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Introduction: Optimise:MS is an observational pharmacovigilance study aimed at

characterizing the safety profile of disease-modifying therapies (DMTs) for multiple

sclerosis (MS) in a real world population. The study will categorize and quantify the

occurrence of serious adverse events (SAEs) in a cohort of MS patients recruited from

clinical sites around the UK. The study was motivated particularly by a need to establish

the safety profile of newer DMTs, but will also gather data on outcomes among treatment-

eligible but untreated patients and those receiving established DMTs (interferons and

glatiramer acetate). It will also explore the impact of treatment switching.

Methods: Causal pathway confounding between treatment selection and outcomes,

together with the variety and complexity of treatment and disease patterns observed

among MS patients in the real world, present statistical challenges to be addressed in the

analysis plan. We developed an approach for analysis of the Optimise:MS data that will

include disproportionality-based signal detection methods adapted to the longitudinal

structure of the data and a longitudinal time-series analysis of a cohort of participants

receiving second-generation DMT for the first time. The time-series analyses will use a

number of exposure definitions in order to identify temporal patterns, carryover effects

and interactions with prior treatments. Time-dependent confounding will be allowed for

via inverse-probability-of-treatment weighting (IPTW). Additional analyses will examine

rates and outcomes of pregnancies and explore interactions of these with treatment

type and duration.

Results: To date 14 hospitals have joined the study and over 2,000 participants have

been recruited. A statistical analysis plan has been developed and is described here.

Conclusion: Optimise:MS is expected to be a rich source of data on the outcomes of

DMTs in real-world conditions over several years of follow-up in an inclusive sample of UK

MS patients. Analysis is complicated by the influence of confounding factors including
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complex treatment histories and a highly variable disease course, but the statistical

analysis plan includes measures to mitigate the biases such factors can introduce.

It will enable us to address key questions that are beyond the reach of randomized

controlled trials.

Keywords: real-world data, cohort study, signal detection, multiple sclerosis, pharmacovigilance, statistical

analysis plan

INTRODUCTION

Optimise:MS is a prospective observational cohort study lasting
at least 7 years (with the possibility of extension depending
on funding), focused on evaluating the safety profile of MS
DMTs in the real-world setting. A sample size of around
4,000 multiple sclerosis (MS) patients is anticipated, to be
recruited from several sites (MS treatment centers) around
the UK. This sample size is based on the recruitment level
that is expected to be achievable in practice, rather than
on considerations relating to statistical power. The study is
open to all MS patients [as defined by the 2017 McDonald
criteria (1)], of any MS subtype, attending a participating site
and eligible for treatment based on current UK guidelines
(2), regardless of their actual treatment history. The study
has been recruiting since May 2019, and as of 2022 remains
open to new recruits. The length of the recruitment window,
coupled with the introduction of remote consenting, should
ensure that the sample is not heavily skewed toward those
attending clinics most frequently. Details of the study design
and protocol have already been published (3). The study is
academically initiated and led, but is guided by a public-
private partnership between academic clinical investigators
and pharmaceutical companies with marketing authorisations
for DMTs.

Subjects taking second-generation DMTs will be the main
focus of investigation, and controls will include those eligible
but not receiving treatment and those receiving first-generation
DMTs (see Table 1 for a current list of first- and second-
generation DMTs; any new DMTs becoming available for use by
patients in the UK during the course of the study will be classed
as second-generation).

The primary objective of the study is to establish the incidence
of serious adverse events (SAEs) among MS patients receiving
any second-generation DMT, and compare it with that observed
in untreated but treatment-eligible patients and those receiving
first-generation DMT.

Secondary objectives are:

• to measure and compare SAE rates for individual DMTs;
• to assess associations between second-generation DMT

therapy and incidence of lymphopenia;
• to assess associations between second-generation DMT

therapy and moderately and severely abnormal liver function,
as indicated by blood tests for alanine transaminase or
aspartate transaminase;

• to assess the impact of sequential DMT therapy on the
incidence of SAEs;

TABLE 1 | Classification of DMTs in the Optimise:MS study.

Drug Product name(s) Mode and frequency of delivery

First-generation DMTs

Glatiramer acetate Brabio, Copaxone Subcutaneous, 3–7× weekly

Interferon beta-1a Avonex Intramuscular, weekly

Interferon beta-1a Rebif Subcutaneous, 3× weekly

Pegylated interferon

beta-1a

Plegridy Subcutaneous or intramuscular, every

2 weeks

Interferon beta-1b Betaferon, Extavia Subcutaneous, every 2 days

Second-generation DMTs

Alemtuzumab Lemtrada Intravenous infusion, 5 consecutive

days followed by 3 consecutive days

1 year later

Cladribine Mavenclad Oral, up to 5 consecutive days per

month for 2 months, repeated 1 year

later

Daclizumab Zinbryta Subcutaneous, monthly

Dimethyl fumarate Tecfidera Oral, 2× daily

Fingolimod Gilenya Oral, daily

Natalizumab Tysabri Intravenous infusion, monthly

Ocrelizumab Ocrevus Intravenous infusion, 2× yearly

Ofatumumab Kesimpta Subcutaneous, monthly

Rituximab Mabthera, Truxima Intravenous infusion, up to 2× yearly

Siponimod Mayzent Oral, daily

Teriflunomide Aubagio Oral, daily

• to assess the relative efficacy of DMT classes with regard to
suppression of relapses, disability progression and new lesion
formation on MRI;

• to measure the frequencies of pregnancies and their outcomes.

SAEs are defined as adverse events resulting in death,
persistent or significant disability/incapacity, or hospitalization
(or extension of a hospital stay for an inpatient). These
are classified according to the following categories:
Opportunistic infections, infections requiring hospitalization,
MS relapses, deaths, COVID-19 infections, other SAEs
deemed to be related to treatment (e.g., malignancies), and
other SAEs.

METHODS AND ANALYSIS

Study Sites, Data Entry, and Storage
Participants are recruited at participating MS clinics at hospitals
around the UK. Currently there are 14 participating hospital sites
and over 2,000 individuals have been enrolled in the study.
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At each site, study data is entered onto a local secure database
held on a dedicated PC. These machines connect securely to
the Optimise:MS server (hosted by the Data Science Institute
at Imperial College London) and automatically upload (“push”)
the data to the central database at regular intervals. Regular
quality checks on the data central data are performed centrally
through monitoring data completeness, internal consistency,
concordance with expected ranges, and harmonization of units;
queries are fed back to the site staff for resolution.

Participants’ data is managed in line with the requirements
of the General Data Protection Regulation, Imperial College
London’s policies and the study’s own Standard Operating
Procedures. Personally identifiable data is kept to a minimum;
names and contact details are accessible only by local site staff
and are not stored on the central study database.

Longitudinal Cohort Structure and
Outcome Assessment
MS patients may join the study if they are eligible for
treatment with DMT, regardless of whether or not they
actually receive DMT. Upon enrolment the patient’s basic
demographic and clinical data (including their MS diagnosis
and any comorbidities) are entered onto the study database
by site staff. Retrospective data is also collected at enrolment,
including disability assessments and relapses, lab test results,
a full history of DMT use, and any past serious infections
or malignancies.

Whenever a participant attends a clinic visit while under
observation in the study, the database is updated with the
reason for the visit, date of the visit, and details of any other
changes in the participant’s data (such as disease progression,
new comorbidities, any treatment changes, SAEs, test results, or
MRI scan results) since the previous visit. Exact dates for all such
events are recorded whenever possible. No additional clinic visits
or procedures are required as part of the study. Participants are
under observation from their enrolment visit until they withdraw
consent, leave a participating clinic, die, or until the end of the
study, whichever is the earliest.

SAEs (including MS relapses), pregnancies and their
outcomes, and any new/enlarging lesions revealed by clinically
indicated interval MRI are recorded on the Optimise database
by local site staff accessing medical records. Disability is
assessed by local clinical staff using the Expanded Disability
Status Scale (EDSS) (4) and the total score is recorded on
the database; a disability progression outcome is defined as
an EDSS measurement scoring at least 1 point higher than
the most recent measurement at or after baseline. Laboratory
test results (e.g., blood cell and liver enzyme counts) also are
recorded on the database. Abnormal liver function is assessed
using blood alanine aminotransferase (ALT) or aspartate
aminotransferase (AST) levels. For each, moderate and severe
elevation are, respectively, defined as exceeding 2.5× and 5×,
respectively, of the upper limit of the normal ranges established
by Imperial North West London Pathology. Lymphopenia is
defined based on absolute lymphocyte count (ALC) according to
the following grades:

• Grade 1: Lower limit of normal range ≥ ALC ≥ 800/mm3

• Grade 2: 800/mm3
≥ ALC≥ 500/mm3

• Grade 3: 500/mm3
> ALC≥ 200/mm3

• Grade 4: 200/mm3
> ALC

Statistical Principles
Due to selection effects, MS patients receiving different
treatments are likely to have different underlying characteristics
and to experience outcomes at different rates even before
allowing for the effects of treatment. Thus, confounding is
expected between treatment selection and outcomes, leading to
biased treatment effect estimates. Confounding variables may
include demographics, disease and treatment history, and time
variables representing period and cohort effects (5).

Controlling for the effects of confounders can be particularly
difficult in longitudinal studies where past treatment exposures
and covariates may influence future exposures and/or covariates
as well as future outcomes. This is known as time-varying
causal pathway confounding, and the bias it introduces may
not be adequately controlled by the standard multivariate
covariate adjustment approach (6–8). This type of confounding
is expected to occur in the Optimise:MS cohort, given the
nature of MS as a chronic progressive disease and the factors
that are suspected to influence treatment decisions. Methods
for controlling confounders have been chosen to mitigate this
problem (further details below).

The statistical analyses fall into three classes: cohort analyses,
signal detection analyses, and pregnancy analyses. These are
described under the headings below.

Cohort Analyses
A “new user” cohort of those study subjects who have never
received second-generation DMT prior to study enrolment will
be the subject of longitudinal analyses. These will examine the
effects of DMTs on relapse, disability progression, abnormal liver
function, lymphopenia, new lesion formation and SAE rates. The
temporal relationship between exposures and outcomes will also
be explored.

The primary cohort analysis aims to investigate the
effectiveness and safety of DMTs using a relatively simple
model. Participants will be separated into two strata according
to whether or not they have ever received first-generation DMT
prior to second-generation DMT initiation (or prior to the end of
follow-up, if second-generation DMT is never initiated). Within
each stratum, outcomes occurring while exposed to second-
generation DMT will be compared to outcomes occurring
while unexposed. Follow-up is censored upon cessation of
second-generation DMT. Subjects who commence second-
generation DMT while under observation will contribute an
initial unexposed episode and a subsequent exposed episode of
follow-up time to the analysis, as illustrated for two hypothetical
patients in Figure 1.

To control for confounding in the primary analysis,
propensity score weighting will be used; each exposure episode
will be weighted in inverse proportion to the estimated
propensity (probability) of the observed treatment exposure.
The propensity score is based on time-varying covariates
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FIGURE 1 | FigIllustrations of the determination of exposure and control periods in the primary cohort analysis for two hypothetical patients, one in each stratum. The

filled blocks represent the treatment received by the patient; the labels below indicate the periods of follow-up that contribute to the analysis.

measured at the start of the exposure episode (7). The effect
of the weighting is to construct a pseudo-population which
is effectively “randomized” in the sense that the covariates at
the start of exposure episodes are balanced across exposure
categories. The propensities are estimated using a pooled logistic
regression model.

The secondary cohort analyses are aimed at exploring
the temporal relationship between DMT use and outcomes,
including whether the effects of DMTs persist after treatment
cessation/switch. Follow-up is not censored upon cessation of
second-generation DMT; instead, participants can contribute
multiple periods of exposure to the analysis as they move
between treatment classes. This is illustrated in Figure 2 for the
two hypothetical patients described in Figure 1. The secondary
analyses thus make use of all observed data for the new
user cohort and, owing to the more complex longitudinal
exposure patterns involved, observations will be weighted using
time-varying inverse probability weights (IPTW) to estimate
a marginal structural model (MSM) (9). This is similar to
the propensity score method described above, but the weights
are updated at regular (6-month) intervals based on the latest
covariate values and reflect the probability of observing the
participant’s full treatment history up until that timepoint (6).
For details of how these probabilities are modeled, and the
formulae for the weights, see the Supplementary Material.
This method aims to create a dynamically weighted pseudo-
population that is longitudinally balanced, i.e., with covariates
equally balanced across all possible treatment histories at every
6-month timepoint. This construction relies on an assumption
that the probabilities lie strictly between 0 and 1 for each possible
level of the covariates (the positivity assumption). Provided
that this condition is met and all confounders are measured
at sufficiently frequent intervals, this method can fully control
for time-varying causal pathway confounding and generate
unbiased estimates of the marginal treatment effects. A three-
category treatment variable will be used (no treatment, first-
generation DMT or second-generation DMT) instead of the
stratified approach of the primary analysis. Parallel analyses will
use different exposure models to examine the temporal patterns
of treatment effects:

(a) Outcomes associated with current treatment class
(categorical exposure variable).

(b) Outcomes associated with current treatment class plus
carryover effect of any other treatment class in the past 6
months (categorical exposure variables).

(c) Outcomes associated with cumulative exposures (continuous
exposure variable for each treatment category).

(d) Outcomes associated with time-weighted cumulative
exposure, i.e., historic exposures downweighted relative to
recent exposures (continuous exposure variable for each
treatment category).

The tertiary cohort analysis extends exposure model
(b) to examine whether there is an interaction effect
associated with treatment switching, i.e., whether the
carryover effect of previous treatment is dependent on current
treatment exposure.

Further cohort analyses will examine the effects of second-
generation DMTs individually rather than as a collective
treatment class. The principle analysis method for all cohort
analyses will be time-varying Cox proportional hazards
regression (10).

Signal Detection Analyses
The signal detection analyses will examine whether the rate of
SAEs (excluding MS relapses) occurring for any individual DMT
is disproportionate to the overall rate of SAEs in the study sample.
SAEs will be analyzed according to their classification sin the
Optimise database as:

• Infections
• Opportunistic Infections
• Malignancies and other SAEs likely related to treatment
• Deaths (all causes)
• Covid-19
• Other SAEs

Infections, opportunistic infections and Covid-19
will be further analyzed according to the subtypes
recorded on the database, currently including the
following categories:
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FIGURE 2 | Illustration of the determination of exposure and control periods in the secondary and tertiary cohort analysis for the two hypothetical patients shown in

Figure 1. The filled blocks represent the treatment being received by the patient; the labels below indicate the periods of follow-up that contribute to the analysis.

• Infections: urinary tract infections, bronchitis, sinusitis,
gastroenteritis, thinea, sepsis, bacterial, viral,
abscess, other.

• Opportunistic Infections: progressive multifocal
leukencephalopathy, herpes zoster, herpes simplex,
varicella,viral hepatitis, listeria, mycosis, abscess, other.

• Covid-19: suspected, confirmed by test,
hospitalized, ventilated.

Classifications based on MedDRA codings or free-text
descriptions may also be used.

Patient-months will be assigned to treatments according to
three different definitions of exposure:

• Exposure within the month of interest or the previous month.
• Exposure within the preceding 6 months.
• Exposure at any prior time in the patient’s

treatment history.

Only incident events (i.e., the first recorded
occurrence in a given study participant) will be analyzed;
follow-up is censored upon occurrence of the event
of interest.

A minimum report criterion is also imposed in order to
avoid statistical noise in the disproportionality statistics when
event counts are too low. For a signal to be triggered, an
event must be reported in at least 3 study participants for
second-generation DMTs and 5 participants for first-generation
DMTs. The higher threshold in the latter case results in
fewer false positives and more precise risk estimates, but with
reduced sensitivity (11), reflecting the fact that the safety profile
of first-generation DMTs is relatively well understood and
early detection of signals is less of a priority than for the
newer treatments.

Signal Detection Methodologies/Measures
The key disproportionality methods used in this study,
the Reporting Odds Ratio and Bayesian Confidence
Propagation Neural Network, were originally developed
in the context of spontaneous report databases. In
this original context the methods would be used to

evaluate whether an event is cited more frequently in AE
reports for the treatment of interest than in reports for
other treatments.

Longitudinal cohort data also covers periods when no adverse
events occur, which provides additional information regarding
the relative frequencies of exposures and outcomes. When
applying the disproportionality approach in the longitudinal
setting it is appropriate to make use of this additional data
by altering the methods so that they do not simply count AE
reports occurring on treatments, but also take into account
periods with no exposure and/or no events (12). This is
achieved by treating each patient-month of follow-up as a
unit of observation and evaluating whether events occur more
frequently during patient-months exposed to the treatment of
interest than during all other patient-months. The methods are
described under the headings below in accordance with this
longitudinal formulation.

Simple Disproportionality Measures
The reporting odds ratio (ROR) (13) compares the odds of an
adverse event occurring during exposed patient-months to the
odds of occurrence during unexposed patient-months. For a
given drug-event combination the ROR is calculated as follows:

ROR =
n11n00

n01n10

Where n00 = number of patient-months without exposure to
drug or occurrence of event

n01 = number of patient-months without exposure to drug
but with occurrence of event

n10 = number of patient-months with exposure to drug but
without occurrence of event

n11 = number of patient-months with exposure to drug and
occurrence of event

Another simple disproportionality measure is the
proportional reporting ratio (PRR), which is calculated not
as an odds ratio, but rather a relative risk in exposed vs.
unexposed months:
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PRR =
n11n0.

n01n1.

where the dot symbol “·” indicates summation over the index
values 0 and 1 (14). A third measure is the relative reporting ratio
(RRR), a relative risk in exposed vs. all months:

RRR =
n11n..

n.1n1.

In practice the PRR, RRR and ROR give near-identical results
when used for signal detection (12, 15).

The incidence rate ratio (IRR) is a standard relativemeasure of
incidence in epidemiology and medical statistics, often estimated
by Poisson regression. It is calculated as the incidence of an
event among treated participants divided by its incidence among
untreated participants, where the incidence is the number of
events divided by the total amount of follow-up time. It can
easily be seen that the IRR is equivalent to the longitudinal
formulation of the PRR described above. This observation allows
us to calculate a confounder-controlled estimate of the PRR
via weighted Poisson regression, using the marginal structural
approach described under “Cohort Analyses” above. Indeed,
the same weighted PRR estimate can be obtained by directly
substituting weighted equivalents of n01, n11, n00, and n10 in the
formula above (for details see the Supplementary Material). The
latter approach can be extended to calculate a weighted version of
the RRR, which will be used in the “weighted analysis pathway”
(see Section Signal Generation Procedure below).

Shrinkage (Bayesian Confidence Propagation

Neural Network)
Owing to the discrete nature of count data, simple
disproportionality measures are very unstable when event
rates are low. Chance occurrences of a rare event can easily
generate spurious false positive signals.

The Bayesian Confidence Propagation Neural Network
(BCPNN) method (16) is designed to reduce the rate of
false positives by using a Bayesian model to express the joint
distribution of the probabilities of drug exposure and event
occurrence, with conjugate beta priors that favor an independent
relationship (i.e., no association between drug and event). This
achieves a “shrinkage” effect that pulls the disproportionality
estimates back toward the null when event counts are low.

The model’s key measure of disproportionality is the
Information Component, which is the base-2 logarithm of the
RRR. A posterior estimate of the False Discovery Rate (FDR) for
each signal, i.e., the probability of no association between drug
and event, can also be obtained (17).

Controlling for Protopathic Bias (LEOPARD)
Signal detection methods are often prone to generating false
positives due to protopathic bias, which occurs if an event
is mistakenly ascribed to initiation of a new treatment when
both shared a common cause such as an underlying disease
exacerbation (18). LEOPARD is a signal filtering method aimed

at eliminating this bias. The method works by examining the rate
of treatment initiations before and after adverse event incidence;
protopathic bias is inferred if treatment follows the event more
often than it precedes it (15). To address this, we will employ a
one-sided binomial test of the distribution of treatment initiation
events, with the null hypothesis that treatment initiation is
equally likely before an AE as after it, and the alternative
hypothesis that the probability is higher after the AE. This test
will be carried out at the 50% significance level (19); signals where
the null hypothesis is rejected will be discarded.

Signal Generation Procedure
For each treatment of interest and exposure definition, the
analysis will follow the process set out in Figure 3. As the first
step in the analysis, a list of events fulfilling the minimum
report criterion is generated (the Level 1 list). Thereafter,
three parallel analysis pathways are used: a crude (unadjusted)
disproportionality analysis, and two analyses aimed at controlling
for potential confounding covariates: a subgrouped analysis and
a weighted analysis (IPTW).

Within each pathway, a Level 2 list is produced containing all
signals identified by the Reporting Odds Ratio or, equivalently,
the incidence rate ratio. Signals are triggered when the lower 95%
confidence bound for the disproportionality measure exceeds 1
[for the subgrouped analysis, this must be observed in at least
one subgroup; this approach has been reported to provide better
performance than using a pooled odds ratio (11)].

The Level 2 list is expected to contain some false positives
due to (i) volatility of disproportionality measures associated
with low event counts, and (ii) protopathic bias. The Level 3
list tackles these problems by (i) applying Bayesian shrinkage
to pull disproportionality estimates back toward the null (the
Bayesian Confidence Propagation Neural Network Method) and
(ii) verifying that prescriptions tend to precede rather than follow
events (the LEOPARD filter). Signals with an FDR estimate below
5%which are not rejected by the LEOPARD filter will be included
on the Level 3 list. In the subgrouped- analysis, these conditions
must be achieved in at least one sub-group; in the weighted
analysis, the BCPNN calculations are based on the weighted
event counts described in the Supplementary Material.

Pooled lists at levels 2 and 3 will be produced in which signals
will be ranked according to the number of pathways in which the
signal was observed and the associated disproportionality
statistics (level 2) or estimated false discovery rates
(level 3) (17).

Sensitivity analyses may explore the use of alternative decision
rules, such as varying the minimum report or FDR thresholds,
and alternative methodologies, such as replacing BCPNN
with the Gamma-Poisson Shrinker (15, 20) or Information
Component Temporal Pattern Discovery (21).

After drug-event signals have been identified, the
data will be further examined for evidence of drug-
drug-event signals, i.e., adverse events associated with
treatment interactions. These analyses will also proceed
using the procedure set out in Figure 3, with different
exposure definitions and background rates depending
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FIGURE 3 | Signal generation procedure. ROR, Reporting Odds Ratio; IRR, Incidence Rate Ratio; BCPNN, Bayesian Confidence Propagation Neural Network.

on the context (these are set out in the full Statistical
Analysis Plan).

An additional pediatric signal detection analysis be carried
out in participants under 18 years old. For this purpose
the threshold for the minimum report criterion will be
reduced to 2 cases, and only the crude analysis pathway will
be used.

Pregnancy Analyses
The average rate of pregnancy per person-year of follow-up will
be estimated, both among all females aged 18–50 in the study
population and according to DMT class and specific DMT being
received at the date of conception.

Multinomial or binomial logistic regression will be used to
estimate the effect of the treatment received at conception on the
eventual outcome of pregnancy.

Planned Interim Analyses
The study is in a position to reveal previously unobserved
adverse drug reactions, particularly in connection with the more
novel second-generation DMTs. To facilitate timely detection
of such signals, a simplified set of analyses will be performed
on an annual basis while data is being accrued. These will
consist of the signal detection analyses (crude analysis pathway
and single-drug-event associations only), and simple (constant-
hazard) unadjusted Poisson regressions of the occurrence of any
SAE according to current treatment received.

DISCUSSION

Optimise:MS is being carried out in a routine sub-specialty
referral care setting, and will thus provide “real-world” data on
outcomes occurring under the sort of treatment and clinical
monitoring regimes that patients typically experience, rather than
the idealized conditions of a randomized controlled trial (RCT)
(22). The study participants should be more representative of
the general population of MS patients in the UK than would
be the case in a typical RCT, since the inclusion criteria are less
restrictive and the study does not burden the participants with
additional procedures or impose any new treatment regimes.
This also facilitates recruitment, and over a long period of follow-
up, despite the lack of additional investigations or procedures,
enables a comprehensive set of clinical data to be gathered. The
use of electronic consent forms and remote/virtual clinic visits
has also helped in this regard, particularly during the COVID-
19 pandemic.

The sample size and length of follow-up thus exceed
most RCTs and, together with the detailed data gathered
on participants’ DMT and disease histories, will enable
the estimation of washout, switching and subgroup
effects that often lie beyond the scope and capabilities
of trials.

Of course, observational studies have well-known drawbacks
compared to RCTs—chiefly the absence of randomization,
which leaves treatment selection potentially subject to the
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influence of prognostic factors and therefore vulnerable to
confounding with outcomes. The likely existence of time-varying
causal pathway confounding in the MS context makes this
problem particularly challenging to address analytically, but
the marginal structural modeling approach (IPTW) has shown
that it has the capability to produce unbiased estimates—
at least under ideal conditions when positivity is satisfied,
probability models are specified correctly and there are few
extreme weights (8, 23, 24). The comprehensive longitudinal
data collection in Optimise should facilitate MSM estimation,
which will be particularly important for the secondary cohort
analyses investigating the effect of longitudinal treatment
trajectories. The estimation of probability weights in itself
may provide useful insight into the prevalence of DMT
use in particular subgroups, and other factors influencing
treatment decisions.

We have also specified a simpler cross-sectional propensity-
score weighting approach, as this improves the chances of
positivity and reduces the potential for extreme weights.
Although this model may not fully control for the influence
of prior treatment history on outcomes, this is less likely
to be a major concern in the primary cohort analysis since
exposure histories are relatively simple (Figure 1) compared to
the more complex exposure histories in the secondary analysis
(Figure 2).

The use of weighted event counts in the disproportionality-
based signal detection methods is, to our knowledge, novel,
but is well-founded (see the Supplementary Material). This
is the only method we are aware of that can control
for time-varying causal pathway confounding when using
disproportionality methods such as the ROR, BCPNN, or GPS.
However, it can only be used when these methods are applied
to longitudinal cohort data, rather than to the spontaneous
report data for which such methods were originally developed.
Linking cases to their treatment histories, and hence examining
drug-drug-event signals involving washout effects of prior
treatments, is also more straightforward in the longitudinal
setting. These considerations favor the Optimise:MS cohort-
based design for future signal detection databases. Another
reason, of course, is the additional data gained from periods
with no treatment exposure or adverse events, which may
improve the performance of disproportionality methods (15).
Without this additional data, disproportionality analyses of
spontaneous reports can unfairly penalize drugs with low overall
AE rates if any one AE occurs more often than others (an
example is shown in the Supplementary Material). Alongside
the novel weighted analysis, a parallel subgrouped- analysis
provides another means of controlling for confounders and
is better established in signal detection (11, 20)—although
this method may still be vulnerable to time-varying causal
pathway confounding. since the subgroups are based on
cross-sectional covariate values rather than full exposure and
covariate histories.

A disadvantage of using the Optimise:MS study for signal
detection purposes, as opposed to a spontaneous report
registry, is the relatively small sample size. This exacerbates
the known problem of volatility in disproportionality statistics

when event counts are low—hence the importance of using
a shrinkage methodology such as BCPNN. Protopathic bias
presents another significant problem for pharmacovigilance
in MS patients, as false signals may easily be generated by
both the relapsing/remitting and progressive aspects of the
disease, and the wide range of symptoms it can produce.
Direct comparisons between safety profiles of different DMTs—
in particular between first- and second-generation DMTs—may
also be biased due to the fact that exposure and follow-up
time are more limited for newer drugs, and so treatment effects
that manifest over the longer term cannot be observed. Finally,
the potential for differences in the intensity of follow up on
different treatments to bias event detection is not specifically
accounted for in the analysis. The impact of this varies greatly
by outcome; for example, it would be expected to be greater for
imaging measures of disease activity such as new or enlarging
lesions than for SAEs. Although imaging results may also be
affected by the use of different scanners, acquisition protocols
and schedules, this is not expected to be strongly related
to treatment.

In summary, Optimise:MS is observational, inclusive, and
does not impose any fixed timelines on those taking part.
Participants can be enrolled at any stage of their MS or
treatment history; there is no unifying milestone marking for
the start of follow-up, and no set course of treatment to be
followed thereafter. This inclusivity makes recruitment easier,
enhances data collection and may increase the population
representativeness and generalizability of results, but it presents
major challenges from a statistical perspective. We have tried to
address these and realize opportunities arising from the design.
Our approach to signal detection analyses will ensure a healthy
mix of data from as wide a population as possible, although
care has been needed to plan the analysis in a way that controls
for treatment selection and protopathic bias. For longitudinal
cohort analyses, the lack of fixed timelines for participants is a
complicating factor, but also creates the potential for a wealth
of useful data if handled appropriately. Our cohort analyses
simplify the structure of the data by focusing on a sub-population
of participants initiating second-generation DMT for the first
time, as it is the safety profile of these drugs that is the primary
outcome of interest. Further analytical choices have beenmade to
either mitigate the confounding influence of variability in patient
characteristics/histories (e.g., marginal structural modeling) or
exploit this variability to gain additional insights (e.g., the
analyses of washout/cumulative/switch effects).
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