bi-Rastrigin function 700

F4 Expanded Rosenbrock’s plus Griewangk’s function 1900

Hybrid functions

F5 Hybrid function 1 (N ¼ 3) 1700

F6 Hybrid function 2 (N ¼ 4) 1600

F7 Hybrid function 3 (N ¼ 5) 2100

Composition functions

F8 Composition function 1 (N ¼ 3) 2200

F9 Composition function 2 (N ¼ 4) 2400

F10 Composition function 3 (N ¼ 5) 2500
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ct
i ¼ Antliont

j þ ct ð5Þ

dt
i ¼ Antliont

j þ dt ð6Þ

where ct is the minimum of all variables at iteration t,

dt is the vector of maximum of all variables at iteration

t, ct
i is the minimum of all variables for ant i, Antliont

j

determines the location of antlion j at iteration t.

3. Building Trap The pit/entrap is built using a roulette

wheel to choose antlions based on their fitness. ALO

assumes that ants are entrapped in only one particular

Table 5 Statistical results of ST-AL versus other metaheuristics on CEC2020 benchmark functions D ¼ 10

Function Measures PSO GWO HHO MFO MPA ALO STOA ST-AL

F1 Best 100.826 1512.383 97240.3 137.9296 100.6736 102.9929 195,835.9 100

Worst 4936.871 3.28E?08 494,935.9 1.42E109 12,734.87 12,356.59 7.83E?08 100

Mean 1676.327 17,447,639 255,933.6 88,533,559 6574.686 2190.297 1.92E?08 100

Std 1434.075 73,156,598 96,382.65 3.15E?08 4574.322 3082.667 2.49E?08 0

F2 Best 1342.317 1108.298 1571.98 1204.36 1116.859 1419.401 1568.529 1115.36157

Worst 2300.557 2228.222 2383.975 2641.262 1837.691 2260.379 2200.763 1490.702

Mean 1747.702 1543.441 1949.897 2078.011 1451.227 1838.022 1902.805 1273.42804

Std 290.0656 258.5856 240.7425 361.8118 187.4426 228.5664 174.2322 100.063159

F3 Best 716.9109 718.62 746.467 717.3873 712.7313 719.7333 720.7049 712.142278

Worst 741.807 747.2259 821.3927 753.9382 721.5218 758.4034 781.3539 725.842949

Mean 726.4704 728.6477 783.6794 733.184 716.7477 740.1851 748.8464 716.590131

Std 6.466513 8.060786 20.39673 9.844801 2.781191 11.96006 12.72752 2.89892234

F4 Best 1900.574 1900.51 1902.453 1900.8 1900.203 1900.506 1900.992 1900.3827

Worst 1901.93 1903.119 1911.646 1960.669 1901.11 1902.07 1906.199 1901.58745

Mean 1901.09 1901.502 1906.15 1905.063 1900.583 1901.16 1903.086 1900.83892

Std 0.376943 0.775824 2.21147 13.15188 0.22342 0.487497 1.351234 0.30449676

F5 Best 2095.018 2870.067 2831.059 4948.331 2093.779 2232.061 4228.143 1700

Worst 10,125.04 346,987.8 101,688.2 154,875.6 12,427.31 13,213.51 36,828.5 1704.97479

Mean 5003.836 39,555.51 38,316.17 28,684.16 6790.615 6622.3 11,604.37 1700.92772

Std 2693.21 105,163.4 39,034.46 34,291.65 3464.369 3417.503 7102.483 1.08564299

F6 Best 1719.861 1601.307 1602.998 1601.538 1600.049 1601.493 1650.931 1600.90527

Worst 2057.216 1854.354 2016.48 1970.371 1601.141 1955.882 1944.735 1613.98899

Mean 1817.027 1732.626 1761.277 1809.43 1600.532 1739.135 1749.094 1602.74265

Std 86.93557 89.95497 90.97596 122.1287 0.334115 93.09908 51.94684 3.66477493

F7 Best 2101.296 2493.738 2648.412 2810.218 2166.543 2723.26 2873.355 2100.04555

Worst 2817.753 16,101.66 28,462.2 47,264.84 2566.775 23,473.42 17,294.41 2100.86278

Mean 2317.767 8872.406 9094.916 12,352.6 2316.229 9380.929 7568.5 2100.43022

Std 168.9784 4527.194 8610.609 11,798.61 106.2277 7138.869 5117.499 0.27717999

F8 Best 2219.911 2301.407 2305.98 2300.795 2220.291 2221.889 2223.742 2215.83467

Worst 2303.192 2320.279 2327.855 2550.84 2300.842 3238.041 4007.94 2301.17164

Mean 2297.5 2307.001 2315.111 2325.678 2293.224 2341.933 2865.334 2296.25875

Std 18.27148 5.52889 5.701036 55.53402 21.8177 212.3494 641.6428 18.9342359

F9 Best 2500 2722.003 2500.918 2749.388 2500.002 2500 2737.275 2500

Worst 2780.04 2764.887 2923.949 2792.254 2748.407 2779.331 2776.437 2600

Mean 2715.859 2740.05 2809.683 2767.348 2515.143 2728.255 2751.611 2505

Std 93.77332 10.24654 84.81685 12.14551 23.94911 78.75515 9.611748 22.3606798

F10 Best 2897.836 2898.292 2717.372 2898.384 2897.94 2897.757 2898.754 2897.74287

Worst 2949.504 3024.415 3024.521 2978.48 2949.906 2951.041 3024.674 2897.74287

Mean 2935.808 2933.8 2924.869 2939.017 2927.937 2928.899 2933.125 2897.74287

Std 19.37901 27.88147 59.08303 27.01963 23.94911 23.03498 26.03043 9.3312E-13
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antlion trap. Antlions construct larger pits based on

their fitness value to catch insects/targets.

4. Sliding ants towards antlion When an ant trapped,

antlion starts to throw sands towards the center of the

pit so the prey slides down into the trap. In this step,

the hyper-sphere radius of the random walk is adap-

tively minimized using Eqs. (7) and (8).

Table 6 Statistical results of ST-AL versus other metaheuristics on CEC2020 benchmark functions D ¼ 20

Function Measures PSO GWO HHO MFO MPA ALO STOA ST-AL

F1 Best 149.0675 9169.883 1498054 9938.403 429.5645 121.0709 1.18E?09 137.039303

Worst 6076.59 2.71E?09 4004630 8.22E?09 11415.45 4758.852 5.14E?09 11797.7427

Mean 1910.775 6.04E?08 2773719 2.31E?09 4802.742 1412.314 3.22E?09 5067.13731

Std 1920.911 7.43E?08 716443.9 2.38E?09 3628.375 1215.155 1.4E?09 4540.32487

F2 Best 1468.85 1677.007 1854.2 2173.439 1798.769 2788.219 2516.219 1244.57253

Worst 3631.735 3485.399 3391.141 4795.42 3548.621 4006.389 3716.063 1929.16945

Mean 2684.459 2428.321 2459.846 3076.589 2535.579 3427.677 3146.28 1603.27468

Std 680.6819 488.4162 452.0179 795.4393 568.8346 415.6953 364.3663 184.673132

F3 Best 749.1345 753.8559 812.0693 751.3783 728.6476 792.3075 835.9468 728.414091

Worst 805.7087 810.3985 936.0164 1074.894 749.5001 896.3071 939.8215 761.631671

Mean 772.9227 770.7944 899.7641 837.214 737.09 834.092 873.2247 742.661136

Std 17.23145 15.32764 36.46678 101.9656 6.773366 35.01951 28.97488 9.85814681

F4 Best 1901.425 1902.745 1914.023 1905.823 1901.422 1903.54 1919.641 1902.28299

Worst 1905.133 1950.59 1931.732 22,523.83 1902.599 1907.686 2671.891 1904.99868

Mean 1902.894 1916.953 1921.658 7707.941 1902.007 1904.849 2098.6 1903.37977

Std 1.012403 15.32228 6.07432 7939.735 0.36723 1.562298 236.5469 0.80847691

F5 Best 4576.084 45,510.86 43,245.39 4897.889 1734.605 12,376.85 33,292.3 1718.88259

Worst 151,338.3 1,563,541 492,134.1 5,162,088 2203.713 253,429 486,787.9 1982.4812

Mean 58,998.96 693,320.8 237,767.3 888,330 1919.761 111,336.6 269,894.8 1849.60918

Std 42,310.16 550,428.2 132,439.6 1,429,444 113.9693 70,004.62 165,169.1 73.0268531

F6 Best 1602.271 1654.922 1894.872 1764.33 1602.207 1668.604 1822.076 1602.05363

Worst 2313.125 1958.078 2312.84 2338.96 1720.192 2674.598 2489.339 1613.58199

Mean 1935.191 1864.35 2090.694 2031.482 1612.784 2242.032 2065.039 1605.42989

Std 177.8016 81.43428 123.0286 167.3889 23.71376 301.072 208.3496 3.73490572

F7 Best 3893.95 32,677.23 12,044.76 24,277.9 2102.306 4249.516 14,138.56 2101.59872

Worst 161,212.1 249,374.2 455,508 1,198,037 2280.503 316,732.5 228,195.7 2234.34465

Mean 28,323 135,952.6 115,152.6 299,970.3 2165.784 73,687.46 90,663.87 2136.33553

Std 44,782.82 69,725.22 122,523.3 391,212.4 58.78263 106,741.1 73,679.27 45.0973721

F8 Best 2300 2310.62 2311.782 2301.171 2300.004 2300 2524.337 2300.01914

Worst 5613.677 4339.147 6005.18 5964.614 2313.576 4763.698 6296.554 5138.35431

Mean 3016.317 2819.914 3159.088 4041.776 2303.359 2692.017 5322.392 3145.49128

Std 1304.161 753.7906 1536.643 1621.218 3.892559 915.7107 981.0725 1255.01527

F9 Best 2852.118 2821.487 2965.218 2837.652 2810.925 2852.385 2847.739 2810.61914

Worst 3007.874 2916.136 3353.093 2945.812 2835.372 2927.431 2906.623 2841.71589

Mean 2901.121 2857.805 3172.954 2885.383 2823.501 2887.074 2868.628 2821.48244

Std 48.29315 29.57164 113.3423 25.77292 9.00791 25.40788 18.77983 8.18603102

F10 Best 2910.509 2924.751 2925.859 2910.67 2910.198 2914.069 2956.969 2910.22865

Worst 3000.437 3181.11 3002.534 3169.652 2914.002 2999.653 3181.348 2913.82748

Mean 2949.443 3027.891 2975.48 2961.343 2913.231 2970.505 3024.626 2913.14968

Std 33.8739 81.12437 21.64809 75.05806 1.412285 23.04355 57.18155 1.3075439

The bold values highlight the largest, or the highest value received per row of the data. It signifies that which algorithm is producing best result

under same external conditions on a specific dataset
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ct ¼ ct

I
ð7Þ

dt ¼ dt

I
ð8Þ

where I is a ratio, ct is the minimum of all variables at

iteration t, dt is the vector including the maximum of

all variables at iteration t.

5. Catching prey and rebuilding the pit. In this step, the

caught ant is assumed to be fitter than the associated

antlion. Afterwards, antlion updates its position to the

latest position of the caught prey to increase its chance

of catching a new one. This step is mathematically

modeled using Eq. (9).

Antliont
j ¼ Antti if f ðAnttiÞ[ f ðAntliont

jÞ ð9Þ

where t is the present iteration, Antliont
j is the location

of antlion j at iteration t. Antti is the location of ant i at

iteration t.

6. Elitism ALO maintains the best obtained solution

throughout the optimization process. The fittest

obtained antlion in each iteration is considered as an

elite. The elite antlion is able to affect the movements

of all ants during iterations. Thus, every ant randomly

walks around a selected antlion by the roulette wheel

and the elite as follows:

Antt
i ¼

Rt
A þ Rt

E

2
ð10Þ

where Rt
A is the random walk around the selected

antlion by roulette wheel at iteration t, Rt
E is the ran-

dom walk around the elite at iteration t, Antt
i is the

position of ant i at iteration t.

The pseudocode of ALO algorithm is given in

Algorithm 1.

Table 7 ST-AL vs other meta-heuristics algorithms for CEC2020 (D ¼ 10) in terms of P values of the Wilcoxon ranksum test

ST-AL vs. PSO GWO HHO MFO MPA ALO STOA

F1 8.007E-09 8.00655E-09 8.00655E-09 7.7176E-09 8.00655E-09 8.00655E-09 8.00655E-09

F2 2.563E-07 0.000247061 6.79562E-08 7.94795E-07 0.000686822 9.17277E-08 6.79562E-08

F3 1.576E-06 3.41558E-07 6.79562E-08 3.93881E-07 0.797197419 1.23464E-07 7.89803E-08

F4 0.0179386 0.003638826 6.79562E-08 4.54008E-06 0.00604033 0.033717669 2.95975E-07

F5 6.796E-08 6.79562E-08 6.79562E-08 6.79562E-08 6.79562E-08 6.79562E-08 6.79562E-08

F6 6.796E-08 1.57567E-06 9.17277E-08 6.0148E-07 1.43085E-07 4.53897E-07 6.79562E-08

F7 6.796E-08 6.79562E-08 6.79562E-08 6.79562E-08 6.79562E-08 6.79562E-08 6.79562E-08

F8 9.748E-06 6.79562E-08 6.79562E-08 1.65708E-07 0.010581211 1.25052E-05 0.000115901

F9 1.103E-07 3.37272E-08 3.94662E-08 3.37272E-08 3.37272E-08 4.61473E-08 3.37272E-08

F10 8.007E-09 8.00655E-09 2.10246E-07 8.00655E-09 8.00655E-09 8.00655E-09 8.00655E-09

Table 8 ST-AL vs other meta-heuristics algorithms for CEC2020 (D ¼ 20) in terms of P values of the Wilcoxon ranksum test

ST-AL vs. PSO GWO HHO MFO MPA ALO STOA

F1 0.0970911 9.0734E-06 3.39182E-06 6.13704E-06 0.966914777 0.042110617 3.39182E-06

F2 0.5067205 0.839859973 0.750831884 0.053097957 6.00576E-05 0.001353941 0.008615558

F3 0.0002462 0.000123346 3.65846E-05 0.000123346 0.193930852 3.65846E-05 3.65846E-05

F4 0.1939309 0.000384202 3.65846E-05 3.65846E-05 9.73457E-05 0.010193105 3.65846E-05

F5 0.0120228 0.035089116 0.544370146 0.068964333 3.65846E-05 0.174853307 0.370844333

F6 0.000592 3.65846E-05 3.65846E-05 3.65846E-05 3.65846E-05 3.65846E-05 3.65846E-05

F7 0.0086156 0.112351198 0.707453968 0.140955219 3.65846E-05 0.260236203 0.839859973

F8 9.75E-03 0.193930852 0.126022122 0.014137969 0.795012172 0.088533772 0.000155796

F9 3.658E-05 0.000592042 3.65846E-05 4.69487E-05 0.623604884 3.65846E-05 3.65846E-05

F10 0.0035498 3.65846E-05 3.65846E-05 0.000384202 0.019373319 3.65846E-05 3.65846E-05
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Fig. 2 Convergence curve for ST-AL against other competitors—CEC2020 of D ¼ 10
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Fig. 3 Boxplot for ST-AL against other competitors—CEC2020 of D ¼ 10
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Fig. 4 Exploration and exploitation curves of ST-AL method—CEC2020
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3.2 Sooty tern optimization algorithm (STOA)

The STOA algorithm is inspired of the sooty sea tern sea

birds’ attacking/exploitation and migration/exploration

behavior (Dhiman and Kaur 2019). Sooty terns eat earth-

worms, insects, fish, reptiles, etc. They live in groups with

a unique migration and attacking behavior. During the

migration (exploration), sooty terns migrate in groups to

search and locate the richest. During their attacks, sooty

terns fly to locate their targets. They usually preserve dis-

tance between every two birds to avoid collision. Within

the group, birds travel in the direction of the fittest/best

survival bird and update their positions accordingly. STOA

models the mathematical notation of both exploitation and

exploration in a search space as follows:

1. Migration/exploration behavior tries to find the distance

between search agents which satisfy three conditions:

(a) The Collision avoidance between each agent and

its neighbors

Cst
�! ¼ SA � Pst

�!ðzÞ ð11Þ

where Cst
�!

is the position of agent that ensures it

does not collide with its neighbors, Pst
�!ðzÞ is the

position of search agent (st) in iteration z, SA is

the search agent’s movement in search space.

SA ¼ Cf � Z � Cf

Max iterations

� 	� 	
ð12Þ

where Z ¼ 1; 2; . . .; Max_iterations, Cf is a

controlling variable to adapt the SA that is

decreased linearly from Cf to 0. Cf is initialized

to 2.

(b) Converge towards the best neighbor’s direction

After avoiding collision, search agents move

towards the fittest neighbor’s direction.

Mst
�! ¼ CB � Pbst

�!ðzÞ � Pst
�!ðzÞ


 �
ð13Þ

where Mst
�!

is the locations of agent Pst
�!

in the

direction of the best agent Pbst
�!

, CB is random

variable responsible for better exploration com-

puted as follows:

CB ¼ 0:5� Rand ð14Þ

Table 9 UCI benchmark datasets

Datasets Features Samples Classes Category

Low dimensional datasets

Exactly 13 1000 2 Biology

Exactly2 13 1000 2 Biology

Lymphography 18 148 2 Biology

SpectEW 22 267 2 Biology

CongressEW 16 435 2 Politics

IonosphereEW 34 351 2 Electromagnetic

Vote 16 300 2 Politics

WineEW 13 178 3 Chemistry

BreastEW 30 569 2 Biology

PenglungEW 325 73 2 Biology

SonarEW 208 60 2 Biology

HeartEW 13 270 2 Biology

M-of-n 13 1000 2 Biology

Zoo 16 101 6 Artificial

High dimensional datasets

base_Brain_T21 10,367 50 4 Biology

base_leuk1 11,225 72 3 Biology
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where Rand is a random number in the range

[0, 1]

(c) Update relevant to the fittest search agent

Eventually, search agent updates its position

according to the best agent.

Dst
�! ¼ Cst

�!þ Mst
�! ð15Þ

where Dst
�!

is the gap between the search agent

and fittest agent.

2. Attacking/exploitation behavior Sooty terns adjust their

velocity and angle during attack. While attacking their

targets/preys, they use wings in a flapping way to

increase their altitude as follows:

x0 ¼ Radius � sinðiÞ ð16Þ

z0 ¼ Radius � cosðiÞ ð17Þ

z0 ¼ Radius � i ð18Þ

Table 10 Mean and standard deviation of fitness values of proposed ST-AL and other competitors

Dataset Measures PSO GWO HHO MFO MPA ALO STOA ST-AL

Low dimensional datasets

Exactly Mean 0.07978 0.01844 0.01315 0.00837 0.0046 0.21749 0.150503269 0.004615

STD 0.11564 0.061812 0.020916 0.016775 1.78E-18 0.122488 0.149887136 1.78E218

Exactly2 Mean 0.20945 0.20929 0.20441 0.20182 0.2021 0.21128 0.209408269 0.197752

STD 0.008543 0.006572 0.006572 0.006826 0.005229 0.004863 0.007001712 0.0041013

Lymphography Mean 0.06994 0.05381 0.05508 0.05278 0.05174 0.08931 0.070816442 0.039141

STD 0.027083 0.024516 0.018863 0.019668 0.015403 0.034336 0.021362251 0.00728

SpectEW Mean 0.09338 0.08129 0.0789 0.07798 0.0756 0.09786 0.09380303 0.075629

STD 0.015687 0.008927 0.006517 0.00568 0.000102 0.018575 0.015655563 0.0001016

CongressEW Mean 0.02545 0.02049 0.01846 0.01757 0.01622 0.0241 0.024602371 0.014986

STD 0.006262 0.006182 0.005452 0.004817 0.00434 0.007149 0.007492906 0.0033024

IonosphereEW Mean 0.03514 0.01966 0.03119 0.02389 0.0174 0.04109 0.03392937 0.018379

STD 0.015475 0.006458 0.0099 0.007166 0.004996 0.015815 0.013644524 0.0056419

Vote Mean 0.00733 0.00331 0.00328 0.00341 0.00328 0.00704 0.00585 0.003156

STD 0.00836 0.000458 0.000344 0.000378 0.000569 0.006098 0.005509949 0.0001398

WineEW Mean 0.00839 0.00318 0.00219 0.00223 0.0015 0.00705 0.006317308 0.001692

STD 0.01481 0.006476 0.000943 0.00093 4.45E219 0.010643 0.010596922 0.0005353

BreastEW Mean 0.04517 0.03872 0.04261 0.03857 0.03942 0.04565 0.047908772 0.037335

STD 0.004681 0.006352 0.003666 0.003019 0.004017 0.005502 0.005164334 0.0030016

PenglungEW Mean 0.15457 0.12199 0.15683 0.14906 0.0703 0.15284 0.075696648 0.146121

STD 0.016478 0.03174 0.01945 0.007585 0.052681 0.027583 0.0635006 0.0033567

SonarEW Mean 0.04266 0.0078 0.049 0.01249 0.01132 0.07172 0.05314881 0.009796

STD 0.017705 0.012851 0.017735 0.011743 0.011648 0.026809 0.024743855 0.0134368

HeartEW Mean 0.20116 0.19378 0.19485 0.19161 0.19088 0.20746 0.198858974 0.188513

STD 0.011911 0.008557 0.00889 0.00801 0.007765 0.013599 0.008202481 0.0057219

M-of-n Mean 0.00995 0.00977 0.00469 0.0046 0.0046 0.02921 0.030564423 0.004615

STD 0.014041 0.023072 0.000237 1.78E-18 1.78E-18 0.025765 0.046349329 1.78E218

Zoo Mean 0.00576 0.00219 0.00197 0.00247 0.0016 0.00384 0.0023125 0.002156

STD 0.011085 0.000555 0.000583 0.000474 0.00043 0.001394 0.000577113 0.000516

High dimensional datasets

base_Brain_T21 Mean 0.367752 0.19934 0.209182 0.351421 0.25074 0.198704 0.198003858 0.104568

STD 0.046541 0.000293 0.015412 0.069951 0.007727 0.000334 0.070133166 1.364E206

base_leuk1 Mean 0.07072 0.00117 0.00039 0.0709 0.00328 0.00013 1.24722E-05 1.16E205

STD 0.09338 6.87E-05 0.000173 0.093281 0.000229 1.64E-05 1.13389E-05 1.008E205

The bold values highlight the largest, or the highest value received per row of the data. It signifies that which algorithm is producing best result

under same external conditions on a specific dataset
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r ¼ u � ekv ð19Þ

where Radius is the radius of each turn of the spiral, i is a

variable within the range of ½0� k � 2p�, u and v are

constants that identify the shape of the spiral shape, e is

the natural logarithm base. Eventually, the updated

position of the agent is computed as follows:

Pst
�!ðzÞ ¼ Dst

�!� x0 þ y0 þ z0ð Þ

 �

þ Pbst
�!ðzÞ ð20Þ

where Pst
�!ðzÞ calculates the updated position of other

agents and saves the best optimal solution.

The pseudocode of STOA algorithm is shown in

Algorithm 2.

4 Proposed hybrid ST-AL optimization
algorithm

This section explains the structure of the proposed ST-AL

method, which combines both STOA and ALO algorithms.

In the proposed ST-AL method, the performance of STOA

algorithm is improved using four strategies as follows:

– Control randomization parameters

– New exploration phase based on ALO algorithm

– Enhance STOA exploitation phase

– Greedy selection.

Strategy 1: Control randomization parameters Random-

ization is a main side of metaheuristic algorithm that plays

Fig. 5 Average of fitness value

over all the tested datasets
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a vital role in balance between exploration–exploitation

phases, so control parameters of randomization must be

more accurate to give promising results. In the proposed

hybrid ST-AL method, two parameters are presented that

integrated together for this task. The first parameter con-

trols the value of randomization, called randomization

value (rv), is given by:

rv ¼ 2� rand� 1 ð21Þ

The second proposed parameter in the control random-

ization, is called, randomization direction (rd). The value

of rd parameter is þ1 or �1, that gives an opportunity to

change the direction of search agents in the given search

space and subsequently result in good scan of the interested

region. Combination of (rv) and (rd) leads to excellent scan

of a given search space and decrease probability of falling

in local optimum and convergence premature.

Strategy 2: New exploration phase based on ALO

algorithm The exploration phase is characterized by a large

motion step to enable the algorithm to cover the given

search space. The STOA’s exploration phase doesn’t sat-

isfy this side because the process of agent updating position

Table 11 Mean and standard deviation of accuracy of proposed ST-AL and other competitors

Dataset Measures PSO GWO HHO MFO MPA ALO STOA ST-AL

Low dimensional datasets

Exactly Mean 0.9245 0.986 0.9915 0.99625 1 0.787 0.85225 1

Std 0.116313 0.06261 0.020844 0.016771 0 0.122565 0.151818 0

Exactly2 Mean 0.79325 0.79275 0.7985 0.8015 0.80075 0.7935 0.79275 0.806

Std 0.009072 0.00734 0.00709 0.007626 0.0052 0.005643 0.007691 0.00447214

Lymphography Mean 0.934015 0.949126 0.947927 0.951092 0.950969 0.914975 0.931302 0.96436371

Std 0.02784 0.025094 0.019986 0.020126 0.016373 0.034311 0.021824 0.00733628

SpectEW Mean 0.909259 0.92037 0.923148 0.924074 0.925926 0.905556 0.907407 0.92592593

Std 0.015782 0.008707 0.006784 0.0057 0 0.017924 0.015896 0

CongressEW Mean 0.977011 0.981609 0.983908 0.985057 0.986207 0.977586 0.977011 0.98735632

Std 0.006459 0.006876 0.005777 0.005404 0.004717 0.007889 0.008339 0.00353786

IonosphereEW Mean 0.966901 0.98169 0.970423 0.978169 0.983803 0.960563 0.966901 0.98309859

Std 0.015344 0.006622 0.010115 0.007189 0.00516 0.015564 0.013917 0.00578016

Vote Mean 0.996667 1 1 1 1 0.9975 0.9975 1

Std 0.008719 0 0 0 0 0.006106 0.006106 0

WineEW Mean 0.994405 0.998611 1 1 1 0.995833 0.995833 1

Std 0.014597 0.006211 0 0 0 0.010176 0.010176 0

BreastEW Mean 0.958333 0.963596 0.960526 0.964912 0.963158 0.959211 0.953947 0.96578947

Std 0.004826 0.006536 0.0045 0.002846 0.004589 0.005884 0.005602 0.00269994

PenglungEW Mean 0.847894 0.878223 0.844795 0.853663 0.930192 0.848583 0.924227 0.85604396

Std 0.016622 0.032078 0.019739 0.007723 0.052993 0.02691 0.063877 0.00338235

SonarEW Mean 0.960714 0.994048 0.953571 0.990476 0.990476 0.930952 0.947619 0.99285714

Std 0.017742 0.013098 0.018075 0.011967 0.011967 0.026648 0.02515 0.01360097

HeartEW Mean 0.800926 0.807407 0.806481 0.810185 0.810185 0.794444 0.801852 0.81296296

Std 0.011827 0.009308 0.009452 0.008227 0.008227 0.0133 0.008707 0.00569988

M-of-n Mean 0.995 0.99475 1 1 1 0.97675 0.97375 1

Std 0.013669 0.023479 0 0 0 0.024935 0.046901 0

Zoo Mean 0.9975 1 1 1 1 1 1 1

Std 0.01118 0 0 0 0 0 0 0

High dimensional datasets

base_Brain_T21 Mean 0.633333 0.8 0.788889 0.65 0.75 0.8 0.8 0.89444444

Std 0.04714 0 0.015713 0.070711 0.070711 0 0 0.00785674

base_leuk1 Mean 0.933333 1 1 0.933333 1 1 1 1

Std 0.094281 0 0 0.094281 0 0 0 0

The bold values highlight the largest, or the highest value received per row of the data. It signifies that which algorithm is producing best result

under same external conditions on a specific dataset
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is based only on the location of the best agent in the swarm,

and the agent’s current position. Therefore, it fails to move

with large steps in different areas in the given search space.

In the ST-AL method, the exploration phase is based on the

ALO algorithm.

The ALO algorithm has a good exploration strategy that

is based on the random selection of antlions (sorted agents)

and random walks of ant (agent) around them. Every ant

randomly walks around a antlion selected by the roulette

wheel and the elite (the fittest antlion) simultaneously as

follows:

PstðtÞ ¼
RAðtÞ þ REðtÞ

2
ð22Þ

where PstðtÞ is the position of search agent in yteration t,

RAðtÞ is the random walk around the agent selected by the

roulette wheel, and REðtÞ is the random walk around the

best agent.

Accordingly, the exploration phase of the proposed ST-

AL method follows the same strategy to get RA and RE, and

then update the agent’s position as follow:

PstðtÞ ¼ PstðtÞ þ SA � rv � rd � PstðtÞ �
RAðtÞ þ REðtÞ

2

����

����

ð23Þ

PstðtÞ is added in the update equation to guide the agents

with the current position and not diverse in false positions.

The control randomization parameters, and SA is an abso-

lute value that used to balance between exploration and

exploitation and its value change gradually with time.

Strategy 3: Enhance STOA exploitation phase In the

proposed hybrid ST-AL method, the exploitation stage is

similar to the exploitation stage strategy in the original

STOA algorithm, except for position update equation

where some settings were made to enhance its efficiency.

The exploitation phase of ST-AL can be summarized as

follow:

1. Collision avoidance. Here the agents that does not

collide are defined by:

Cst ¼ SA � PstðtÞ ð24Þ

where Cst is the position of the search agent which does

not collide with other search agents. SA indicates the

movement of search agent in a given search space to

avoid the collision avoidance between its neighboring

search agents, and it is calculated as follow:

SA ¼ Cf � t � Cf

T

� 	� 	
ð25Þ

where Cf is controlling variable between [0, 2] (¼ 2 in

this study), T is the total time of iterations, and t is the

current iteration.

2. Converge towards the direction of best neighbor’s. The

agents converge to the best agent after collision

avoidance that mathematically defined by:

Mst ¼ CB � PbstðtÞ � PstðtÞð Þ ð26Þ

where Mst is the different locations of search agent, and

CB is the random number given by:

CB ¼ 0:5� Rand ð27Þ

where Rand is the random number [0, 1]

3. Update corresponding to best search agent. Dst is the

gap between the current agent and the best agent and is

given as follows:

Dst ¼ Cst þ Mst ð28Þ

4. The spiral behavior in the air. After migration, the

agents move in spiral motion as follow:

Fig. 6 Average of accuracy

measure overall the tested

datasets
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x0 ¼ Radius � sinðiÞ ð29Þ

y0 ¼ Radius � cosðiÞ ð30Þ

z0 ¼ Radius � i ð31Þ

r ¼ u � ekv ð32Þ

where x0, y0 and y0 represents the spiral behavior in the

air, Radius is the radius of each turn of the spiral, i is a

variable ½0; 2p�, u and v are constants of the spiral

motion shape.

5. Update position of search agent. Finally, the agents

update their position as follow:

PstðtÞ ¼ SA � rv � rd � Dst � x0 þ y0 þ z0ð Þj j þ PbestðtÞ
ð33Þ

where PbstðtÞ is the best agent in swarm. The absolute

value is taken to remove ineffective randomization and

avoid deviation from global optimum. rv and rd are the

parameters of control randomization given by Eq. (21).

Strategy 4: greedy selection The greedy selection is applied

between the generated population and current population to

reject the poor generated population and avoid divergence

of the algorithm from existing promising regions. The

flowchart of the proposed ST-AL method is shown in

Fig. 1, and pseudocode is given in Algorithm 3.

5 Performance evaluation of the proposed
ST-AL

In this section, the proposed ST-AL algorithm’s quality is

evaluated by conducting two experiments: (1) employing it

as a global optimization method to discover the optimal

value of the CEC2020 benchmark functions, and (2)

applying the proposed algorithm as an feature selection

approach. The parameter settings of each experiment are

given in Table 2. Comparisons between ST-AL and pop-

ular algorithms such as PSO (Kennedy and Eberhart 1995),

GWO (Mirjalili et al. 2014), HHO (Heidari et al. 2019),

MFO (Mirjalili 2015b), MPA (Faramarzi et al. 2020), and

the original ALO and STOA are made. The settings for

each algorithm are specified in Table 3. As demonstrated

by authors in Arcuri and Fraser (2013), setting algorithm

parameters to their default values is a reasonable and

acceptable practice. All findings were calculated using

Matlab 2021b on an Intel Corei7 computer with a 2.67G

CPU and 8.00G of RAM running 64-bit OS.

5.1 Performance measures

Several statistical measurements are applied to evaluate the

performance of the proposed ST-AL method.

1. Mean: represents the rate of the optimization algorithm

and hence has been applied it M times and is defined as

follow:
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Mean ¼ 1

M

XM

i¼1

gi
� ð34Þ

where gi
�, indicates to the optimal solution that gener-

ated at the i-th operation.

2. Best represents the minimum (or best) fitness function

value achieved in M independent operations by the

optimization algorithm. The calculation of which is

given in Eq. (35)

Best ¼ min
M

i¼1
gi
� ð35Þ

3. Worst is calculated as the maximum (worst value)

fitness function value generated in M independent

operations by the optimization algorithm and is shown

by Eq. (36)

Worst ¼ max
M

i¼1
gi
� ð36Þ

Table 12 Mean and standard deviation of selected features of proposed ST-AL and other competitors

Dataset Measures PSO GWO HHO MFO MPA ALO STOA ST-AL

Low dimensional datasets

Exactly Mean 6.55 5.95 6.15 6.05 6 8.6 6 5.5

Std 1.234376 0.223607 0.366348 0.223607 0 1.846761 1.051315 0

Exactly2 Mean 6.2 5.35 6.4 6.9 6.3 8.9 5.5 7.4

Std 2.214783 1.460894 1.231174 1.333772 1.218282 3.447348 1.468977 0.99472292

Lymphography Mean 8.3 6.2 6.35 7.85 5.75 9.25 5.05 6.95

Std 1.688974 1.542384 2.870448 1.460894 2.336777 2.149051 1.90498 0.88704121

SpectEW Mean 7.8 5.4 6.2 6.2 5.05 9.6 5.05 4.7

Std 2.627787 1.535544 1.576138 1.935812 0.223607 3.299123 0.571241 0.2236068

CongressEW Mean 4.3 3.65 4.05 4.45 4.1 3.05 2.95 3.95

Std 1.838191 1.348488 0.887041 1.669384 0.91191 1.190975 1.356272 0.39403446

IonosphereEW Mean 8.05 5.2 6.5 7.75 4.6 6.95 3.95 5.6

Std 1.700619 1.105013 1.90567 2.099499 0.940325 2.874113 0.998683 1.18765581

Vote Mean 6.45 5.3 5.25 5.45 5.25 7.3 5.4 5.05

Std 1.234376 0.732695 0.55012 0.604805 0.910465 1.174286 1.187656 0.2236068

WineEW Mean 3.7 2.35 2.85 2.9 2 3.8 2.85 2.2

Std 1.380313 0.875094 1.225819 1.209611 0 1.609184 1.225819 0.69585237

BreastEW Mean 11.75 8.05 10.6 11.5 8.85 15.8 6.95 10.4

Std 1.860249 1.761429 2.85436 2.259483 2.680829 4.490927 1.90498 1.90290636

PenglungEW Mean 129.6 46.6 103.4 135.95 40.3 95.45 22.15 117.15

Std 10.09116 7.081481 30.62919 7.067159 20.67569 50.03207 16.05345 10.3123585

SonarEW Mean 22.6 11.35 18.2 18.35 11.35 20.2 7.75 16.35

Std 3.424371 2.814904 5.596992 3.572924 2.560325 8.230879 2.468219 2.0072238

HeartEW Mean 5.3 4.05 4.25 4.8 3.85 5.15 3.5 4.35

Std 1.341641 1.145931 1.118034 1.151658 0.67082 1.663066 0.82717 0.87509398

M-of-n Mean 6.5 5.95 6.1 6 6 8.05 6 5.95

Std 0.82717 0.223607 0.307794 0 0 1.538112 0.686333 0

Zoo Mean 5.25 3.5 3.15 3.95 3.45 6.15 3.7 2.5

Std 1.743409 0.888523 0.933302 0.759155 0.825578 2.230766 0.923381 0.6882472

High dimensional datasets

base_Brain_T21 Mean 4926 1389.5 189 5101.5 3359 729.5 40 70.5

Std 132.9361 303.3488 149.9066 54.44722 134.3503 345.7752 1.414214 53.0330086

base_leuk1 Mean 5296 1314.5 439 5504 3676.5 149 14 13

Std 46.66905 77.07464 193.7473 63.63961 256.6798 18.38478 12.72792 11.3137085

The bold values highlight the largest, or the highest value received per row of the data. It signifies that which algorithm is producing best result

under same external conditions on a specific dataset
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4. Standard deviation (Std) defines the optimization

algorithm robustness and stability as follow; (1) if

Std is small value this mean that the optimization

algorithm always converges to the same solution, on

the other hand if the Std is large value means the

optimization algorithm close to random results, as

shown in Eq. (37):

Std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M � 1

X
ðgi

� � MeanÞ2
r

ð37Þ

In the evaluation of the feature selection experiment,

additional measures were used:

5. Average classification accuracy (Avg Acc): The rate at

which data is correctly classified is reflected in the

accuracy metric. There are 30 runs of each method in

this study, hence the Avg Acc metric is determined as

follows:

Avg Acc ¼ 1

M

XM

j¼1

1

N

XN

i¼1

MatchðCi; LiÞ ð38Þ

where N indicates the instances number, Ci represents

the classifier output label for instance i, Li is the ref-

erence class label for instance i, and Match is a func-

tion equal 1 when the two input labels are the same and

0 otherwise.

6. Average selection size (Avg Selec) represents the

average size of the selected features as shown in

Eq. (39).

Avg Selec ¼ 1

M

XM

i¼1

sizeðgi
�Þ

Nt
ð39Þ

where Nt indicates to entire features number within the

original dataset.

7. Average CPU time (Avg Time) calculates the average

of CPU time (in milliseconds) for each algorithm

Avg Time ¼ 1

M

XM

k¼1

Tk
� ð40Þ

Note that the STD is calculated also for all other

measures: accuracy, time and number of selected fea-

tures. The best value for each measure is highlighted in

bold.

5.2 Experimental series 1: CEC’2020 test suite

A standard set of benchmarks listed in IEEE Congress on

Evolutionary Computation (CEC2020) (Mohamed et al.

2020a) is utilized to evaluate the proposed ST-AL algo-

rithm’s performance. Many metaheuristic algorithms’

performance has been studied using these functions

(Houssein et al. 2021; Mohamed et al. 2020b). As shown

in Table 4, the CEC’2020 benchmark functions include ten

test functions that fall into four categories: unimodal,

multimodal, hybrid, and composition functions. All algo-

rithms were run 30 times independently to ensure a fair

benchmarking comparison and demonstrate the robustness

of the proposed ST-AL in comparison to a collection of

competing algorithms that run over 3000 iterations with 30

search agents. The maximum number of function evalua-

tions is 90,000 (number of iterations multiplied by the total

number of search agents). This study employs a variety of

measurements. These metrics include the minimum, max-

imum, mean, standard deviation (SD) of fitness values, and

Wilcoxon rank-sum P values.

Fig. 7 Average of the selected

features for all methods
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5.2.1 Statistical results analysis

Using ten CEC’2020 benchmark functions with a dimen-

sion of solution (Dim ¼ 10), Table 5 illustrates the best,

worst, mean, and standard deviation (STD) of the fitness

scores achieved by all competing algorithms. It is under-

lined in bold the best results for each assessment criterion.

The results revealed that the proposed ST-AL algorithm

outperforms the other metaheuristics in terms of the mean

fitness value. As a result of its greater performance on

seven test functions (F1, F2, F3, F5, F7, F9, and F10),

whereas MPA fared best on only three functions (F4, F6

and F8). Results also show a similar trend in terms of

standard deviation, with ST-AL outperforming other

algorithms on five benchmark functions while MPA sur-

passed them on four (F3, F4, F6, and F9). Comparing the

ST-AL algorithm to other algorithms using the best and

worst fitness metrics, it has showed competitive perfor-

mance. When the best and worst fitness metrics are taken

into consideration, the ST-AL algorithm has demonstrated

competitive performance when compared to other algo-

rithms. This shows ST-AL algorithm’s search capabilities

Table 13 Mean and standard of computational time

Dataset Measures PSO GWO HHO MFO MPA ALO STOA ST-AL

Low dimensional datasets

Exactly Mean 32.8723 31.6798 211.2935 31.7957 61.63897 37.28005 28.94931 31.9099857

Std 3.032551 1.001774 636.6944 1.030127 1.101994 5.634429 1.749094 0.87864113

Exactly2 Mean 37.16188 34.18057 79.96094 37.55719 64.96702 45.63201 31.33725 33.8151437

Std 14.05005 11.3701 27.09949 11.79444 9.186924 12.96779 3.334212 2.3838203

Lymphography Mean 3.474046 3.207923 6.842256 3.219168 6.21433 3.508497 3.03656 3.61528481

Std 0.280491 0.42511 0.838324 0.359309 0.569301 0.207392 0.260024 0.31703988

SpectEW Mean 4.226438 3.831835 8.336655 3.985982 7.620279 4.630855 3.524859 4.21792923

Std 0.642847 0.418268 1.093323 0.236051 0.77147 0.459457 0.153677 0.24410306

CongressEW Mean 15.27402 13.40267 30.58325 15.20167 29.79356 12.86989 12.55053 15.5711764

Std 6.697039 5.776717 13.69468 6.981718 17.44587 6.296027 6.95009 6.79696608

IonosphereEW Mean 6.598056 5.487657 11.6526 6.608258 10.96986 6.568173 4.982914 7.00948847

Std 0.555354 0.244741 1.009391 0.503626 0.928145 1.030192 0.608827 0.46341451

Vote Mean 4.738496 4.310376 9.237963 4.295258 8.238886 4.805906 4.183892 4.75236379

Std 0.590074 0.306373 0.821992 0.326176 0.671268 0.667188 0.479461 0.52278501

WineEW Mean 4.750004 4.40867 9.818607 4.769744 9.27589 4.676446 4.125152 4.77080706

Std 3.000175 2.778946 5.910559 3.020723 6.00408 2.759085 2.542107 2.82644831

BreastEW Mean 26.15425 22.20005 58.69249 25.1453 41.39065 31.3347 21.60136 16.6740296

Std 11.97868 10.50037 26.87943 11.33414 16.91998 16.22258 9.543448 28.4742736

PenglungEW Mean 5.605969 4.242601 9.185003 5.693376 7.97668 9.668026 3.804831 9.93484848

Std 0.522903 0.66523 0.926931 0.373641 0.518197 0.795727 0.485212 0.614507

SonarEW Mean 4.883084 3.879995 8.983516 4.737767 7.633989 5.521879 3.48735 5.4487059

Std 0.283649 0.240564 1.091669 0.219798 0.266605 0.625994 0.179738 0.15488951

HeartEW Mean 6.754364 6.358299 13.70715 6.527611 12.62662 6.608504 6.562438 5.68706242

Std 3.773762 3.499975 7.583404 3.559205 7.062762 3.422229 3.781703 3.35431769

M-of-n Mean 47.54074 48.2617 98.49601 43.40045 80.40572 48.055 42.05009 40.5838176

Std 29.45491 29.78828 58.70728 26.45444 42.65164 28.21701 26.41757 24.6063505

Zoo Mean 8.716726 8.318151 18.57037 8.686236 16.98621 9.200277 8.032926 8.89933061

Std 2.852059 2.762736 6.198441 2.86613 5.639374 3.017719 2.832504 3.04760754

High dimensional datasets

base_Brain_T21 Mean 34.80719 12.07017 9.554337 35.16061 471.0573 130.2078 5.314859 9.6954273

Std 0.807416 0.285376 1.04293 0.229544 13.4967 0.399301 0.508654 0.75388769

base_leuk1 Mean 69.63425 23.08034 26.75476 68.62912 602.1905 155.3611 7.911707 18.8797114

Std 0.129373 0.559691 8.192249 0.71024 1.55028 0.246642 0.195569 1.26942008

The bold values highlight the largest, or the highest value received per row of the data. It signifies that which algorithm is producing best result

under same external conditions on a specific dataset
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and stability. Even though other algorithms outperform ST-

AL in particular test cases, ST-AL remains the clear winner

in terms of overall performance measurements. This

experiment’s results show that the ST-AL outperforms the

other seven metaheuristics in solving the vast majority of

these optimization issues.

Additionally, the performance of ST-AL and other

metaheuristic algorithms is evaluated on CEC2020 at

dimension 20, as described in Table 6. This table shows

that the ST-AL outperforms the competitor algorithms in

six functions (F2, F5, F6, F7, F9, and F10). On the other

hand, MPA outperforms in three functions (F3, F4, and

F8). ALO gives better performance at only function F1.

The Wilcoxon sum test is one of the non-parametric

tests that may be used to examine the outcomes of paired

algorithms. The zero hypothesis indicates that the results of

a comparison approach are indistinguishable. Comparative

methods may be distinguished by rank, according to this

alternative viewpoint. Estimated Wilcoxon rankings for

five levels of significance (P) are produced. If P[ 0:05,

the hypothesis is verified as zero, whereas if P\0:05, it is

accepted. The P Wilcoxon mean-sum fitness findings are

shown in Tables 7 and 8. The proposed ST-AL algorithm

is noticeably different from all other algorithms. As a

result, the proposed ST-AL algorithm has seen tremendous

development.

5.2.2 Convergence behavior analysis

The examination of convergence is a critical step in

determining the stability of the optimization algorithms.

Therefore, a comparative analysis of the proposed ST-AL

and its competitors is conducted. The convergence curves

of the proposed ST-AL algorithm and other competitor

algorithms for the CEC’2020 functions are shown in Fig. 2.

The figure clearly shows that the ST-AL algorithm has

reached a stable point for all functions. Over a small

number of function evaluations, the proposed ST-AL

algorithm achieves the lowest average of global solutions

faster than other compared algorithms for all CECs

benchmark functions. In applications requiring fast com-

putation, like online optimization problems, this fast con-

vergence of the ST-AL algorithm may be easily

characterized as a potential optimization approach.

5.2.3 Boxplot behavior analysis

The boxplot analysis can display the characteristics of the

data distribution. This class of functions has multiple local

minima; hence to better comprehend the distribution of

results. Boxplots are graphical representations of data

distributions in three primary quartiles as upper, lower, and

middle quartiles. The algorithm’s lowest and largest data

points represent the minimum and maximum, which con-

stitute the whisker’s edges. The ends of the rectangles

define the lower and upper quartiles. There is a strong

agreement between the data points if the boxplot is narrow.

CEC’20 ten functions boxplot for dim ¼ 10 is shown in

Fig. 3. The proposed ST-AL algorithm’s boxplots in most

functions are quite narrow and have the lowest values

compared to the distributions of the other algorithms. As a

result, the suggested ST-AL algorithm outperforms the

other competitor algorithms on the vast majority of the test

functions under consideration.

Fig. 8 Average of the

computational time for all

methods
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Fig. 9 Convergence curve for ST-AL against other competitors—UCI datasets
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Fig. 10 Boxplot for ST-AL against other competitors—UCI datasets
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5.2.4 Exploration–exploitation analysis

Using Fig. 4, which depicts the 2D view of Exploration–

Exploitation behavior when looking for the optimal global

value maintained by the proposed ST-AL while solving the

CEC’2020 test functions, we can better explain the phases

of Exploration and exploitation. It is obvious from Fig. 4

that the proposed ST-AL has a high exploration to

exploitation ratio in the beginning. Despite this, the

majority of the time spent seeking is spent in the

exploitation stage of the process. This behavior

Table 14 A comparative study

based on the classifier accuracy,

with the state of the art feature

selection methods

Dataset ISOA WOASA SCHHO GWOPSO ASGW GWOCrowSA ST-AL

Exactly 1 1 0.812 1 0.999 0.99 1

Exactly2 0.7686 0.75 0.783 0.76 0.777 0.746 0.806

Lymphography 0.9252 0.89 0.97 0.92 0.884 0.87 0.9643

SpectEW 0.906 0.88 0.887 0.88 0.87 0.816 0.9259

CongressEW 0.985 0.98 0.97 0.98 0.97 0.963 0.9874

IonosphereEW 0.97 0.966 0.947 0.95 0.972 0.915 0.9831

Vote 0.985 0.97 0.987 0.97 0.984 0.948 1

WineEW 1 0.99 0.994 1 1 0.982 1

BreastEW 0.976 0.985 0.981 0.97 0.981 0.962 0.9658

PenglungEW – 0.94 – 0.96 1 0.8595 0.856

SonarEW 0.9736 0.97 – 0.96 0.948 0.9058 0.9929

HeartEW – 0.85 – 0.85 0.831 0.8326 0.8129

M-of-n 1 1 – 1 1 0.996 1

Zoo 1 0.97 – 1 1 0.9686 1

base_Brain_T21 – – – – – – 0.894

base_leuk1 – – – – – – 1

The bold values highlight the largest, or the highest value received per row of the data. It signifies that

which algorithm is producing best result under same external conditions on a specific dataset

Table 15 A comparative study

based on the size of selected

features, with the state of the art

feature selection methods

Dataset ISOA WOASA SCHHO GWOPSO ASGW GWOCrowSA ST-AL

Exactly 6.89 6 4.43 6 6.87 6.4 5.5

Exactly2 3 1 2.07 1.6 7.93 4.6 7.4

Lymphography 7.62 6.8 2.23 9.2 11.2 8 6.95

SpectEW 8.43 9.6 6.23 8.4 10.17 8 4.7

CongressEW 5.6 4.4 2.23 4.4 8.83 5 3.95

IonosphereEW 8.4 11.4 4.27 13 17.3 13 5.6

Vote 7.25 5.8 3.7 3.4 8.97 4.6 5.05

WineEW 6.6 6.8 2.73 6 7.6 6.4 2.2

BreastEW 7.58 13.6 7.67 13.6 15.83 13.8 10.4

PenglungEW – 325 – 130.8 170.3 165.8 117.15

SonarEW 20 60 – 31.2 35.3 29.6 16.35

HeartEW – 13 – 5.8 6.367 5 4.35

M-of-n 7 13 – 6 6.867 6.4 5.95

Zoo 9.33 16 – 6.8 7.6 5.2 2.5

base_Brain_T21 – – – – – – 70.5

base_leuk1 – – – – – – 13

The bold values highlight the largest, or the highest value received per row of the data. It signifies that

which algorithm is producing best result under same external conditions on a specific dataset
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demonstrates the proposed ST-AL is capable of balancing

the exploration and exploitation stages efficiently.

5.3 Experimental series 2: feature selection
problems

The proposed hybrid ST-AL approach is employed in this

section on feature selection. It is an NP-hard combinatorial

problem. Assuming that the dataset D has d features, the

number of possible feature subsets is 2d � 1 (Eid 2018).

Afterward, the ST-AL approach is used to discover the

optimal possible subset of features. According to the pro-

posed approach, the number of features and classification

error rate are used to calculate a fitness value. The math-

ematical formula for the fitness function is (Mafarja and

Mirjalili 2017):

Fit ¼ aCRðDÞ þ b
jFSj
jdj ð41Þ

where CR(D) represents the error rate (calculated using the

KNN classifier), |d| represents the original feature set, and

|FS| shows the selected features. The parameters a and b
can be selected within the range [0, 1]. a and b are the

weights of error rate and the selection ratio, respectively,

where a is the complement of b. As stated in the literature,

control parameters a and b are set to 0.99 and 0.001,

respectively (Kumar and Kaur 2020).

The proposed ST-AL method for determining the best

subset of features is evaluated in this experimental by

comparing it to other meta-heuristic feature selection

algorithms. These algorithms are tested on fourteen distinct

datasets, each of which has a different kind. These algo-

rithms have the same parameter setting as defined in

Table 3. From the UCI machine learning repository

Asuncion (2007), the datasets utilized in this study were

retrieved. Table 9 provides a short overview of each

dataset utilized in the study. Moreover, different evaluation

criteria are used in this work to assess the performance of

the ST-AL method, for example: evaluating the fitness

function values, the accuracy of the classifier according to

the selected features, the size of the selected features, and

the computational time as in Sect. 5.1.

5.3.1 Results and discussion of UCI datasets

The mean and standard deviation of the fitness function for

the comparative methods is described in Table 10. The

experimental results reveal that the proposed ST-AL yiel-

ded better results than other competitor algorithms. On

75% of the datasets, ST-AL had the best average outcomes

(12 out of 16). It is also noteworthy to note that in three

datasets (IonosphereEW, WineEW, and Zoo datasets), the

MPA is superior to the other algorithms in terms of their

mean fitness function values. ST-AL is the second-best

algorithm for this dataset. For the SonarEW dataset, GWO

performs better than the competitors. ST-AL is the second-

best algorithm for this dataset. The results produced

demonstrated the capability of the proposed ST-AL to

address various feature selection problems. On the other

hand, ST-AL is a more robust method for most datasets

when compared to other strategies by analyzing standard

deviation. The Std values proved that the proposed ST-AL

produced close values throughout many runs with low

distribution, which shows that the proposed ST-AL is a

powerful method for handling different feature selection

problems. In the Std measurement, ST-AL got the best

value in twelve out of fourteen datasets. Figure 5 displays

the average of the fitness values for all algorithms.

A comparison of accuracy results between ST-AL and

other algorithms evaluated in the same settings is shown in

Table 11. The ST-AL outperforms others on six of the

sixteen tested datasets, whereas MPA performed best on

two of the sixteen datasets (PenglungEW, IonosphereEW).

There are seven datasets in which the results were identical

between MPA and ST-AL. The ST-AL algorithm also

performs better than the standard STOA and ALO algo-

rithms. Figure 6 shows the average of the accuracy results

from all methods. When compared to all other methods,

ST-AL performed best. Experiment findings showed that

the proposed ST-AL method selected the most informative

features with higher accuracy values.

Table 12 compares the average number of features

selected by the ST-AL and competing algorithms classi-

fiers for the same UCI datasets. This study used sixteen

datasets, and the average number of selected features

acquired by ST-AL over seven datasets is the best com-

pared to other optimizers. While STOA method obtained

the best results in six datasets. MPA and GWO provide a

minimum set of selected features for the WineEW and

Exactly2 two datasets, respectively. Compared to other

competitor methods, Fig. 7 shows that the conventional

STOA got the smallest number of features, while the ST-

AL method got the best second number of selected fea-

tures. Based on an examination of the standard deviation,

ST-AL, compared to other methods, is a reliable approach

for the majority of datasets.

The computational time of the comparative methods is

recorded in Table 13. When compared to the other

approaches, the STOA method has the shortest execution

time and is the fastest. As demonstrated in Fig. 8, the

proposed ST-AL approach is almost the second method in

terms of the speed of the execution time. Because of its

combined structure, this proposed method requires some

R.R. Mostafa et al.
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time to discover the optimal solution, and this type of

problem does not require real execution time.

Figures 9 and 10 depict the average fitness value and the

competitive algorithms’ convergence curve and boxplots. It

can be observed that the proposed ST-AL approach, which

integrates the STOA and ALO, increases the rate of con-

vergence towards optimal solutions. This can be noticed for

example at Exactly, Exactly2, Lymphography, SpectEW,

CongressEW, Vote, HeartEW, M-of-n, base_Brain_T21,

and base_leuk1. Furthermore, it can be seen from the

boxplot that ST-AL has the lowest box.

According to the evaluation metrics and most of the test

cases, the suggested ST-AL approach shows a significant

improvement when compared to the other competitor

methods. The combination of STOA and ALO is largely

responsible for the impressive results of the proposed ST-

AL method. Overall, we found that the proposed ST-AL

method gave the best results and proven to be an efficient

and effective optimization strategy for dealing with diverse

feature selection problems.

5.3.2 Comparison with the state-of-the-art feature
selection methods

This section compares the proposed ST-AL method with

other hybrid approaches reported in recent literature rele-

vant to feature selection. In Table 14, the accuracy values

for the ST-AL approach are compared with various hybrid

feature selection algorithms reported in the recent litera-

ture, including ISOA (Ewees et al. 2022), WOASA

(Mafarja and Mirjalili 2017), SCHHO (Hussain et al.

2021), GWOPSO (Al-Tashi et al. 2019), ASGW (Mafarja

et al. 2020), and GWOCrowSA (Arora et al. 2019). As

revealed from Table 14, ST-AL obtained the most infor-

mative features resulting in the highest classification

accuracy compared to other hybrid approaches in the lit-

erature, as the ST-AL method is more accurate on twelve

of sixteen datasets. Likewise, Table 15 shows the number

of selected features using ST-AL compared to other hybrid

methods. This comparison revealed that the proposed ST-

AL method picked a significantly low number of features

than other hybrid approaches proposed in the literature

since it obtained the smallest number of attributes with the

highest accuracy values in six datasets out of sixteen.

6 Conclusions and future work

This paper presents a novel hybrid optimization algorithm

based on the sooty tern optimization algorithm (STOA) and

ant lion optimization (ALO) to handle function optimization

problems as well as feature selection problems. In the

proposed ST-AL, four strategies have been applied to

improve the efficiency of STOA. The first strategy is the use

of control randomization parameters, which plays a signifi-

cant role in balancing the exploration–exploitation phases

and avoiding falling in local optimum and premature con-

vergence. The second strategy is concerned with developing

a new exploration phase based on the ALO algorithm, where

the ALO algorithm is known as a sound exploration strategy.

The third strategy is enhancing the STOA exploitation phase

by modifying the main equation of position updating.

Finally, the last strategy is applying the greedy selection to

neglect the poor generated population and prevent diver-

gence of the algorithm from the existing promising regions.

In order to assess the efficacy of the proposed ST-AL algo-

rithm, the experiment is done on ten benchmark functions

and 16 data set as a feature selection approach. Then, it has

been compared with seven original meta-heuristic algo-

rithms MPA, MFO, HHO, GWO, PSO, ALO, and STOA.

The experimental results reveal that the ST-AL algorithm

has generally outperformed the other seven compared

algorithms and proved its capability and stability in solving

the optimization issues. In terms of feature selection, the

proposed ST-AL has achieved the mean best results on 75%

of the datasets. Thus, it can be concluded that ST-AL can be

an efficient optimization approach for addressing various

feature selection problems. In future work, the proposed

hybrid algorithm can be used to solve more realistic chal-

lenges in real-world scenarios.
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