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ABSTRACT

The most common mutation in Friedreich ataxia is
an expanded (GAA�TTC)n sequence, which is highly
unstable in human somatic cells and in the germline.
The mechanisms responsible for this genetic
instability are poorly understood. We previously
showed that cloned (GAA�TTC)n sequences repli-
cated in Escherichia coli are more unstable when
GAA is the lagging strand template, suggesting
erroneous lagging strand synthesis as the likely
mechanism for the genetic instability. Here we show
that the increase in genetic instability when GAA
serves as the lagging strand template is seen in
RecA-deficient but not RecA-proficient strains. We
also found the same orientation-dependent increase
in instability in a RecA+ temperature-sensitive E. coli
SSB mutant strain (ssb-1). Since stalling of replica-
tion is known to occur within the (GAA�TTC)n
sequence when GAA is the lagging strand template,
we hypothesized that genetic stability of the
(GAA�TTC)n sequence may require efficient RecA-
dependent recombinational restart of stalled replica-
tion forks. Consistent with this hypothesis, we noted
significantly increased instability when GAA was
the lagging strand template in strains that were
deficient in components of the RecFOR and RecBCD
pathways. Our data implicate defective processing
of stalled replication forks as a mechanism for
genetic instability of the (GAA�TTC)n sequence.

INTRODUCTION

Friedreich ataxia is one of over 20 inherited disorders
caused by abnormally large expansions of unstable

triplet-repeat sequences (1). Whereas all other triplet-
repeat expansions involve (CTG–CAG)n or (CGG–CCG)n
sequences, Friedreich ataxia is so far the only disease
caused by the expansion of a (GAA�TTC)n sequence (2).
Disease-causing alleles contain 66–1700 triplets, which
interfere with transcription of the FXN gene, resulting in a
deficiency of the mitochondrial protein frataxin (3–7).
Expanded (GAA�TTC)n alleles at the human FXN locus
display intergenerational and somatic instability. During
paternal transmission they often contract by 20–30%, and
during maternal transmission they expand or contract by
about the same size (8,9). Using small pool PCR to
analyze the repeat length in individual somatic cells from
multiple human tissues we have shown that expanded
(GAA�TTC)n alleles are somatically unstable in vivo.
Indeed, all tissues derived from patients show a significant
frequency of large contractions of the (GAA�TTC)n
sequence (10,11).

The mechanisms responsible for generating triplet-
repeat instability are not fully understood. Some proposed
mechanisms include recombination (12–15), DNA repair
(16–18) and epigenetic modification (19). Our previous
data using (GAA�TTC)n sequences, as well as work by
others using (CTG–CAG)n and (CGG–CCG)n sequences
support erroneous replication as a cause of triplet-repeat
instability. For instance, instability of (CTG–CAG)n,
(CGG–CCG)n and (GAA�TTC)n sequences depend on
the orientation of the repeat tract relative to the origin of
replication in bacteria and yeast (20–25). Instability of the
(CTG–CAG)n and (GAA�TTC)n sequences in transiently
transfected mammalian cells was shown to require DNA
replication, with the orientation and distance from the
origin of replication acting as potent modifiers (26,27).

The (CTG–CAG)n and (GAA�TTC)n repeats are more
unstable when CTG and GAA, respectively, serve as the
lagging strand template during replication in Escherichia
coli and yeast. It is thought that this instability is mediated
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via secondary DNA structures, which may be promoted
by the discontinuous nature of lagging strand synthe-
sis allowing single-stranded regions of DNA in the
template strand (28). The contraction bias observed for
(CTG–CTG)n sequences in both bacterial and yeast
systems when (CTG)n is the lagging strand template is
thought to be due to the relative thermodynamic stability
of the hairpin formed by single-stranded (CTG)n versus
(CAG)n sequences (20,29). The reason for the enhanced
frequency of mutation of the (GAA�TTC)n sequence when
GAA is the lagging strand template is less clear. Some data
suggest that (GAA)n and (TTC)n single-stranded sequences
may also form hairpin structures (30). UV-melting experi-
ments demonstrated that the single-stranded (GAA)n seq-
uence, but not the complementary (TTC)n sequence, can
form hairpin-like secondary structures (31). (GAA�TTC)n
sequences also form unique structures not observed with
the (CNG–CNG)n repeat sequences such as triplexes
(32–35) and sticky DNA (7,36,37). The role of these
structures in mediating (GAA�TTC)n instability is not
known, but triplexes in particular are believed to be
responsible for the stalling of replication that occurs in
(GAA�TTC)n sequences (34,38–40). Additionally, replica-
tion stalling occurs predominantly when GAA is the
template for lagging strand synthesis (40), which could be
the underlying basis for the increased instability and
predilection for contractions observed in this orientation.

RecA plays a critical role in restarting stalled replication
forks in E. coli mainly via its activity of strand invasion in
homologous recombination (41–46). Two main pathways
exist for the restart of replication forks, both of which
require RecA and SSB; the RecFOR pathway is essential
for restart of replication following UV damage and for
post-replication repair of unfilled gaps, and the RecBCD
pathway is needed to resolve regressed forks and for the
repair of double strand breaks. Here we show that the
orientation-dependent instability of the (GAA�TTC)n
sequence, i.e. enhanced instability when GAA is the
lagging strand template, is caused by the deficiency of
either the RecFOR or RecBCD pathways. Our data,
therefore, indicate that fidelity during replication of the
(GAA�TTC)n sequence requires efficient restart of stalled
replication forks in the GAA orientation.

MATERIALS AND METHODS

Plasmid construction

(GAA�TTC)n repeats with minimal flanking intron 1
sequence were cloned in the Pst I/Xba I sites of pUC19
using PCR products of the FXN gene from human
subjects as previously described (25). The following
recombinant plasmids, with the repeat tract cloned in
both orientations with respect to the pMB1 origin of
replication, were confirmed by sequencing and selected for
further analysis (sequences in the TTC and GAA
orientations were identical and only the sequence of the
‘GAA’ orientation is shown here): GAA-21 [(GAA)17
(A)(GAA)4], GAA-41 [(GAA)37(A)(GAA)4], and GAA-79
[(GAA)79] (Figure 1). Deletion of the Plac promoter
in pUC19, to produce the pDEL-GAA-79 construct

(Figure 3A), was accomplished by first introducing an
Apa I site at the �35 position using the QuikChange II XL
site-directed mutagenesis kit (Stratagene), followed by
removal of the fragment between Apa I and Hind III,
thus deleting both the �10 and �35 sites. The lack of
transcription was confirmed via loss of ability to produce
blue colonies on X-gal containing plates. The (GAA)79
insert from the original pUC19 construct was subcloned in
the Pst I/Xba I sites to produce pDEL-GAA-79
and confirmed by sequencing. Another plasmid (pINS-
GAA-79) (Figure 3A) was created to alter the distance
between the origin of replication and the GAA triplet-
repeat by inserting a 1525 bp sequence from intron 1 of the
human FXN gene. The following primers were used to
amplify the spacer sequence from human genomic DNA:
Spacer-F: 50-GCTCCGGCTCTTCCGCTCATCTGTC

CATTTTCCTAGAGGG-30

Spacer-R: 50-GATGCGACATGTCCAATCATTGCC
TACCCCCTG-30.
The primers contained the Bsp QI and Afl III sites,

respectively (underlined), which were then used to insert
the spacer sequence into the corresponding sites in pUC19
(i.e. between the origin of replication and the multiple
cloning site). The (GAA)79 insert from the original pUC19
construct was subcloned in the Pst I/Xba I sites to produce
pINS-GAA-79 and confirmed by sequencing.

Transformation of bacterial strains

All wild-type and mutant E. coli strains used in this study,
their genotypes and sources are listed in Table 1 (47–51).
Transformation was performed by making cells competent
using 10mMMgSO4 and 50mM CaCl2 and plating on LB
plates containing 100 mg/ml ampicillin (supplemented with
10 mg/ml thymine for CL1 and its derivatives). Sequencing
was used to verify the (GAA�TTC)n repeat length.

Figure 1. (GAA�TTC)n constructs used to analyze repeat instability.
(GAA�TTC)n sequences of the indicated lengths were cloned into the
Pst I/Xba I sites of pUC19 in both orientations relative to the
unidirectional pMB1 origin of replication. Repeat-containing plasmids
are depicted in either the ‘GAA’ or ‘TTC’ orientations, based on
whether (GAA)n or (TTC)n serves as the lagging strand template,
respectively. The plasmid constructs contain repeat lengths of n = 21,
41 and 79. The black boxes flanking the repeat represent minimal
flanking sequence from intron 1 of the FXN gene.
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Analysis of (GAA�TTC)n repeat instability

Repeat instability was measured exactly as we have
previously described (25). Briefly, colonies containing full-
length repeat tracts were grown in 5ml LB cultures
containing 100mg/ml ampicillin (and 10mg/ml thymine
for CL1 and its derivatives). Quadruplicate cultures were
grown for each strain. All strains were grown at 378C,
except RM121 and C600 cultures were grown at either 258C
(permissive temperature for RM121) or 378C (non-permis-
sive temperature for RM121). Cultures were grown until
mid-log phase (OD600 of 1) at which point glycerol stocks
were made from each culture. Previous reports have
indicated that transformation of triplet repeat-containing
plasmids per se may increase the instability of the repeat
tract (52); therefore, mutation analysis was carried out by
plating colonies from glycerol stocks. PCR of individual
colonies was performed to assess (GAA�TTC)n repeat
instability using primers GS-F and GS-R (25). Relative
sizes of PCR products were determined by electrophoresis
on 2.5% agarose gels, coupled with direct sequencing of
selected products following extraction from gel slices
(QIAquick gel extraction kit, Qiagen). Approximately 100
colonies were analyzed from each of the quadruplicate
cultures (i.e. from four separate glycerol stocks), for each
combination of repeat length, orientation and E. coli strain.
Instability was calculated as the number of mutation events
(change in repeat tract length) observed per successful
colony PCR amplification. Orientation-dependent instabil-
ity was analyzed by comparing the mutation frequencies in
the GAA versus TTC orientations (note: the corresponding
GAA and TTC constructs were always grown at the same
time using identical growth conditions).

RESULTS

Deficiency of RecA causes increased (GAA�TTC)n
instability when GAA is the lagging strand template

To investigate the effect of RecA status on (GAA�TTC)n
instability, GAA-79 and TTC-79, constructs containing
a (GAA�TTC)79 repeat sequence in pUC19 in both
orientations relative to the pMB1 origin of replication
(Figure 1), were propagated in three RecA-deficient
(DH5a, Top10, HB101) and three RecA-proficient strains
(C600, KA796, KH1370) (Table 1). Colony PCR was used
to visualize products of individual replication events in
order to detect repeat instability. GAA-79 was significantly
more unstable than TTC-79 in all three recA mutant
strains (Figure 2A). In contrast, all three RecA+ strains
did not show a difference in the level of instability between
GAA-79 and TTC-79 (Figure 2A). These data suggest that
deficiency of RecA causes an orientation-dependent
instability of the (GAA�TTC)79 sequence. However, the
differing genetic backgrounds of the various strains
(Table 1) resulted in widely varying absolute levels of
instability. Also, it was not possible to determine if the
orientation-dependence stemmed from increased instability
in the GAA orientation, decreased instability in the TTC
orientation, or both. Therefore, to further investigate the
role of RecA status and to control for the confounding
effects of varying genetic backgrounds, GAA-79 and TTC-
79 plasmids were propagated in a set of isogenic strains,
M152 (recA) and MM28 (wild-type) (Table 1). Again,
GAA-79 was significantly more unstable than TTC-79 in
the recA strain (Figure 2B and C), indicating that the
orientation-dependent instability is specifically due to the
deficiency of RecA. Furthermore, since GAA-79 was

Table 1. Strains used in this study

Strain Genotype Description

DH5� recA1 �80ilacZiM15i(lacZYA-argF) U169 endA1 RecA-deficient
hsdR17(rk

�,mk
+) phoA supE44 ��thi-1 gyrA96 relA1 RecA-deficient

HB101 recA13 hsdS20 supE44 thi-1 ara-14 galK2 rpsL20 StrR RecA-deficient
proA lacY1 xyl-5 mtl-1 leuB6

Top10 recA1F- mcrAi(mrr-hsdRMS-mcrBC) RecA-proficient
�80lacZiM15ilacX74 araD139 i(ara-leu)7697 galU
galK rpsL (StrR) endA1 nupG

KA796a thi ara ipro-lac
KH1370b ��relA1 metD-88 i(cod-lacl)6 tsx-7 srl-8 spoT1 metB RecA-proficient

MM28b galK2(OC) ��IN(rrnD-rrnE)1 rpsL200(strR) Wild-type
M152b recA3 Isogenic to MM28 except recA3

C600c supE44 hsdR? thi-1 thr-1 leuB6 lacY1 tonA21 Wild-type
RM121c ssb-1(t.s.) Isogenic to C600 except ssb-1 (t.s.)

CL1d ��thyA36 deoC2 IN(rrnD-rrnE)1 rph Wild-type
CL3d recB21 recC22 argA81:Tn10 Isogenic to CL1 except recB21 recC22 argA81:Tn10
CL4d recD1011 argA81:Tn10 Isogenic to CL1 except recD1011 argA81:Tn10
CL10d recJ284:Tn10 Isogenic to CL1 except recJ284:Tn10
CL554d recO6218 Isogenic to CL1 except recO6218
CL557d ruvAB6203 Isogenic to CL1 except ruvAB6203
CL579d recF6206 Isogenic to CL1 except recF6206

CL43d �� rph�1 Wild-type
CL103d lexa1(Ind�) Isogenic to CL43 except LexA1(Ind�)

aProvided by Dr Roel Schaaper (NIH-NIEHS).
bProvided by E. coli Genetic Stock Center (Yale University).
cProvided by Dr Richard Sinden (Florida Institute of Technology) (47,48).
dProvided by Dr Justin Courcelle (Portland State University) (49,50).
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significantly more unstable than TTC-79 in the recA strain,
and there was no difference in the instability of TTC-79
between the two strains (P=0.163; Figure 2C), it indicates
that the orientation-dependent instability in the absence of
RecA is due to an increase in instability when GAA is the
lagging strand template.

Collisions between the replicative and transcriptional
polymerases, or the transition from Pol I to Pol III

polymerases during plasmid replication, could potentially
be the cause for the enhanced instability of the repeat in
the recA mutant strains. We, therefore, investigated if the
increase in instability in recA strains in the GAA
orientation was also seen in the absence of transcription
through the repeat tract or by significantly increasing the
distance between the origin of replication and the repeat
tract. pDEL-GAA-79, with the Plac promoter deleted,
and pINS-GAA-79, with a 1.5 kb spacer inserted between
the origin and the repeat tract, were propagated in M152
and MM28. The recA mutant showed a significant
increase in the instability of the repeat in both constructs,
which was comparable to the GAA-79 sequence within the
context of the unmodified pUC19 vector (Figure 3),
indicating that neither transcription nor the transition
between replicative polymerases was required for the
enhancement of repeat instability.

Reduced SSB activity causes an increase in (GAA�TTC)n
instability when GAA is the lagging strand template

Since SSB is known to play an important role in RecA
activity, we also examined the effect of reduced SSB

Figure 2. RecA deficiency causes orientation-dependent (GAA�TTC)n
instability due to increased instability when GAA is the lagging strand
template. (A) Repeat instability was significantly enhanced for GAA-79
(white bars) versus TTC-79 (black bars) propagated in three RecA-
deficient strains (DH5�, HB101, Top10), but no such orientation-
dependence was seen in the three RecA-proficient strains (C600, KA796,
KH1370). (B)Representative gels showing enhanced repeat instability for
GAA-79 versus TTC-79 propagated in M152 (RecA-deficient) but not in
the isogenic strain MM28 (RecA-proficient). Arrowheads indicate the
position of the full-length (GAA�TTC)79 repeat. (C) Instability was
significantly enhanced for GAA-79 versus TTC-79 in M152
(RecA-deficient) but not in MM28 (RecA-proficient). Error bars depict
+/� 2SEM; ��P< 0.01; ���P< 0.001; n.s. = not significant.

Figure 3. RecA deficiency causes increased instability when GAA is
the lagging strand template irrespective of transcription through
the repeat tract, or the distance between origin of replication and the
(GAA�TTC)79 sequence. (A) The (GAA�TTC)79 sequence was addi-
tionally subcloned in the GAA orientation into the pDEL (with a
deletion of the Plac promoter in pUC19) and pINS (with a 1.5 kb
spacer from intron 1 of the human FXN gene inserted in pUC19
between the origin of replication and the repeat tract) vectors (see
Materials and Methods section for details). (B) Instability of the
(GAA�TTC)79 sequence was significantly enhanced in the M152
(RecA-deficient) versus MM28 (RecA-proficient) strain. Error bars
depict +/� 2SEM; ��P< 0.01; ���P< 0.001.
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activity on (GAA�TTC)n instability. Constructs contain-
ing various lengths of the (GAA�TTC)n sequence, cloned
in the GAA orientation relative to the origin of replication
(GAA-21, GAA-41 and GAA-79) (Figure 1), were
propagated in the wild-type C600 strain and its derivative,
RM121, which contains a temperature-sensitive SSB
mutation (ssb-1) (47) (Table 1). Instability was measured
by culturing both strains at the non-permissive tempera-
ture (378C), at which there is greatly reduced SSB activity
in the RM121 strain (53). Instability of the (GAA�TTC)n
sequence was found to be length-dependent in the ssb-1
strain at the non-permissive temperature, and the repeat
tracts were significantly more unstable in the ssb-1 strain
than in the parental wild-type strain (P< 0.001 for GAA-
41 and P=0.02 for GAA-79) (Figure 4A and B),
indicating that reduction of SSB activity increases
(GAA�TTC)n instability. The much higher level of
instability of the GAA-79 construct propagated in
RM121 at the non-permissive temperature (which made
it very difficult to quantify accurately; compare Figures 2B
and 4A), indicates that reduction in SSB activity pro-
duces a more severe destabilization of the (GAA�TTC)n
repeat sequence compared with the deficiency of RecA.

Therefore, further detailed characterization of the effect of
reduced SSB activity was performed using the GAA-41
construct. Propagation of the GAA-41 construct in ssb-1
and the wild-type control at 25 and 378C, showed a
significantly higher level of instability in the ssb-1 strain at
the non-permissive temperature (Figure 4C). Although
GAA-41 was significantly more unstable in ssb-1 than in
the wild-type at both 258C and 378C (P=0.007 and
P< 0.001, respectively), no difference in instability was
observed in the wild-type strain grown at 258C and 378C
(P=0.95). This demonstrates that the specific reduction
in SSB activity at the non-permissive temperature is
responsible for the increased instability of GAA-41 in
ssb-1, and the latter is not simply due to increase in
temperature.

Since the ssb-1 mutant is known to be defective in RecA
induction at the non-permissive temperature (both C600
and RM121 are RecA+), we investigated whether reduced
SSB activity would also show increased instability when
GAA is the lagging strand template. GAA-41 and TTC-41
were propagated in ssb-1 and wild-type strains at both
258C and 378C, which revealed orientation-dependent
instability specifically in ssb-1 cultures grown at the

Figure 4. Reduction in SSB activity causes a length-dependent increase in (GAA�TTC)n instability. (A) Representative agarose gels showing PCR
products generated from colonies containing plasmids with the indicated lengths of (GAA�TTC)n repeat tracts in the GAA orientation in C600 (wild-
type (WT) for SSB), and in the isogenic temperature sensitive ssb-1 mutant, RM121. Arrowheads indicate the position of the respective full-length
repeats. (B) (GAA�TTC)n instability is length-dependent in both strains, however, the GAA-41 and GAA-79 repeat tracts are significantly more
unstable in RM121 (P<0.001 and P<0.01 for GAA-41 and GAA-79, respectively). Error bars depict +/� 2SEM. (C) Repeat instability was
determined for GAA-41 propagated in the ssb-1 mutant and C600 strains at the permissive versus non-permissive temperatures (258C (white bars)
versus 378C (black bars)). Instability of GAA-41 was significantly higher at 378C in ssb-1 compared with 258C. Increase in the temperature per se did
not affect instability since C600 showed the same level of instability at both temperatures. The increased instability in the ssb-1 mutant versus wild-
type even at the permissive temperature is likely due to leaky expression of the mutant phenotype caused by a partial deficiency of SSB. Error bars
depict +/� 2SEM; ��P< 0.01; n.s. = not significant.
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non-permissive temperature (Figure 5). The observation
of similar levels of instability with GAA-41 and TTC-41 in
the wild-type strain, and in ssb-1 when grown at the
permissive temperature, is consistent with their RecA+

status. However, the observation of increased instability
of GAA-41 versus TTC-41 in ssb-1 at the non-permissive
temperature indicates that it is the reduction in SSB
activity that is responsible for the orientation-dependent
instability. Propagation of GAA-41 at the non-permissive
temperature resulted in significantly increased instability
compared to the permissive temperature (Figure 4B), but
no such difference was seen for TTC-41 (P=0.706)
(Figure 5). This indicates that reduced SSB activity has a
significant effect on (GAA�TTC)n instability only when
GAA serves as the lagging strand template. Therefore, the
orientation-dependent instability observed in the ssb-1
strain at the non-permissive temperature is due to an
increase in instability when GAA is the lagging strand
template. This is further supported by the fact that no
orientation-dependent instability was observed at either
258C or 378C in C600 (P=0.461 and P=0.187)
(Figure 5), which has normal activities of both SSB and
RecA. Furthermore, even though there was increased
instability in the ssb-1 strain at the permissive temperature
(compare RM121 versus C600 at 258C) (Figure 5), no
orientation-dependent instability was noted. This suggests
that the slight reduction in SSB activity at 258C is not
sufficient to induce the orientation-dependent instability.

As in the case of all recA strains, the mutations
encountered with the GAA-41 construct in the ssb-1
strain included mainly contractions. Despite the increase
in the overall frequency of contractions, there was no

difference in the magnitude of contractions of GAA-41
versus TTC-41 constructs (median magnitude of contrac-
tions was 18 and 19 triplets, respectively; P=0.43), or
with the GAA-41 construct grown at the non-permissive
versus permissive temperatures (median magnitude of
contractions was 18 and 20 triplets, respectively; P=0.49)
in the ssb-1 strain.

Deficiency of RecFOR and RecBCD pathways increases
(GAA�TTC)n instability when GAA is the lagging strand
template

Stalling of replication occurs in the (GAA�TTC)n tract
specifically when GAA is the lagging strand template (40).
Since deficiency of RecA and SSB, proteins that play an
important role in the recovery of stalled replication forks,
showed increased instability in the GAA orientation, we
examined the role of other proteins involved in replication
restart. GAA-79 and TTC-79 plasmids were propagated in
E. coli strains mutant for recBC (CL3), recD (CL4), ruvAB
(CL557), recF (CL579), recO (CL554), and recJ (CL10),
and their parental wild-type strain, CL1 (Table 1). The
same level of instability was noted in the GAA and TTC
orientations in the wild-type CL1 strain (P=0.39 and
P=0.86 in Figure 6A and B, respectively), which has
normal RecA and SSB activities. In the recBC, ruvAB,
recF and recO mutants, instability was clearly orientation-
dependent, with the (GAA�TTC)79 repeat tract showing
significantly more instability when GAA was the lagging
strand template (P< 0.01 in each strain; Figure 6A and B).
These data indicate that both the RecBCD and RecFOR
pathways are required for maintaining stability of the
(GAA�TTC)n sequence when GAA is the lagging strand
template. Orientation-dependent instability was not seen
in the recJ (P=0.24) and recD (P=0.42) mutants
(Figure 6A and B), indicating that the absence of these
proteins is not sufficient to mediate the orientation-
dependent instability of the (GAA�TTC)n sequence. In
all the mutant strains that showed orientation-dependent
instability, invariably the orientation-dependence was due
to an increase in the mutation frequency when GAA was
the lagging strand template compared with the corre-
sponding wild-type strain (P < 0.05 in each case).

Absence of the SOS response does not increase
(GAA�TTC)n instability when GAA is the lagging strand
template

The observation of increased instability when GAA serves
as the lagging strand template in the absence of RecA,
SSB and RecFOR, suggested that the absence of one or
more proteins induced in the SOS response may be
involved in mediating the orientation-dependent instabil-
ity. We therefore propagated GAA-79 and TTC-79 in the
lexA1(Ind�) mutant (CL103), which is unable to turn on
the SOS response because it has a non-cleavable LexA,
and CL43, its isogenic normal counterpart (Figure 7)
(Table 1). There was a slightly higher instability with
GAA-79 versus TTC-79 in the lexA1(Ind�) mutant
(P< 0.05). However, comparison of the instability in the
mutant versus wild-type strains showed that this observa-
tion is unlikely to be biologically significant, since there

Figure 5. Reduction in SSB activity causes increased instability when
GAA is the lagging strand template. Repeat instability was determined
for GAA-41 (white bars) versus TTC-41 (black bars) propagated in
C600 and ssb-1 at 25 and 378C. GAA-41 was significantly more
unstable than TTC-41 only in the ssb-1 mutant strain at the non-
permissive temperature. There is increased instability in the ssb-1
mutant versus wild-type in both the GAA and TTC orientations even
at the permissive temperature, which is most likely due to the partial
deficiency of SSB at 258C. However, the orientation-dependent
instability manifests only when the ssb-1 mutant is grown at the non-
permissive temperature, and that this is specifically due to the increase
in instability in the GAA orientation. Error bars depict+/� 2SEM;
��P< 0.01; n.s.=not significant.
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was no difference in instability between the two strains in
either the GAA or TTC orientations (P=0.14 and
P=0.98, respectively) (Figure 7). These data therefore
indicate that the effect of increased instability in the GAA
orientation seen in the RecA, SSB and RecFOR mutants
is unlikely to be due to deficient induction of the SOS
response.

DISCUSSION

Friedreich ataxia is one of a relatively large group of
diseases caused by the expansion of a triplet-repeat
sequence, but it is unique in that it is a recessive disease
and that it is so far the only disease caused by expansion
of a (GAA�TTC)n sequence (2). Whereas the other
dominant diseases rely on frequent de novo expansions
of (CNG–CNG)n repeats, Friedreich ataxia is maintained
in the population via a large number of asymptomatic
heterozygous carriers of alleles already containing an

expanded (GAA�TTC)n sequence. Moreover, as opposed
to the expansion bias of the (CNG–CNG)n repeat
in human somatic cells in vivo (54–57), the expanded
(GAA�TTC)n sequence in Friedreich ataxia patients shows
a strong contraction bias in all tissues (10,11). Even in the
dorsal root ganglia of Friedreich ataxia patients, where
the repeat tract undergoes further large expansions, there
is a significant number of contractions (11). Under-
standing the mechanism(s) that cause contraction of the
(GAA�TTC)n sequence is a prerequisite to eventually
being able to reverse the mutation or slow its progressive
expansion in specific somatic cells of patients. The
contraction bias observed when (GAA�TTC)n repeat-
containing plasmids are propagated in our E. coli model
is therefore a useful system to study the mechanism(s)
involved in the contraction process.

The E. coli RecA protein is essential for the restoration
of stalled or arrested replication forks (41–46). It plays
multiple roles that vary based on the type of lesion
encountered. In concert with other proteins it plays a key
role in the recent widely recognized mechanisms of
recombinational repair for restarting stalled forks. In
addition, the presence of widespread DNA damage results
in the RecA-dependent upregulation of �40 different
genes, as part of the LexA-mediated SOS response that
together contribute to survival and/or genome stability.
Replication of the (GAA�TTC)n sequence with GAA as
the lagging strand template has been shown to stall the
replication machinery in both prokaryotic and eukaryotic
systems (4,25,40). How this stalling is overcome is unclear.
However, our previous data (25), and those of others
(4,40), had indicated that replication in the GAA
orientation is associated with frequent deletions of the
(GAA�TTC)n sequence. While there are likely to
be multiple factors responsible for destabilizing the
(GAA�TTC)n sequence, as is evident from the wide
variation of repeat instability seen in different strains,

Figure 6. Deficiency of proteins in the RecA-dependent (A) RecBCD
and (B) RecFOR pathways for the restart of stalled replication forks
results in enhanced instability when GAA is the lagging strand
template. Repeat instability was determined for GAA-79 and TTC-79
in recBC, recD, ruvAB, recF, recO and recJ mutants as well as an
isogenic wild-type (WT) strain (CL1). GAA-79 is significantly more
unstable than TTC-79 in the recBC, ruvAB, recF and recO mutants, but
not in the recD and recJ mutants, or in the wild-type strain. In all
mutants that showed orientation-dependent instability, instability in the
GAA orientation is greater in the mutant versus the isogenic wild-type
(P < 0.05 in each case). Error bars depict+/� 2SEM; ��P< 0.01;
���P< 0.001; n.s.=not significant.

Figure 7. The inability to induce the SOS response is not associated
with enhanced instability in the GAA orientation. Repeat instability
was determined for GAA-79 and TTC-79 in the lexA1(Ind�) mutant
(CL103) as well as an isogenic wild-type (WT) strain (CL43). GAA-79
is slightly more unstable than TTC-79 in the lexA1(Ind�) mutant,
however, there was no difference in instability in the GAA or TTC
orientations when compared with the wild-type strain (P=0.14 and
P=0.98, respectively). Error bars depict +/� 2SEM; �P< 0.05;
n.s.=not significant.
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we focused our efforts on characterizing the mechanism(s)
of the well-defined phenotype of orientation-dependent
instability. Here we have demonstrated that enhanced
instability when GAA serves as the lagging strand
template is caused by deficiency of RecA, SSB and other
key players in the RecFOR and RecBCD pathways for the
recovery of stalled replication forks. These data support
the role of efficient RecA-dependent restart of stalled
replication forks in maintaining stability of the
(GAA�TTC)n sequence. Moreover, we also found that
the effect of increased instability in the GAA orientation
caused by the deficiency of RecA, SSB and RecFOR is
unlikely to be mediated via proteins induced in the SOS
response. Furthermore, our data also indicate that the
increased instability in the GAA orientation in the absence
of RecA is unlikely to be due to interactions between the
replicative and transcriptional polymerases (since similar
instability was observed in the absence or presence of
transcription), or due to the transition between Pol I and
Pol III occurring within the repeat tract (since similar
instability was observed after greatly increasing the
distance between the origin of replication and the repeat
tract).

Hypothetically visualizing replication through the
(GAA�TTC)n sequence in the GAA orientation as a
‘lesion’ on the lagging strand (Figure 8A), we propose
three non-mutually exclusive mechanisms by which repeat

stability would be maintained (Figure 8B–D). A lagging
strand lesion may be bypassed by dissociation of the
lagging strand polymerase from the template and restart-
ing replication of the nascent lagging strand on the 30 side
of the lesion thereby creating a daughter-strand gap
(Figure 8B). Such a gap would be repaired by the RecFOR
pathway, where the RecFOR complex loads RecA on to
the gapped DNA that is precoated with SSB, thus
effecting DNA strand exchange for homologous recombi-
national repair (58). Consistent with the importance of
this pathway in maintaining repeat stability, both recF
and recO mutants resulted in enhanced instability in the
GAA orientation. On the other hand, the stalled replica-
tion fork may regress wherein the nascent strands pair to
form a Holliday junction (Figure 8C). Holliday junctions
may be resolved without the need for cleavage by
processing of the free double-stranded DNA end via
exonucleolytic digestion by the helicase-nuclease combi-
nation of RuvAB and RecBCD, so that a fork structure is
restored (46,59). However, stalled forks may break
(Figure 8D), either spontaneously or by the Holliday
junction resolvase RuvC (45,59). Repair of such a break
and restart of replication would be achieved by joint
molecule formation between the intact and broken sister
arms via the combined action of RecBCD and RecA (45).
The enhanced instability in the GAA orientation seen
in the recBC mutant supports these mechanisms for

Figure 8. Pathways involved in maintaining stability of the (GAA�TTC)n sequence in E. coli (see Discussion section for details). (A) Replication of
the (GAA�TTC)n sequence in the GAA orientation may be hypothetically visualized as a ‘lesion’ on the lagging strand. (B) A lagging strand lesion
may be bypassed by dissociation of the lagging strand polymerase thereby creating a daughter-strand gap. Gap repair by the RecFOR pathway
would ensue, where the RecFOR complex loads RecA on the gapped DNA, thus effecting DNA strand exchange for homologous recombinational
repair. (C) Stalling may result in fork regression with formation of a Holliday junction. The Holliday junction may be resolved without cleavage via
exonucleolytic digestion by the helicase-nuclease combination of RuvAB and RecBCD, so that a fork structure is restored. (D) Stalled forks may
break, and repair of such a break with restart of replication may be achieved by joint molecule formation between the intact and broken sister arms
via the combined action of RecBCD, RuvAB and RecA.
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maintaining repeat stability. The helicase–endonuclease
complex RuvABC is involved in both the RecFOR and
RecBCD pathways thus explaining the orientation-
dependent instability in the ruvAB mutant.
Deficiency of RecJ and RecD exonucleases, which

preferentially function in the RecFOR and RecBCD
pathways, respectively, did not show any orientation-
dependent instability. This is consistent with the redun-
dancy afforded by the overlapping functions of these and
other similar exonucleases (60). More importantly, RecJ is
required for intermolecular plasmid recombination, and
recJ mutants show a 4000-fold decrease in such recombi-
nation events (61). The (GAA�TTC)n sequence has been
shown to undergo frequent intramolecular and inter-
molecular recombination in E. coli (15). Therefore, the
observation that the recJ mutant does not increase
instability when GAA is the lagging strand template
suggests that intermolecular plasmid recombination is
unlikely to be the underlying mechanism of this orienta-
tion-dependent increase in instability.
The role of SSB in mediating orientation-dependent

instability of the (GAA�TTC)n sequence is likely more
varied. E. coli SSB is known to play a role in a variety of
DNA metabolic pathways, primarily by preventing single-
stranded DNA from forming secondary structures. It
promotes primosome assembly, DnaB helicase activity,
fidelity and processivity of DNA polymerases, and
efficient mismatch repair (62,63). Furthermore, SSB can
prevent replication pausing at secondary DNA structures
by helping the polymerase overcome the structural barrier
(38). Given the 50-fold reduced binding affinity of SSB for
poly(A/G) versus poly(T/C) sequences (64,65), and the
ability of single-stranded (GAA)n sequences to adopt
stable secondary structures (31), it is conceivable that
these factors may also contribute to the development of
deletions when GAA is the lagging strand template.
Additionally, SSB plays an important role in the RecFOR
and RecBCD pathways, and modulates the activity of
RecA in homologous recombination and replication
restart. SSB and RecA both bind cooperatively to single-
stranded DNA and are therefore often in competition for
the same substrate. RecA must be able to displace SSB
from regions of single-stranded DNA present at stalled
replication forks, single-stranded gaps, or double-stranded
breaks in order for RecA-coated presynaptic filaments to
form, which is an early rate-limiting step in homologous
recombination. However, RecA initially requires SSB on
these single-stranded DNA regions in order to prevent
secondary structure formation so that RecA can bind in
a cooperative fashion to form presynaptic filaments.
There is also some evidence that SSB enhances the rate
of subsequent joint formation and strand exchange events
during RecA-mediated recombination (62,63). The sig-
nificant functional interaction between SSB and RecA,
and the fact that deficiency of either protein results in
an increase in instability when GAA serves as the
template for lagging strand synthesis, suggest that the
two proteins may function together in a way that stabilizes
(GAA�TTC)n repeat tracts in vivo. It is therefore not
surprising, given the myriad roles of SSB, that the ssb-1
mutant displayed a very high level of repeat instability,

necessitating the use of a shorter (GAA�TTC)n repeat
sequence in our experiments. The ssb-1 mutant also
showed increased frequency of deletions of the
(CTG–CAG)n repeat sequence (48).

Some of our findings contrast with the observations
others have made regarding the mechanism of instability
of the (CTG–CAG)n sequence. Whereas RecA plays a
role in stabilizing the (GAA�TTC)n sequence, the
(CTG–CAG)n repeat sequence was paradoxically more
stable in a recA mutant (14). However, enhanced
instability of the (CTG�CAG)n sequence was noted in
the recA mutant background when a double strand break
was introduced within the repeat tract, and this instability
was orientation-dependent in recA and recBC mutants
(66). Moreover, the (CTG–CAG)n repeat was stabilized in
recO and ruvAB mutants, and destabilized in a recJ
mutant (67). These data indicate that the mechanisms
underlying the instability of the two triplet-repeat seq-
uences are likely different, probably reflecting the differ-
ences in their physical properties. It is noteworthy that
there are significant differences in the type of instability
that these two triplet-repeat sequences display in human
tissues and in various model systems.

In summary, there are clearly multiple mechanisms that
mediate instability of (GAA�TTC)n sequences in E. coli
given that there is substantial instability in the TTC
orientation and that the absolute level of instability is
different in various cell lines. However, our results indicate
that deficiency of the RecA-dependent RecFOR and
RecBCD pathways causes enhanced instability when
GAA is the lagging strand template. These observations
support the hypothesis that proficient RecA-dependent
restart of stalled replication forks is required to maintain
the integrity of the (GAA�TTC)n sequence. Moreover, the
differences in the mechanisms underlying the instability of
the (GAA�TTC)n versus (CTG–CAG)n sequence indicate
that the mechanisms are sequence and/or structure
dependent.
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