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Alkene 1,2-Difunctionalization by Radical Alkenyl Migration

Xinjun Tang and Armido Studer*

Abstract: Transition-metal-free radical a-perfluoroalkylation
with the accompanying vicinal (-alkenylation of unactivated
alkenes is presented. These radical cascades proceed by means
of 1,4- or 1,5-alkenyl migration by electron catalysis on readily
accessed allylic alcohols. The reactions comprise a regioselec-
tive perfluoroalkyl radical addition with subsequent alkenyl
migration and concomitant deprotonation to generate a ketyl
radical anion that sustains the chain as a single-electron-
transfer reducing reagent.

Vicinal alkene difunctionalization is a very powerful strategy
to increase complexity in organic compounds by a modular
approach.!l In the past decades, radical 1,2-difunctionaliza-
tion of alkenes has attracted great interest and significant
results have been achieved.* Radical alkene perfluoroal-
kylation with concomitant (-functionalization has received
great attention,™! owing to the fact that a perfluoroalkyl
group (R;) improves the solubility, bioavailability, lipophil-
icity, and metabolic stability of an organic compound.[®”]
Therefore, the development of methods for alkene perfluoro-
alkylation is of great importance.

Vicinal difunctionalization through radical perfluoroal-
kylation and subsequent intramolecular formyl,®! ary] "]
cyano,®™ and heteroaryl®* migration has been documented
previously (Scheme 1). Moreover, Zhu and co-workers and
our group reported cascade reactions involving a radical 1,4-
alkynyl-group migration.”). Although there are reports on
radical 1,2- or 1,3-vinyl migrations,!"”! the corresponding 1,4-
or 1,5-vinyl migrations are not yet established in synthesis."!
Considering the mechanisms of these reactions, 1,2- and 1,3-
vinyl migrations proceed through radical 3-exo and 4-exo
cyclizations that lead to highly strained three- and four-
membered intermediates, which readily undergo ring opening
by radical f-cleavage. Accordingly, 1,4- and 1,5-vinyl migra-
tions have to proceed through 5-exo or 6-exo cyclizations to
give thermodynamically more stable five- or six-membered
cyclized radicals, which lack any strong driving force for ring
opening. Indeed, 5-exo and 6-exo radical cyclizations are
highly valuable in synthesis and belong to the most intensively
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Radical alkene perfluoroalkylation and subsequent group migration:&-°
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Scheme 1. Intramolecular-radical-group migration.

studied radical processes to date. The -cleavage of a cyclized
radical resulting from a 5-exo process is only observed if
trapping is very slow and if the ring-opened radical shows high
thermodynamic stability.'”! Considering these prerequisites,
we designed radical cascades comprising 5-exo or 6-exo
cyclizations with subsequent ring opening leading to highly
stabilized ketyl radical anions. These cascades should proceed
in the absence of any efficient radical-trapping reagent,
allowing the challenging 3-C—C bond cleavage to occur. To
suppress endo-type cyclization an R*-substituent should be
installed (Scheme 1).

Herein, we introduce a simple and efficient method for a-
perfluoroalkylation with concomitant (3-alkenylation of unac-
tivated alkenes involving a radical 1,4- or 1,5-alkenyl migra-
tion.

(E)-3-Methyl-1-phenylhepta-1,6-dien-3-ol 1a was chosen
as a model substrate. The alcohol 1a was first reacted with
lithium hexamethyldisilazide (LiHMDS, 1.2equiv) in
1.25 mL of 1,2-dimethoxyethane (DME) at room temper-
ature for 0.5h. After deprotonation, 1,4-diazabicyclo-
[2.2.2]octane (DABCO, 1.5equiv)™® and perfluorobutyl
iodide 2a (1.8 equiv) were added sequentially and the mixture
was stirred under visible-light irradiation [using a Philips
Master HPI-T Plus (400 W) bulb] at 50°C for 18 hours. To our
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Table 1: Reaction optimization.?!

OH Q

= base, DABCO CaFe
N +1CFs Solvent =
Ph hv, 50 °C, 18 h Ph
1a 2a 3a

Entry Base Solvent Amine Yield of 3a [%]"
1 LiHMDS DME DABCO 34
2 LiOH DME DABCO 40
3 NaOH DME DABCO 25
4 KOH DME DABCO 27
5 Na,CO, DME DABCO 35
6 K,CO, DME DABCO 38
7 KOtBu DME DABCO 16
8 K;PO, DME DABCO 41
9 K;PO, 1,4-dioxane DABCO 34
10 K,PO, DMA DABCO 44
11 K;PO, DMF DABCO -
12 K;PO, DCM DABCO 44
13 K,PO, DCE DABCO 52
14 K;PO, DCE TMEDA 21
15 K;PO, DCE DBU 10
16 K,PO, DCE TMPDA -
171 K;PO, DCE DABCO 67 (63)
18 Na,;PO, DCE DABCO 38
19 Li,PO, DCE DABCO 29
20 K,HPO, DCE DABCO 52
21 KH,PO, DCE DABCO 29
22lce K;PO, DCE DABCO -
2364 K,PO, DCE - 3
24l<¢l - DCE DABCO 10

[a] The reaction was conducted with 1 (0.1 mmol), 2a (1.8 equiv), base
(1.2 equiv), and amine (1.5 equiv) in 1.25 mL of solvent under visible-
light irradiation [using a Philips Master HPI-T Plus (400 W) bulb] at 50°C
for 18 h. [b] Determined by 'H NMR analysis by using 1-fluoro-4-
methylbenzene as the internal standard. [c] K;PO, (2.0 equiv) and
DABCO (1.2 equiv) were used for 24 h. [d] Yield of isolated product in
parenthesis. [e] The reaction was conducted without visible-light irradi-
ation. [f] The reaction was conducted without DABCO. [g] The reaction
was conducted without base. DMA= N,N-dimethylacetamide;

DMF = N,N-dimethylformamide; DCM = dichloromethane.

delight, the 1,4-alkenyl migration product 3a was obtained in
34 % yield with complete E selectivity (Table 1, entry 1). The
yield increased to 40% when LiOH was used as a base
(Table 1, entry 2); however, with NaOH or KOH the yield
decreased (Table 1, entries3 and 4). In the presence of
Na,CO; or K,CO; 3a was formed in 35 or 38% yield,
respectively (Table 1, entries 5 and 6), and KOsBu was found
not to be an efficient base to mediate this cascade (Table 1,
entry 7). The highest yield in this series (41 %) was obtained
by using K;PO, (Table 1, entry 8). A solvent screen revealed
that dichloroethane (DCE) provided an improved result
(52%) (Table 1, entries 9-13). Replacing DABCO by other
amines, such as N,N,N' N'-tetramethylethane-1,2-diamine
(TMEDA), 1,8-diazabicyclo[5.4.0]Jundec-7-ene (DBU), and
N,N,N',N'-tetramethyl-1,3-propanediamine (TMPDA),
afforded lower yields (Table 1, entries 14-16)."* Varying the
amount of base and DABCO showed that the highest yield
(67 %) was obtained by using 1a (0.1 mmol), 2a (1.8 equiv),
K;PO, (2.0 equiv), and DABCO (1.2 equiv) in 1.25 mL of
DCE with stirring under visible light at 50 °C for 24 h (Table 1,
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entry 17). We also examined other phosphate salts, such as
Na,;PO,, Li;PO,, K,HPO,, and KH,PO,, but lower yields were
obtained (Table 1, entries 18-21). Notably, the cascade reac-
tion did not proceed without visible-light irradiation (Table 1,
entry 22) and very low yields were achieved in the absence of
K;PO, or DABCO (Table 1, entries 23 and 24).

With the optimized reaction conditions in hand, we
investigated the scope of the reaction by keeping perfluoro-
butyl iodide 2a as the C-radical precursor and systematically
varied the migrating styrenyl group (Table2). Electronic
effects at the para position in the aryl moiety are not
pronounced and the corresponding products 3b-3f were

Table 2: Variation of the alkenyl substituent.”!

0]
H
0 K3POy4 (2.0 equiv)
= _— C4Fg
N + IC4F9 DABCO (1.2 equiv) P
DCE, hv, 50 °C, 24 h R

R

1b-n 2a 3b-n
Entry R Product Yield [96]®
1 1b, 4-MeC¢H, 3b 70
2 1c, 4-tBuCgH, 3c 69
3 1d, 4-MeOC(H, 3d 56
4 Te, 4-FCgH, 3e 50
5 1f, 4-CIC,H, 3f 72
6 1g, 3-MeCeH, 3g 61
7 Th, 2-MeCH, 3h 52
8 1i, 2,4,6-Me,CH, 3i 51
9 1j, 3,5-(MeO),CeH, 3j 53
10 1k, 1-naphthyl 3k 45
1 11, 2-pyridyl 31 43
12 1m, iPr,Si 3m 50
131 1n, Gy 3n 23

[a] The reaction was conducted with 1 (0.1 mmol), 2a (1.8 equiv), K;PO,
(2.0 equiv), and DABCO (1.2 equiv) in 1.25 mL of DCE under visible-light
irradiation [using a Philips Master HPI-T Plus (400 W) bulb] at 50°C for
24 h. [b] Yield of isolated product. [c] The reaction was conducted at
0.2 mmol scale.

formed in moderate-to-good yields (Table 2, entries 1-5). The
meta- and ortho-methyl substituted congeners 1g and 1h
provided the targeted 3g and 3h in 61 and 52% yield,
respectively (Table 2, entries 6 and 7). Alcohols bearing di-
and trisubstituted styryl groups, such as 1i and 1j, afforded
the corresponding ketones 3i and 3j in 51 and 53 % yield
(Table 2, entries 8 and 9), indicating that steric effects at the
aryl moiety in the migrating styrenyl group do not play
a major role. Notably, the 1-naphthyl and 2-pyridyl groups are
both tolerated as substituents (see 3k, 31, Table 2, entries 10
and 11). The silylated allylic alcohol 1m also worked well and
3m was isolated in 50 % yield (Table 2, entry 12). Cyclohexyl-
substituted allylic alcohol 1n was also suitable for this
migration reaction; however, only a moderate 23 % yield of
3n was obtained (Table 2, entry 13). Next, we studied the
radical styrenyl migration on various alcohols of type 1 by
varying the R! and R? substituents (Scheme 2). The butyl- and
isopropyl-substituted allylic alcohols 10 and 1p worked well
and ketones 30 and 3p were isolated in 62 and 67 % yield,
respectively. A higher yield was obtained with the tertiary
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OH
K3POy4 (2.0 equiv)
- e s

O R2
R1J\(\)g\/ CnFan+1
=

DABCO (1.2 equiv)

Ph DME, hv, 50 °C, 24 h Ph
10-u 2a-f 30z
o) o) o]
n-C4Hg C4Fe C,Fg Ph C4Fo
z = z
Ph Ph Ph
30, 62% 3p, 67% 3q, 74%
o)
CuFs CFs O
= o = |
Ph Ph CaFe Npyp
3r, 84% 3s, 50% 3t, 49%
o Ph o) o
M CoF2ne1 CF,CF,Cl
C4Fg Ph = =
Ph Ph
3u, 30% 3v, n=1, 76%l 3z, 84%
(dr=26:1) 3w, n=6,81%
3x, n=8,73%

3y, n=10,71%

Scheme 2. Variation of the radical acceptor and the perfluoroalkyl
iodides. [a] 3.6 equivalents of CF;l were used.

benzylic alcohol 1q to give 3q (74%). Notably, styrenyl
migration also works for tertiary alkyl radicals, as docu-
mented by the successful preparation of 3r bearing an all-
carbon quaternary center (84 % ). Importantly, the reaction is
not limited to the 1,4-alkenyl migration: The allylic alcohol 1s
reacted in 50 % yield to provide the ketone 3s, resulting from
a 1,5-alkenyl migration. As expected, initial perfluoroalkyl
radical addition on the trisubstituted alkene 1t occurred at
the less hindered site and the ketone 3t, derived from a 1,5-
alkenyl migration, was isolated in 49 % yield. Phenyl-sub-
stituted alkene 1u could also undergo this migration reaction
and 3u was obtained in moderate 30% yield as a 2.6:1
diastereoisomeric mixture.

Other perfluoroalkyl groups, including the important
trifluoromethyl moiety, could also be introduced by this
method as documented by the preparation of ketones 3v-3y,
which were isolated in good-to-excellent yields. The reaction
of 1r with ICF,CF,Cl provided 3z (84%) and products
derived from chloride fragmentation were not identified in
this transformation. Other alkyl-radical precursors, such as
ethyl 2-iodoacetate, 2-iodoacetonitrile, 2-iodo-2-methylpro-
panenitrile, 2-bromo-1-phenylethan-1-one, and 1-iodoada-
mantane were not suitable for this migration reaction.

Based on the above results, a plausible mechanism is
suggested in Scheme 3. Initiation occurs by visible-light
irradiation of the halogen-bond (XB) complex' formed
between the perfluoroalkyl iodide and DABCO to give the
corresponding perfluoroalkyl radical. This radical adds at the
terminal position of the alkene in alcohol 1 to give the adduct
radical A. The internal double bond is well shielded by the
neighboring quaternary carbon center and, therefore, the
internal double bond remains unreacted at this stage. Radical
5-exo or 6-exo cyclization leads to the cyclized radical B.
Unlike our initial design in which the cascade reactions were
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Scheme 3. Proposed mechanism.

planned to be conducted on deprotonated allylic alcohols,
reaction optimization revealed that these transformations
work most efficiently with K;PO, in combination with
DABCO. Both of these bases are too weak to deprotonate
a tertiary alcohol. We assume that the phosphate anion
undergoes hydrogen bonding with the tertiary alcohol and
this leads to an activation of the (-C—C bond towards
homolytic cleavage. This proposal is reminiscent of the
f-C—H bond weakening in phosphate-complexed alcohols
suggested by MacMillan and co-workers."” Radical p-C—C
bond cleavage will then afford the ketyl radical anion C.
Owing to the increase of the acidity of the hydroxy group in o-
hydroxy-a-alkyl carbon radicals compared with that of the
parent alcohols, we believe that deprotonation by K;PO,
occurs during B-C—C cleavage. As previously shown, such
ketyl radical anions are very good single-electron transfer
(SET) reducing reagents.'® Hence, SET reduction of the per-
fluoroalkyl iodide will give the corresponding ketone 3, along
with the perfluoroalkyl radical sustaining the chain. The
overall cascade is part of an electron-catalyzed process.!'’]

In summary, we have developed a novel and efficient
method for the radical perfluoroalkylation of unactivated
alkenes with accompanying f-alkenylation. The radical
cascade proceeds by a 1,4- or 1,5-alkenyl migration, a reaction
that is currently not established in synthetic methodology. The
chain reaction belongs to an electron-catalyzed process and
does not require any transition-metal-based redox catalyst.
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