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Natural killer (NK) cells, the large granular lymphocytes differentiated from the common
lymphoid progenitors, were discovered in early 1970’s. They are members of innate
immunity and were initially defined by their strong cytotoxicity against virus-infected cells
and by their important effector functions in anti-tumoral immune responses. Nowadays,
NK cells are classified among the recently discovered innate lymphoid cell subsets and
have capacity to influence both innate and adaptive immune responses. Therefore, they
can be considered as innate immune cells that stands between the innate and adaptive
arms of immunity. NK cells don’t express T or B cell receptors and are recognized by
absence of CD3. There are two major subgroups of NK cells according to their differential
expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their
cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines
comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of
interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties
and could take part in immune-regulatory responses. Activation of NK cells is determined
by a delicate balance of cell-surface receptors that have either activating or inhibitory
properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18
influence NK cell activity. NK-derived cytokines and their cytotoxic functions through
induction of apoptosis take part in regulation of the immune responses and could
contribute to the pathogenesis of many immune mediated diseases including
ankylosing spondylitis, Behçet’s disease, multiple sclerosis, rheumatoid arthritis,
psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells
in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid
developments in biotechnology, progressive research in immunology enables better
characterization of cells and their delicate roles in the complex network of immunity. As
NK cells stand in between innate and adaptive arms of immunity and “bridge” them, their
contribution in inflammation and immune regulation deserves intense investigations.
Better understanding of NK-cell biology and their contribution in both exacerbation and
regulation of inflammatory disorders is a requisite for possible utilization of these multi-
faceted cells in novel therapeutic interventions.
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INTRODUCTION

The immune system, formed by a delicate network of cells and
effector molecules, aims to provide defense against invaders
while protecting the integrity and restoration of the “self”.
Innate and adaptive arms of immunity have to work in a
harmony. Natural killer (NK) cells, the large granular
lymphocytes differentiated from the common lymphoid
progenitors, were discovered in early 1970’s (1, 2). They are
among a heterogeneous group of innate lymphocytes which have
capacity to bridge innate and adaptive arms of immunity (3).
These cells are best known for their cytotoxicity against virus-
infected or transformed (cancerous) cells, along with their
prominent cytokine production capabilities (4, 5). Since their
discovery, many studies were performed to better understand the
biology of NK cells and their contribution in the delicate network
of immunity. NK cells have distinct subsets with disparate
developmental origins, repertoires, locations and functions. NK
cells could possess natural cytotoxicity, antibody-dependent
cellular cytotoxicity (ADCC) and also produce a plethora of
cytokines which are similar to that of the well-known CD4+ T
helper (Th) cell subsets such as Th1, Th2 and Th17 (6, 7). Novel
research has attributed a regulatory role for NK cells (8). Both
thanks to their production of interleukin (IL)-10 under certain
circumstances and also due to being licensed to kill self-reactive
cells, these innate cells contribute in maintenance of the
immune homeostasis.

Contribution of NK cells in autoimmune and auto-
inflammatory disorders has been questioned for decades.
Studies proposed important roles for NK cells both for
initiation, progression and resolution of these disorders (9).
NK cell cytotoxicity as well as NK-derived cytokines take part
in the regulation of the immune responses and can contribute to
the pathogenesis of many immune mediated diseases including
ankylosing spondylitis (AS), Behçet’s disease (BD), multiple
sclerosis (MS), rheumatoid arthritis (RA), psoriasis, systemic
lupus erythematosus (SLE) and type-1 diabetes (T1D). Some of
these diseases are associated with certain genes that act as ligands
for NK cell receptors and have the potential to affect NK cell
functions (10). While, a dysfunction in regulatory properties of
NK cells could end up with failed control of T cell responses and
thereby contribute to pathogenesis of certain disorders (11). On
the other hand, type-1 interferon molecules; an important
component of anti-viral innate responses are closely associated
with NK cell functions (12, 13). As NK cells form a bridge
between innate and adaptive arms of immunity, their
contribution in inflammation and immune regulation deserves
intense investigations. Although great knowledge has been
accumulated since the initial definition of these cells, better
understanding of NK cell biology and their contribution in
inflammatory disorders is a requisite to enable utilization of
these multi-faceted cells in novel therapeutic interventions.

This review aims to summarize the most up to date
knowledge related with the biology and functions of NK cells
with a special focus on auto-immune disorders.
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LONG-STANDING MEMBERS OF THE
RECENTLY DISCOVERED INNATE
LYMPHOID CELLS: NATURAL KILLER
CELLS

NK cells are accepted as the members of the innate lymphoid
cells (ILCs), the recently revealed lymphoid-derived cells of the
innate immunity that have vital effector and regulatory functions
in immune responses, inflammation as well as tissue
regeneration (14). Unlike T and B lymphocytes, antigen
receptors of ILCs do not undergo somatic recombination. ILCs
are identified with their surface molecules and are negative for
lineage markers: CD3, CD4, CD8, CD16, CD34, TCRab, TCRgd,
CD19, FcϵR1, CD1a, CD11c, CD94, CD123, CD303, and positive
for CD45, CD127, and CD161 (15). ILCs are divided into 3
groups according to the expressed transcription factors needed
for their functional development and the cytokines they produce;
group 1, group 2, and group 3 ILCs (Table 1) (16).

The first identified subset of the ILC group originating from
the common lymphoid progenitor (CLP) is the classical NK cell.
Group 1 ILCs include both cytotoxic NK cells and non-cytotoxic
type 1 (ILC1) cells (16). NK cells respond to tumor cells and
intracellular pathogens by releasing cytokines and possessing
cytotoxic activity and can also play roles in regulation of the
adaptive immune responses. ILC1 subset could be characterized
as Lineage-, CD45+CD127+CD161+c-kit- and prostaglandin
(PDG2) receptor (CRTH2)- (15). T-bet is the main
transcription factor for development and function. They are
non-cytotoxic cells and can produce interferon-gamma (IFN-g)
that plays a role in the initial response to infections caused by
viruses and bacteria. The role of ILC1 group has been
demonstrated in the pathology of various diseases such as
inflammatory bowel disease, infectious colitis, and diabetes (17).

Group 2 ILCs (ILC2) were first discovered in mouse as
natural lymphocytes that produce IL-13 in different tissues,
consequently revealed to be present in human intestinal, nasal
and adipose tissue, peripheral blood and lungs (18). GATA-3 is
TABLE 1 | Innate lymphoid cell subsets and their contributions in inflammatory
disorders.

ILC1 ILC2 ILC3

Transcription
factor

T-bet GATA-3 RORgt

Activated
cytokines

IL-12, IL-15, IL,18 IL-25, IL-
33

IL-1b, IL-23

Mediators
produced

IFN-g, TNF-a IL-4, IL-
5, IL-13

IL-17, IL-22, GM-CSF

Function Inflammation Immunity
to
helminths

Lymphoid tissue development,
Intestinal homeostasis,
Immunity to extracellular
bacteria

Disease
Associations

Inflammatory
conditions,
Inflammatory
bowel disease

Allergy
and
asthma

Inflammatory bowel disease
Fe
bruary 202
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the main transcription factor for ILC2 subset and activated by IL-
25 and IL-33 cytokines can in turn produce IL-4, IL-5, IL-9, and
IL-13. ILC2 subset have a role in response to helminth infections,
tissue repair and allergic diseases (19).

Group 3 ILCs (ILC3) are Lineage-CD45+CD127+CD161+c-
kit+ and CRTH2- cells (15), and have 3 different subsets. The first
identified cells are lymphoid tissue inducer (LTi) cells that are
involved in the formation of secondary lymphoid tissues by
secreting lymphotoxin (20). NKp44+ ILC3 and NKp44- ILC3
subsets are activated by IL-1b and IL-23, secrete IL-17 and IL-22
and play roles in response to extracellular pathogens, repair of
skin tissue, and some autoimmune disease pathologies by
assisting neutrophil infi ltration. RORgt is the main
transcription factor for ILC3 (14, 20).

There is a strong similarity in terms of developmental lineage
and functions between ILCs and T lymphocytes. In general ILC
subsets are the counterparts of CD4+ T cells, and NK cells are the
counterpart of CD8+ T cells (17).

Briefly, ILCs are the most recently categorized subsets of
innate lymphocytes which also encompass NK cells. The
identification of various role of ILC subsets showed that there
is an important function for ILCs in triggering immunity,
inflammation and tissue repair.
NATURAL KILLER MATURATION,
PHENOTYPES, DISTRIBUTION AND
FUNCTIONS

Natural Killer Cell Development and
Maturation
NK cells are developed from common lymphoid progenitors
(CLPs) exclusively in bone marrow during adult life but
evidence accumulated both from human and mouse studies
suggests that precursor and immature NK (iNK) cells can also
migrate to secondary lymphoid tissues (SLTs) which include
spleen, tonsils and lymph nodes where they undergo terminal
maturation and then enter the circulation (21–24). The initial step
of this multiple-step process of NK cell differentiation relies on
commitment of human stem cells towards the lymphoid/myeloid
lineage instead of erythroid/megakaryocyte lineage. During
differentiation of human NK cells, Lin-CD34+CD133+CD244+

hematopoietic stem cells progress to CLPs following expression
of CD45RA molecule to become lymphoid-primed multi-potent
progenitors (LMPP). LMPPs are converted into CLPs by
expressing CD38, CD7, CD10, and the cytokine receptor CD127
(IL-7 receptor alpha). CLPs have the ability to differentiate into B,
T and NK cell progenitors and also to other lymphoid cells (25).
CD122 (IL-2Rb) expression marks an inevitable fate choice in the
NK lineage commitment of CLPs (26). NK cell differentiation
requires cell-to-cell interactions with stromal cells, the existence of
the stem cell factor (SCF), ligand for the fms-like tyrosine kinase 3
(FLT3-L) and IL-7 for lymphoid commitment (27). NK cells are
classified according to their sequential stages of maturation which
could be designated as NKPs (stage 1), pre-NK (stage 2) and iNK
cells (stage 3) (22, 24).
Frontiers in Immunology | www.frontiersin.org 3
The CD34+CD45RA+CD39+CD10+CD123-CD127-

phenotype is defined by pre-NK cells (pre-NKPS) (25).
However both NKPs and pre-NK cells have the ability to
transform into other types of cells (T cells, dendritic cells
(DCs) and other ILCs) by maintenance of CD34 expression
(24, 28). NKPs are best characterized with down-regulation of
CD34 and by the acquisition of CD122, which is the beta chain of
the IL-2 receptor shared by both IL-2 and IL-15 receptors. IL-15
is vital for NK cell maturation, differentiation and survival.
Expression of CD122 indicates the one-way fate decision of
CLPs into NK lineage (29–31). Meanwhile, mature NK cells
gain self-tolerance and effector-functions by loss of CD34 and c-
kit accompanied by sequential expression of CD56, CD94, and
the killer C-type lectin receptor (CD161) (24, 32, 33). Mature NK
cells can progress into 2 final developmental stages, with respect
to the expression of CD56 and CD16 (34–38).

CD34-LFA1lowNKp46dimNKG2DdimCD94- subset was
defined as immature stage 3a human lymph node NK cells.
During NK differentiation, LFA-1 might be upregulated later
than CD94. The time series of CD161, NKG2D and NKp46
makes the division of stage 3 into sub-stages 3a and 3b. The cell
phase in which CD56 and CD94 were co-expressed at a low
density potentially defines an intermediate stage 3b. LFA-
1lowCD56dimCD94dimCD16- NK cell line was particularly
fractional to the Lin-CD34-LFA-1low cell. CD56bright NK cells
may derive from CD161+NKG2DdimNKp46dimCD56- cells
which go through the cell process CD56dimCD94dimCD16-

(37). The CD56brightCD16− NK cells, which are involved in 4
developmental stages, have immune regulatory and cytokine-
producing capabilities and are best recognized with CD34-

CD117lowCD94+CD16- phenotype. Two different stages (4a
and 4b) were described according to NKp80 expression in NK
cells at the stage 4 (39, 40). NKp80-CD56bright NK cells at stage 4a
lack effector functions and best characterized by high expression
of NKG2D, NKp30, and NKp46, CD94/NKG2A, CD161. On the
contrary, NKp80+CD56bright NK cells at stage 4b can produce
IFN-g and facilitate perforin-dependent cytotoxicity (22). The
final terminally differentiated NK subset gradually gains
expressions of CD16, killer Ig-like receptor (KIR) and cytotoxic
granu les , b r ing ing out a t rans ient popula t ion of
CD16+CD56bright NK cells (41). The final maturation of
human NK cells is accompanied by CD56bright NK cells
expression loss of CD117, CD127, and CD94/NKG2A receptor,
while gaining of CD94/NKG2C and down-regulation of CD56
(42, 43). By downregulation of CD56 expression to become
CD56dim. The majority of human NK cells in the peripheral
blood is the subset which is best characterized by diminished
expression of CD56 and express high levels of CD16 (Figure 1)
(44, 45). Several recent studies have suggested that unlike this
traditional model, CD16+CD56dim and CD16-CD56bright NK
cells may also originate from separate lineages (36–38, 45, 46).

Natural Killer Cell Receptors
Functions of NK cells are regulated by a delicate balance of a
number of cell-surface expressed activating and inhibitory receptors.
NK cell inhibitory receptors that are specific for human leukocyte
antigen (HLA)-class I surface molecules of healthy cells aim to
February 2021 | Volume 12 | Article 622306
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prevent NK cell-mediated attack. These could be clarified as two
diverse classes of HLA-class I specific inhibitory receptors: the
members of the KIR/CD158 family and the CD94/NKG2A
(CD94/CD159a) heterodimer (47, 48). Both of the inhibitory
receptor types include immunoreceptor tyrosine-based inhibitory
motif (ITIM) in the cytoplasmic tail to generate blocking signals.
There are also activating forms of KIRs (49) which do not contain
cytoplasmic ITIM motifs in their cytoplasmic tail and possess
charged transmembrane residues required for association with
immunoreceptor tyrosine-based activation motif (ITAM)-bearing
molecule KARAP/DAP12 (50). Inhibitory KIRs possess long
cytoplasmic tails (L), while activating KIRs utilize short
cytoplasmic tails (S) (51). KIR/HLA combinations with high levels
of polymorphisms were reported to be linked with either protection
from or predisposition to inflammatory, autoimmune as well as
reproductive disorders (51–54). Other HLA-specific inhibitory
receptor is exemplified by leukocyte Ig-like receptor (LILR)
family. LILRB1 (LIR-1/ILT2/CD85), commonly expressed on NK
cells utilize cytoplasmic ITIM and recognize HLA-class I molecules.
The cytomegalovirus encoded HLA-class I homolog, UL18,
expressed on CMV-infected cells, could play a role in host
defense by binding to LILRB1 (55). Similar to NKG2A, another
HLA-specific activating receptor, CD94/NKG2C expression is
limited to late stages of NK cell maturation, whereas CD94/
NKG2A is expressed by immature NK cells (56). NK cells express
various receptors that can cause their activation through binding to
Frontiers in Immunology | www.frontiersin.org 4
specific ligands that are present on the surface of infected or
transformed cells (5). The natural cytotoxicity receptors (NCRs)
are classically germ line-encoded receptors which are recognized as
the major NK activating receptors (57) and consist of NKp46
(NCR1, CD335) (58), NKp44 (NCR2, CD336) (59) and NKp30
(NCR3, CD337) (60). Induction of NK cytotoxicity against infected
cells and tumors is provided by these molecules. NKp30 and NKp46
receptors are present on almost all resting human NK cells, on the
other hand, NKp44 expression is almost limited to CD56bright NK
cells, but following activation by cytokines, NKp44 could essentially
be expressed by all NK cells (5).

NKG2D is a type II transmembrane and C-type lectin-like
receptor with activating properties which is expressed in both
NK cells and also in cytotoxic T cells. UL-16 binding proteins
(ULBPs) and major histocompatibility complex (MHC)-class I
chain-related protein (MIC)-A and B; the HLA-class I structural
homologs that are upregulated in infected and tumor cells, form
the ligands for NKG2D (61). Tumors could escape from the
host immune system by shedding of NKG2D ligands from tumor
cells (62, 63). As co-receptors, 2B4 (64), NTB-A (65), DNAM-1
(66), CD59 (67), and NKp80 (40) could boost triggering of NK
cells already induced by NCRs or NKG2D. NK cells could also
express toll-like receptors (TLRs) that induce potent NK cell
activation following interface with bacterial or viral products
(68–70). Circulating NK cells express low-affinity receptor for
the constant region of IgG termed as CD16, which has capacity
FIGURE 1 | Differential effector functions of NK cell subsets: NK cells have two major subsets in relation with their CD56 expression levels. High expression levels of
CD56 is observed in immature NK cell subset, which does not express high levels of CD16 and best known with abundant expression of cytokines. This subset has
inflammatory and/or immune regulatory properties and low cytotoxic activity. On the other hand, the subset with low expression levels of CD56 in known as mature
NK cell subset, which express high levels of CD16 and is associated with clearance of tumor cells and transfected or virus-infected cells thanks to cytotoxic activity.
This subset is also associated with diminished cytokine production capacity.
February 2021 | Volume 12 | Article 622306
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to trigger antibody dependent cellular cytotoxicity (ADCC)
following recognition of the Fc portion of IgG antibodies that
are specific to unhealthy cells (71). Several novel treatment
options to enhance anti-tumor immunity have been developed
over the last decade. Recently, the utilization of NK cells due to
their anti-tumoral properties has gained interest for therapeutic
intervention (72–74). NK cells express multiple activating
receptors such as CD16, also known as FcgRIIIA, NKG2D,
NKp30, NKp44 and NKp46 cytotoxicity receptors, all of which
could be used to trigger anti-tumor immunity (75). The
production of tri-functional NK cell engagements (NKCES)
targeting two activating receptors, NKp46 and CD16, in NK
cells and a tumor antigen in cancer cells has been reported (76).
As a consequence, tri-functional NKCEs are a new generation of
molecules for battle against cancer.

Transcriptional Approach to Natural
Killer Cells
Profiling of the transcriptome is an important process for
understanding cell biology. RNA sequencing (RNA-seq) is a
recently developed complete transcriptome sequencing
technique that uses deep-sequencing technologies and is a fast
and a high-throughput method with high detection sensitivity
and capacity, provides a more detailed and quantitative view of
gene expression, alternative splicing, and allele-specific
expression (77–79).

The transcriptional programs that regulate NK cell
development is not yet fully understood. Specifically, the
transcriptional activation or repression during NK cell
ontology is poorly defined (80). Smith et al. analyzed single-
cell RNA-seq of NK cell subsets and compared gene expression
in unstimulated and IL-2-activated cells from healthy donors
(81). They showed that CD56bright NK cells respond most
potently to IL-2 stimulation, and there are expressions of
GPR183, IL-7R, LTB, GZMK, CD62L, and CCR7 and high
expressions of CD2 and KLRC1 (NKG2A), low expressions of
FcgRIIIA (CD16) in this subset (81). According to miRNA
transcriptome analysis in murine resting NK cells, more than
300 miRNA is expressed following cytokine activation (82). miR-
223 that specifically targets the 3′ untranslated region of murine
Granzyme B in resting NK cells, was down-regulated as response
to IL-15. There is a heterogeneity in bone marrow and blood NK
cell-transcriptome data, functionally matured NK cells with high
expression of CX3CR1, HAVCR2 (TIM-3), and ZEB2 represents
terminally differentiated status with the unique transcriptional
profile to single cell RNA-seq analysis (83). Based on murine
transcriptome analysis, bone marrow NK cells are divided into
five distinct NK cell clusters, and mTORC2-Akt-FoxO1-T-bet
axis is important in regulation of immature NK cell genes during
development (80).

Recent studies on NK cell function in autoimmunity focused
on RNA-seq methods. Kallionpaa et al. analyzed seven children
who developed b-cell autoimmunity (84), and indicated that IL-
32 was upregulated before appearance of autoantibodies, which
was caused by activated T and NK cells. As a result, IL-32 could
have a role in T1D, and may be used for detection of abnormal
Frontiers in Immunology | www.frontiersin.org 5
immune cell function prior to T1D onset (84). Lupus nephritis
(LN) is a complication of SLE. Arazi et al. showed that there are
two NK cell subsets in LN (85). One of both NK cell expresses
lacked CD3E and CD3D combined with expression of CD56
(NCAM1) and DAP12 (TYROBP), as well as high expression of
cytotoxic genes including PRF1, GZMB, and GNLY. The other
NK cell subset was differed by higher expression of KIT, TCF7,
IL7R, and RUNX2, and lower expression of PRF1, GZMB,
FcgRIIIA, TBX21, and S1PR5 (85). Single cell RNA-seq
analysis in rheumatoid arthritis synovial tissue indicated that
T, B and NK cells that are associated with RA disease and CD4+

T, B and NK cells likely contribute to RA pathogenesis through
expression of signaling molecules and their interactions with
immune cells and fibroblast populations (86).

Effector Functions of Natural Killer Cells
NK cells have two critical effector functions. First, NK cells can
directly kill cells undergoing malignant transformation (tumor
cells) or cells infected with either viral or other intracellular
pathogens (6). The cytolytic function of NK cells is critical for the
clearance of unhealthy and dysfunctional cells (87, 88). Second
effector function of NK cells is the production of a diversity of
cytokines in response to activation receptor triggering and also
inflammatory cytokine-induced activation (89, 90). The
fundamental mechanisms by which effector functions of NK
cells mediate protective immunity are critical components of an
immune response.

The Mechanisms of Natural Killer
Cell Cytotoxicity
Different mechanisms of target cell recognition by NK cells and
how they are considered suitable for being destroyed have been
identified. Following target cell recognition by NK cells, target
cell killing is provided through the formation of a lytic
immunological synapse (IS) that enables NK-induced target
cell death through two key mechanisms (4). The first
mechanism is involvement of death receptor activation that are
located on the surface of the target cells, which consequently
leads to activation of the extrinsic apoptotic pathway (91). In the
death receptor (extrinsic) pathway, the binding of death
receptors like tumor necrosis factor (TNF)-related apoptosis-
inducing ligand receptors (TRAIL-R) and Fas (CD95) which are
activated by their natural ligands; Fas ligand (FasL/CD95L) and
TRAIL, respectively, direct NK cells (88, 92). The NK cell-
derived IFN-g can induce the manifestation of death receptors
on target cells, which in turn activates pro-apoptotic signaling
programs (93, 94). These death receptors activate the relevant
apoptotic mechanisms which includes initiator caspases-8 and
-10 by the cytoplasmic death domain (95, 96). Initiator caspases
trigger the formation of the apoptosome as a consequence of
mitochondrial damage and cytochrome C release (97). The cell
death via apoptosis occurs as a result of DNA fragmentation
induced by caspase 3-activated DNase activation (98).

NK cells store lytic molecules in cytolytic granules that aim to
release apoptotic molecules to the target cell following
membrane fusion at the IS (4). These cytolytic granules
February 2021 | Volume 12 | Article 622306
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encompass the pore-forming glycoprotein; perforin (99),
granzymes, FasL (CD178), TRAIL (CD253), and granulysin
(100). Granzyme B and perforin are critical components of NK
cells lytic granules. Following entrance of Granzyme B in the
target cell, apoptosis could be induced by both caspase-
dependent and caspase-independent mechanisms. The caspase-
dependent apoptosis pathway of Granzyme B is activated by the
cleavage of the apoptotic initiator caspase-8 as well as caspase-3
(101, 102).

Human NK cells could also kill target cells mainly by a lytic
granule-independent mechanism, particularly through FasL,
which facilitates killing slowly. The conjugation of NK cells
with target cells gradually triggers caspase-8 which leads to
extrinsic apoptosis (103). Apoptotic signaling via FasL includes
the mandatory activation of caspase-8 (104) and can proceed via
mitochondrial-dependent or independent pathways (105).
Mitochondrial pathways include the release of cytochrome c
for caspase and apoptosis (106, 107). Lytic granules could induce
a switch-like induction of Granzyme-B, leading to quick
cytotoxicity following one, long conjugation.

Cytokine Production of Natural Killer Cells
NK cells are known with their production of a variety of
cytokines dependent on the inflammatory micro-environment.
While NK cells were originally named after their ability to
directly lyse target cells, cytokine release by NK cells is another
effector mechanism that has capacity to influence T cell
responses (108). The hallmark cytokine of NK cells is IFN-g,
which could be produced very quickly (2-4 hours) following
activation (109). The production of IFN-g by NK cells is a
necessity for driving the differentiation of Th1 cells (110). Type
1 and type 2 cytokines could be produced by NK cells (18, 111,
112). Generation of IL-5 in NK cells could be up-regulated by
IL-4 and inhibited by IL-12. NK cells can also adversely impact T
cells, especially through the production of IL-10 and TGF-b
(113). In a study, a NK cell subset was revealed to secrete IFN-g
spontaneously. According to this study, NK cells isolated from
peripheral blood samples of poly-allergic individuals could be
distinguished into separate cytokine-producing NK1 or NK2
subsets (7). These findings indicate that the NK cell cytokine
profile is not stable and could fluctuate between IL-4 and IL-12.
The stability of cytokine patterns of primed Th1 and Th2 cells
are also being discussed. Like T-cell effectors that have been
shown to contribute to inflammatory disease pathogenesis, NK1
and NK2 subsets may be provocative and counter-regulatory in
allergic and regular immune responses. Cytokines secreted by
NK cells include IFN-g, TNF, and granulocyte monocyte colony-
stimulating factor (GM-CSF), all of which enable activation of T
cells and other cellular members of innate immunity including
DCs, macrophages and neutrophils (114). NK cells could also
produce chemokines such as MIP-1a, XCL1 (lymphotoxin),
CCL3, CCL4 (MIP-1b), CCL5 (RANTES), and CXCL8 (IL-8),
all of which can contribute in migration of effector cells into
inflamed tissues (115). Production of cytolytic molecules as well
as inflammatory cytokines are induced by different
transcriptional regulators in NK cells. The transcription factor;
Tbet is lineage-specific and is activated early in NK cell
Frontiers in Immunology | www.frontiersin.org 6
development (116). Signal transducers and transcription
activators (STAT)-4 and STAT5 are triggered following
presence of IL-12 and IL-2+IL-15 cytokines, respectively (117).
The main transcription factor for IL-12, a cytokine crucial for
production of NK-cell derived IFN-g, is STAT4 (118). STAT5 is
another important transcriptional regulator for NK cell
development, survival, regulation of maturation, and
cytotoxicity, which is activated by other cytokines as IL-2, IL-7
and IL-15 (119). Various cells produce a range of inflammatory
mediators to prime and sensitize NK cells, especially DCs play a
central role. Cross-talk between NK and DCs is described as a
key step for NK cell sensitization (120). DCs produce crucial
cytokines such as IL-15, IL-12, IL-23, IL-27 and IL-18 cross-talk
with NK cells, which contributes in an ongoing immune
response (121). On the other hand, NK cells could produce
type-1 IFNs that have capacity to prime DCs (122).

Natural Killer Cells in Health
and Tolerance
Every immune response needs to be regulated to be specific to
per individual pathogen and also to prevent subsequent tissue
destruction and/or autoimmunity. Induction and maintenance
of immune tolerance is a key component of a healthy immune
response both to our own flora and to environmental harmless
antigens. A defect in tolerance could end up with autoimmune
and auto-inflammatory reactions and allergic reactions, while
deficient immunity could lead to immune deficiencies and cancer
development. Immune tolerance is an active state of immune
response with underlying mechanisms which are maintained by
a complex network of regulatory cells and cytokines (38, 123).

It is very well known that although being members of innate
immunity, NK cells at the interface between innate and adaptive
arms of immunity contribute in immune responses both with
their cytotoxicity and production of a number of cytokines.
Among the NK subsets, CD16-CD56+ subset is best
characterized with high cytokine secretion proficiency, which
could act either inflammatory or regulatory (8, 124). A small
fraction of NK cells was revealed to limit antigen specific T cell
proliferation in vitro in IL-10 dependent manner, which was
termed as regulatory NK (NKreg) cells (8). A number of studies
also proposed regulatory roles for NK cells, either by production
of IL-10 or by counter-balancing the ongoing inflammation
(125–127).

The anti-inflammatory cytokine IL-10 is a member of type II
cytokine family and serves as a potent suppressor of
inflammatory and involved in the pathogenesis of various
autoimmune diseases. IL-10 is expressed mostly by activated
monocytes/macrophages, NK cells, DCs, mast cells, T
lymphocytes (mainly Th2 subsets), and B lymphocytes and
IL-10 has capacity to inhibit costimulatory molecules expressed
on macrophages and also NK cell activation (128). The cytotoxic
properties of NK cells also contribute in immune regulation
possibly by killing autoreactive cells. NK cells could exploit
cytotoxicity against T cells, DCs, in order to limit excessive
inflammation during viral infections. CD4+ T cell suppression
simultaneously limits B cell-driven humoral immunity, all of
which acts on the critical balance between immunity vs excessive
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inflammation with potential to induce tissue damage (129–131).
A mouse model in which extreme inflammation was triggered by
viral infection revealed worsened disease progression was
associated with depletion of NK cells or presence of NK cells
which lacks perforin mediated cytotoxicity (132).

Natural Killer Cells in
Autoimmune Diseases
Altered functions and also the regulatory properties of NK cells
could be influential in a number of diseases with autoimmune/
auto-inflammatory background.

Behçet’s Disease
Behçet’s disease is a systemic vasculitis of unknown etiology that
can affect many organ systems including but not limited to the
skin, eyes, brain, lungs and joints. The exact immunopathogenesis
of the disease remains unknown but is believed to bemultifactorial
by the contribution of genetic susceptibility and environmental
factors. HLA-B5/B*51 allele has the strongest genetic association
with the disease. Data from genome wide association studies
(GWAS) have highlighted some important loci that contribute
to the disease susceptibility: IL10, IL23R, HLA-A, HLA-B,
CCR1, STAT4, endoplasmic reticulum amino peptidase 1
(ERAP-1), MEFV and TLR-4 (133–136). Some other class-I
MHC alleles (HLA-A*03, -A*26, -B*15, -B*49, -B*27, and -B*57)
also contribute to the risk of BD (137). A strong association of SNP,
rs1800871 of the IL-10 promoter region was also demonstrated in
patients with BD (138).

Immune responses in BD are relatively complex as the disease
has both autoimmune and auto inflammatory characteristics
(139). The predominant immune response responsible for
various organ involvements may change and there might be
multiple immunologic pathways responsible in various tissues.
Both innate and adaptive immune responses were shown to be
associated with the inflammatory attacks and treatment responses
in BD (12, 13). Two relatively old studies demonstrated that NK
cell numbers increased in peripheral blood in BD, while NK
function was decreased in these patients (140, 141). Current
studies demonstrated that these changes in NK cells were
probably dependent on the organ involvement. BD patients with
arthritis had decreased numbers of NK cells in their blood and
synovial fluid compared to healthy controls and AS patients (142),
while there was no such a change in NK cells and their subsets
(CD16brightCD56dim and CD16dimCD56bright cells) in
mucocutaneous BD patients during the active phase of the
diseases compared to healthy controls and remission phase
(125). Two studies with heterogeneous groups of BD patients
demonstrated an increase in the numbers of cytokine secreting NK
cells (143, 144), while one of them also demonstrated a decline in
the numbers of cytotoxic NK cells (144). Azathioprine-treated
patients had a reduced ratio of NK cells compared to healthy
individuals while there was no such a change in patients treated
with other medications (prednisolone, colchicine, or
mycophenolate mofetil). This data suggested that azathioprine
could lead a reduction in NK cell numbers in BD (144). In earlier
studies, the cytotoxic activity of NK cells were found to be
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decreased during active disease compared to healthy individuals
and patients in remission (140, 145, 146). In BD patients with
pulmonary involvement, NK cells isolated from broncho-alveolar
lavage fluid had reduced cytotoxic activity compared to the
bronchoalveolar lavage fluid of RA patients and healthy
individuals (147). In BD patients with mucocutaneous
involvement, the cytotoxic activity of the NK cells remained
unchanged and there was no significant change in CD107a
expression compared to healthy individuals. There was also no
significant difference between patients that had frequent oral
ulcers and rare oral ulcers (125). In heterogeneous groups of BD
patients, CD107a expression of total NK cells were found to be
upregulated when compared to healthy individuals (144, 148). No
difference of CD107a expression among active and inactive
patients was observed. Despite the increase in CD107a
expression, perforin and granzyme B production remained
unchanged in BD patients compared to healthy individuals
(144). Disease activity scores and treatment modalities were also
not associated with any change in the cytotoxic activity of NK
cells (148).

Cytokine production by NK cells influences both adaptive
and innate immune responses. A Th1 dominated adaptive
immune response and increased expression of IFN-g in BD
patients was demonstrated (142, 149–151). Cytokines that are
associated with Th1 response are also known to activate NK cells
and stimulate secretion of IFN-g by NK cells (152). In BD, IL-12
secreted by Th1 cells activates NK cells, induces their migration
to the site of inflammation and contributes to tissue damage in
these patients (153). IFN-g-secreting NK1 cells were increased in
BD patients with mucocutaneous involvement, while the number
of the other NK subsets (NK2, NK17 cells, and IL-10-secreting
regulatory NK cell subsets) are decreased in these patients (125).
A similar NK1 predominated cytokine secretion pattern was also
observed among CD56bright NK cells in a more heterogeneous
group of BD patients which confirms the above-mentioned
observation (144). Certain functional changes were observed in
NK cells during active and remission phases of BD patients with
uveitis. TNF-a, IFN-g, IL-2 and IL-4 secretion was increased in
NK cells during the active inflammation period, while IL-4 and
IL-10 producing NK cells increased during the remission phase.
This data further supported the idea that Th1/NK1-type immune
response was responsible for inflammation in these patients.
Th2/NK-2 type immune response is increased during remission
(126). IL-10 secreting NK cells were described as a regulatory
subgroup of NK cells that takes part in the resolution of
inflammation (8) and this regulatory NK cell subgroup was
also increased during the remission phase of Behçet’s
uveitis (126).

KIR3DL1 is a polymorphic, inhibitory NK cell receptor
specific for the Bw4 epitope of class-I MHC molecules (154).
The interaction of KIR3DL1 and Bw4 epitope was proposed as
one of the mechanisms to explain HLA-B51 and disease
association (155). However, neither inhibitory KIR3DL1 nor
activating KIR3DS1 alleles were associated with BD among the
patients that carry HLA-B*51, HLA-B with a BW-4 motif or not
(156). KIR3DL1 expressing NKB1+CD56+ NK cells were
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increased among BD patients with uveitis while the expression of
the other NK receptors such as CD94 and CD158b remained
unchanged in the CD56+ NK cells of BD patients (157). Killer cell
lectin-like receptor subfamily C, member 4 (KLRC4) belongs to
the NKG2 receptor family expressed primarily in NK cells and
plays an important role in the regulation of NK functions. A novel
locus of KLRC4 gene was found to be associated with BD in a
whole-genome screening study with multi-case families (158).

NK gene complex encodes C type lectin receptors CD94 and
NKG2D, NKG2F, NKG2E/NKG2C and NKG2A that plays
important role for the regulation of the cytotoxic activity of
NK cells (159). CD94/NKG2A is an inhibitory receptor and
CD94/NKG2C is an activating receptor on NK cells that bind to
HLA-E as ligand. Certain alleles of CD94/NKG2A and their
ligand HLA-E are associated with an increased risk of BD, while
there was only a difference in CD94/NKG2C alleles between
patients with joint and eye involvement (160). Two of the NK cell
receptor genes; MBL2/rs1800450 and KLRC4/rs2617170 also
contribute to disease susceptibility in Chinese Han population
(161). In a study designed to evaluate phenotypic changes in NK
cells, CD94 expression was increased in CD16+CD56+ NK cells
of BD patients compared to healthy individuals, while KIR3DL1
expression remained unchanged. This study also supported the
regulatory role of CD94 in patients with BD (162). In addition,
NKG2D expressing NK cells were also increased in patients with
BD compared to healthy individuals and there was a positive
correlation between the disease activity scores and NKG2D
expression of NK cells (148).

Many of the genes associated with BD have close ties to NK
cells and their functions. Behçet’s patients tend to form clusters
by their organ involvement (such as vascular involvements, acne
arthritis enthesitis cluster, parenchymal Neuro-Behçet and
ocular BD) (163). It is unclear whether different clusters have
predominance of different immunopathogenetic mechanisms.
Above-mentioned studies demonstrated a heterogeneity in the
NK associated changes in different clusters. In summary, there is
an increase in the numbers of cytokine secreting NK cells and
these cells are skewed to a NK1 type of immune response
especially during the active phase of the disease, while NK2
and NKreg activity is increased during the remission phase of
the disease.

Multiple Sclerosis
Multiple sclerosis is a chronic and inflammatory disorder of the
central nervous system (CNS) where demyelination causes the
characteristic axonal/neuronal loss and gliosis (164). In about
85% of patients, the disease presents with a relapsing-remitting
(RR) course which occurs with acute attacks and subsequent
remissions (165). MS is a multifactorial disease and it is
commonly accepted to have an autoimmune etiology with the
contribution of environmental factors in individuals with genetic
predisposition (166). Autoreactive CD4+ T cells specifically
targeting the myelin components of the CNS along with a
large number of immune cells, have been considered to have
crucial functions in triggering inflammatory processes (167) and
cause demyelination and neuro-axonal damage (168). The
Frontiers in Immunology | www.frontiersin.org 8
studies based on immunologic mechanisms revealed the
involvement of T (especially Th17 and CD8+ T cells) and B
lymphocytes (169–171) in the pathogenesis of MS. Due to the
observation of positive healing effects on MS patients by starting
the therapy with daclizumab; a monoclonal antibody that blocks
IL-2 receptor alpha chain (IL-2Ra; CD25), NK cells gained
importance for MS studies due to having IL-2R (172, 173).
However, the function of NK cells seems to be controversial
based on the conclusion of the studies demonstrating their both
beneficial and deleterious roles in MS and in experimental auto-
immune encephalomyelitis (EAE) induced in rodents (174, 175).

NK cells display their activities depending on the net signal
obtained from activating and inhibitory receptors (176). Thus,
several studies demonstrated the expression profiles of NK cell
receptors (NKRs) in MS and investigated the involvement of
NKRs in the pathogenesis of the disease.

The first study exploring the function of KIRs and their HLA
ligands in MS development revealed a significantly deficient
HLA-Bw4 molecule in patients compared to healthy
individuals, suggesting a protective role for HLA-Bw4 in MS
(177). HLA-Bw4 is the ligand for KIR3DL1, an inhibitory
receptor of NK cells, and the engagement of self HLA-Bw4
molecule with KIR3DL1 gives NK cells a funcional proficiency
in humans. Therefore, the deficiency of HLA-Bw4 molecule was
considered to lead to inadequate responses to infections and
increased risk for MS, due to the functional insufficiency of NK
cells (176). However, the fact that many allelic variants of
KIR3DL1 have different expression patterns and HLA-Bw4-
recognition capability requires further investigation of
KIR3DL1 and HLA-Bw4 variants. In addition, decreased
frequency of the inhibitory KIR2DL1 and its ligand HLA-C2 as
well as elevated frequency of activating-receptor KIR2DS4 were
detected in MS patients, which demonstrated an activatory
profile for NK cells (177). Another study showed KIR2DL2, an
inhibitory receptor related with viral infections, was amplified in
MS patients that were infected with herpes virus (HSV)-1 (178).
In addition, NK cells expressing KIR2DL2 were demonstrated to
fail in controlling HSV-1 infection (179). Altogether, these
findings demonstrate KIRs and their ligands might have
important functional roles in MS, although it is necessary to
investigate the functions of their allelic variants in more detail.

CD94:NKG2A complex, which is another inhibitory receptor
of NK cells was shown to prevent killing of self-reactive T cells by
NK cells, in EAE (180). Activating receptor NKG2D, a molecular
stress sensor, is predominantly expressed on NK cells besides
CD8+ and gd+ T cells and binds its ligands lowly expressed on
healthy cells (62). The increase in expression of stress molecules
such as MICA/B and ULBP in cancers and viral infections (63,
181) lead to the up-regulation of NKG2D molecules which has a
crucial role in immune surveillance (182). In sera of MS patients,
MICB levels were demonstrated to be elevated (183) and also
MICB*004 allele was shown to be associated with increased
susceptibility for MS (184). Moreover, NKG2D+ NK cells were
shown to lyse activated CD4+ T cells with the help of upregulated
NKG2D ligands (185, 186). All these findings give a clue that
NKG2D expressions of NK cells could be elevated in patients
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with MS in response to their increased ligands. However, it is
known that chronic exposure to NKG2D ligands leads to down-
regulation of NKG2D expression resulting in diminished
cytotoxicity (187, 188). Conformingly, our previous study has
demonstrated NKG2D expressions of CD56+ NK cells were
decreased in untreated RR-MS patients in comparison with
patient group treated with IFN-b and also revealed the
elevation in treated group was negatively correlated with their
expanded disability status scale (EDSS) scores (189). These
findings suggest IFN-b therapy might be releasing the
suppression of NKG2D expression on NK cells in RR-MS
patients and may prove beneficial via providing NK
cell activation.

NK cells have the ability of regulating autoimmune
mechanisms by cytokine secretion or direct cytotoxic activity
on effector cells such as autoreactive T cells or antigen presenting
cells (APCs) (190, 191). However, they might also lyse
oligodendrocytes, astrocytes and microglia through NKG2D
ligands (192, 193) suggesting a double-edged sword function
for NK cells in MS. A number of studies demonstrated a
deficiency in cytotoxic activity of NK cells in peripheral blood
of MS patients (194–196). Moreover, decreased NK cell cytotoxic
activity was present in RR-MS patients before the occurrence of
CNS lesions and the onset of clinical symptoms, and deficient
NK cytotoxic activity was correlated with MS attacks and
manifestation of new lesions (195, 197). In EAE, depletion of
NK cells (198, 199) or blocking NK cell-homing to the CNS (200)
were demonstrated to result in relapses and increased mortality.
Insufficient cytotoxic activity of NK cells might lead to an
increase in the proportion of autoimmune cells that in turn
could be associated with disease progression. On the other hand,
NK cell cytotoxicity towards viruses must also be taken into
account in the pathogenesis of MS.

Viral infections such as Cytomegalovirus (CMV), Epstein-Barr
virus (EBV), and human herpes virus (HHV)-6 have been
considered as candidate inducers of MS as a result of molecular
mimicry (201, 202). Since IFN-b, being effectively utilized in MS
treatment, is an anti-viral cytokine, it supports the hypothesis that
viral infections are accepted as risk factors in the development ofMS
(203). Today, there is evidence for a failure in controlling chronic
viral infections is involved in the triggering of autoimmune
responses leading to MS (204). Therefore, the cytotoxic activity of
NK cells also appears to be vitally important in protecting from the
development of MS, as they are the early defenders against viral
infections. However, the association between decreased cytotoxicity
andMS attacks suggests that the importance of the cytotoxic activity
of NK cells is not limited to preventing the disease development via
controlling viral infections, but also it is beneficial for dampening
the disease progression.

CD56bright subset of NK cells has been much explored in the
context of MS due to its inflammatory and immune-regulatory
functions. CD56bright NK cells mediate T cell responses via
secreting cytokines like IFN-g and IL-10 (205) or they can
suppress T cell proliferation (206, 207). It is known that
CD56bright NK cells could also kill certain target cells, especially
healthy autologous T cells (208, 209). Indeed, CD56dim and
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CD56bright NK cells were shown to lyse T cells which are at
different activation status, in response to different stimulants (186,
210). Thus, the differences in functional features of CD56dim and
CD56bright NK cells require interpretation of the data from studies
of NK cells in MS separately.

The quantitative measurements of CD56bright NK cells
demonstrated that their frequencies in untreated MS patients
are similar to healthy individuals (211, 212). However, several
studies have shown that patients with treatment (IFN-b
derivatives, daclizumab, and alemtuzumab) had increased
levels of CD56bright NK cells compared to healthy individuals
(210, 212–214) which was also revealed by a previous work of
our group (127). This finding proposes a protective function for
CD56bright NK cells in MS, however, functional assays of NK cells
are not as clear. The major cytokines secreted from CD56bright

NK cells are IFN-g, IL-10, IL-13, tumor necrosis factor (TNF)-a
and granulocyte–macrophage colony-stimulating factor (GM-
CSF) that are dependent on the milieu (45). Due to its important
roles in autoimmunity, IFN-g (and IFN-g producing Th1 cells)
was considered as a potential pathogenic factor in MS
development (215, 216). Since being one of the main cytokines
produced by NK cells, IFN-g levels in NK cells (especially in
CD56bright cell subset) of MS patients have been measured in
several studies, and shown to be impaired in CD56bright NK cells
of untreated RR-MS patients (217). In our study confirming the
inadequate IFN-g secretion of NK cells, IFN-g levels of
CD56bright cells were also indicated to be down-regulated in
treated RR-MS patients as well as untreated patients, even after
the addition of IL-12; the main stimulator of IFN-g (127). In
concordance with that, we also detected reduced NK cell
cytotoxicity in RR-MS patients both with the presence or
absence of treatment, revealing that a functional disability of
NK cells could be significant in MS pathophysiology.

Although more evidence is required to clearly define their
exact role, NK cells seem to be essential in preventing both the
development and progression of MS.

Systemic Lupus Erythematosus
Systemic lupus erythematosus is a complex systemic
autoimmune disorder which is characterized by chronic
inflammation resulting in widespread organ dysfunction and
various clinical occurrences such as vasculitis, arthritis, nephritis
and neuropsychopathy (218, 219). SLE has a relapsing-remitting
course and mostly occurs in reproductive-age females. Although
the course of the disease in many patients with SLE is mild, it is
life-threatening in the rest. Like the other autoimmune diseases,
the etiology of SLE is also not clearly defined, however,
environmental, immunological and hormonal factors together
with genetic predisposition are known to be involved in the
etiopathology of this disorder (220). In SLE patients, apoptosis is
increased which is thought to be due to the environmental
factors such as ultraviolet light, infections and toxins.
Insufficient immune clearance of apoptotic cells results in the
exposition and accumulation of self-DNA and nuclear antigens
(221). These nuclear particles could trigger TLR of APCs (222,
223). As a result of continuous activation of APCs by
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autoantigens, T cells are activated, proliferated and initiate
autoreactive polyclonal B cell activation which is characteristic
for SLE (224). The autoantibodies are secreted from
B-lymphocytes against nuclear proteins and DNA. The anti-
double-stranded DNA (ds-DNA) autoantibodies are specific
marker for SLE diagnosis (225) and they form immune
complexes and by this way cause tissue damage (226, 227).
The accumulation of immune complexes leads to prompt
immune system by activating complement system and binding
g receptors (228). Many other immune system members also
contribute in disease development (229) and novel evidences
point the possible participation of NK cells in SLE.

Although the studies exploring the contribution of NK cells in
SLE are not quantitatively comparable with the other autoimmune
diseases such as MS or RA, findings demonstrated the numerical
decreases in circulating NK cells of SLE patients, associated with
the clinical symptoms and disease activity (230–232). This
reduction has been linked to the increased serum levels of IFN-
alpha (IFN-a) in SLE patients (233). IFN-a; produced in response
to viral infections by different cell types [especially by
plasmacytoid dendritic cells (pDCs)], is an important cytokine
involved in immune regulation (234). The immune complex-
mediated IFN-a production by pDCs is characteristic for SLE.
There are many reports demonstrating the contribution of IFN-a
in the pathogenesis of SLE, though the exact mechanism of IFN-a
in which way it affects the disease remains unclear. It has been
shown in a study that IFN-a mediates the activation-induced cell
death (AICD) so that lead to reduce the frequency of circulating
NK cells in SLE (233). Conversely, NK cells could promote the
production of IFN-a by pDCs (235, 236). However, the crosstalk
between NK cells and pDCs in SLE needs to be much explored.

In addition to the numerical reduction, cytotoxic activities of
NK cells have been also demonstrated to be suppressed in SLE
(230, 237, 238). The decreased NK cell cytotoxicity has been
shown not to correlate with degranulation defects which is
detected by CD107a expression (239, 240). Interestingly, the
functional insufficiency seen in cytolytic activity is not observed
in IFN-g production by NK cells. Indeed, IFN-g production of
NK cells in patients with active SLE in response to various
stimulants is significantly increased when compared with healthy
individuals (239, 241) and the frequency of NK cells producing
IFN-g has been shown to correlate with the levels of serum IFN-
a (239). In a murine model of the disease, chronic circulation of
high levels of IFN-g was demonstrated to trigger a SLE-like
syndrome (242), supporting the role of IFN-g as a major
effector molecule in the pathogenesis of the disease. Recently,
the levels of blood IFN-g has been discovered to correlate
positively with anti-ds-DNA levels and SLE activity (243). As
a main source of increased IFN-g secretion, NK cells are seemed
to have an importance in SLE pathogenesis. Confirming this
hypothesis, NK cells were reported to participate in activation
and production of IFN-g in an amyloid-induced lupus-like
syndrome model suggesting their involvement in the
pathogenesis and development of SLE (244).

Because NK cells activities are controlled by the activating
and inhibitory receptors, they have been also investigated in the
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studies of SLE. The presence of auto-antibodies against
inhibitory CD94/NKG2A receptor was described in SLE
patients (245). In another study of the researchers, anti-KIR
autoantibodies were detected in a group of SLE patients. IgG
from anti-KIR positive patients were shown to reduce the
cytotoxic activities of NK cells suggesting NK cell functions are
defective due to autoantibodies toward these receptors (246). The
expression levels of the activating receptors NKG2D and
DNAM-1 have been revealed to be reduced in patients with
active or inactive stage of SLE, compared to healthy individuals
(247, 248). Beside of the studies demonstrating NKG2D positive
cell frequency was lower in SLE patients, there are also findings
indicating that there is no difference between the groups (241,
249). Another study demonstrated activating receptor NKp46
was higher whereas inhibitory receptors KIR2DL3 and KIR3DL1
were diminished in SLE patients in comparison with healthy
individuals (241). Also, they were revealed to express increased
levels of activating receptor CD69 in patients with active disease
(250). The variability in data regarding activating and inhibitory
receptor ratios of SLE patients might be due to the clinical
manifestation of patients, treatment type or conditions of
assays. Moreover, variable results might be gained from NK
cell subgroups, having different functional features.

At this point, it is important to investigate NK cells in twomain
groups which are mainly named as immune-regulatory CD56bright

and cytotoxic CD56dim subsets of NK cells. An augmented
CD56bright NK cell proportion has been observed in SLE
patients, regardless of the disease activity (249). The proportions
of CD56bright and CD56dim NK cells were observed to be similar
among active and inactive SLE patients as well as healthy
individuals while CD56dim NK cells were tended to be decreased
(251). Also, it was shown in the same study that the status of
decreased CD56dim NK cells was activated and their IFN-g levels
were increased. Granzyme B+ CD56bright cell ratios were found to
be higher in active phase compared to in inactive phase of SLE and
those in healthy individuals (252). In addition, TNF-a levels of
CD56dim NK cells but not CD56bright NK cells from active SLE
patients were demonstrated to be lower than inactive SLE patients
and healthy individuals. Although these findings indicate the
presence of functional differences between two subgroups of NK
cells in SLE, the number of studies on this field is almost negligible.

Based on the findings obtained from existing studies, NK cells
seem to involve in the pathogenesis SLE. However, it is unclear if
the defects in NK cell functions are the cause or a consequent of
the disease process or the treatment. More studies are required to
clarify the functions of NK cell contribution to the pathogenesis
of SLE and it is necessary to investigate their roles in the disease
by dividing NK cells to two separate subsets. Moreover, active
and inactive phase of SLE and clinical manifestations should be
taken into consideration.

Rheumatoid Arthritis
Rheumatoid arthritis is a chronic and multi-systemic disease
which presents with the inflammation of synovium leading to
progressive cartilage, joint and bone destruction, all of which
result in deformity and disability (253). The genetic and
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environmental factors together with irregular immune responses
are known to be the triggers of the disease (254). The immune
mechanisms involved in the pathophysiology of RA are not well
defined, however, evidences demonstrate the participation of
both innate and adaptive immunity.

Osteoclasts play critical roles in pathogenesis by causing
periarticular bone loss which is characteristic for RA (255). In
healthy individuals, the formation and resorption of bone are
controlled by osteoblasts and osteoclasts, respectively. However,
this balance has been broken towards to the direction of
osteoclastic activity in RA patients (256). TNF-a is a prominent
cytokine promoting the osteoclastogenesis in RA. Synovial
fibroblasts and macrophages induced by TNF-a secrete IL-1, a
pro-inflammatory cytokine, which activates osteoclasts and
triggers the inflammatory process (255). Especially after
demonstration of decreased inflammation and bone resorption
in response to anti-TNF−a treatment (257), TNF-a was accepted
to be the master cytokine of the inflammation and progression of
RA (258).

In health, the synovial membrane does not contain cells,
whereas a bulky cellular infiltration is observed in that of RA
patients (259). This inflammatory infiltrate consists of innate and
adaptive immune cells (such as T and B lymphocytes or DCs)
interacting with each other and leading to disease development.
DCs, by triggering the activation of adaptive immune cells, play
an important role in RA development (260). NK cells have also
been shown to accumulate in the synovial fluid of RA patients
(261, 262). However, it has not been well clarified whether the
elevation of NK cell levels in the synovium of RA patients is a
result or is one of the underlying causes of the disease. In the
presence of studies suggesting NK cells as both pathogenic and
protective players in RA, they are considered to be involved in
the pathogenesis. A protective role for NK cells was suggested in
an animal model of collagen-induced arthritis (CIA) by the
finding that antibody-mediated NK cell depletion led to
aggravation of the disease (263). However, another study
presented an opposite result through this method by
demonstrating the healing of CIA and counterwork of bone
loss upon NK cell depletion (264).

Despite their increased ratios in inflamed synovium, NK cells
have been shown to be decreased in peripheral blood samples of
RA patients when compared with that of healthy subjects (265,
266). Additionally, it has been demonstrated in a study that
activated NK cells were decreased in peripheral blood of RA
patients compared to healthy subjects whereas the frequency of
resting NK cells was not altered (267). These findings suggest
that activated NK cells might be infiltrated to the inflamed
synovium of RA patients. It is important to know the function
of NK cells which are abundant in the synovium. The
contribution of NK cells in the disease has been thought to be
via inflammatory cytokine secretion or by interaction with the
other members of the immune system involved in the
pathogenesis. NK cells obtained from the synovial fluid of
patients with RA and co-cultured with monocytes were
demonstrated to prompt monocyte differentiation into
osteoclasts (264).
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As it is known, NK cells might act as protective players by
communicating with the other immune cells via cytokine
secretion or by lysing autoreactive immune cells which cause
autoimmune disorders. On the other hand, NK cells might
produce inflammatory cytokines or directly have a pathogenic
function in autoimmunity via cytotoxic effects. Thus, examining
CD56dim and CD56bright NK cell subsets which have functionally
differences, separately, might guide us to define the role of NK
cells in RA. CD56bright NK cells with prominent cytokine
secretion have been shown to be significantly increased in
inflamed synovium of RA patients (268). It has been
hypothesized that CD56bright NK cells in the synovium could
abundantly produce pro-inflammatory cytokines such as TNF-a
or IFN-g (259). Actually, it is known that by producing TNF-a
and IFN-g and by direct contact, activated NK cells can induce
the maturation of DCs which consecutively activate NK cells as
well as T and B lymphocytes (269, 270).

TNF-a; being the conductor cytokine of RA, is the most studied
cytokine in functional analyses of NK cells in RA pathophysiology
and has been shown to regulate the differentiation and induce the
maturation of NK cells (271). In recent studies, a pathogenic role of
Th17 cells has been demonstrated in autoimmune syndromes
containing RA and shown to be elevated in the peripheral blood
samples and synovial fluids of patients in active phase of disease
(272). It has been propounded that NK cells could prevent
autoimmune responses by secreting IFN-g, which inhibits Th17
cell differentiation from precursor cells (273) and suppresses the
osteoclastogenesis (274). A study showing elevated levels of TNF-a
of NK cells in RA patients compared to healthy subjects
demonstrated that IFN-g secretion was also tended to be
increased (275).

Besides producing cytokines, NK cells have been considered
to have importance in regulating autoimmune disorders by
killing autoreactive immune cells. It was found that the
cytotoxic activity of NK cells was decreased in RA patients in
comparison with healthy subjects (276). Additionally, another
study established the frequency of perforin-positive NK cells was
reduced in patients with RA (275).

Consequently, these findings suggest a functional impairment
for NK cells in RA pathophysiology, at least in their cytolytic
functions. However, the studies of NK cells in RA patients are
nominal to understand their involvement in the pathogenesis.
Therefore, the exact role of NK cells in the RA needs to
be elucidated.

Ankylosing Spondylitis
Ankylosing spondylitis is a seronegative, immune-mediated
rheumatic disease associated with joint inflammation and
extra-articular manifestations such as uveitis, enteritis, and gut
inflammation (277). The strongest genetic risk factor for AS
patients is the carriage of HLA-B27, a MHC-class I molecule
(278, 279). Certain polymorphisms of the endoplasmic
reticulum-associated aminopeptidase 1 (ERAP1) gene have also
a strong association with AS, which selectively affects individuals
with HLA-B27–positivity (280). NKG2D expression of NK
cells was reduced in transgenic mouse which highly expresses
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ERAP-1, in comparison with the wild type and the other
transgenic mouse with low ERAP-1 expression (281). These
results indicated that disease-associated ERAP-1 variants could
be influential on NK functions. Other genetic associations of AS
include certain KIR genes in different populations (KIR2DL1,
KIR3DL1, KIR2DS5, KIR3DS1 and KIR2DL5) (10, 282–285).
Increased expression of KIR3DL2 was found in the T and NK
cells of AS patients (286, 287), but there was no difference in the
expression of KIR3DL1 between AS patients and controls (286).
In addition, HLA-B27 binding to KIR3DL1 could initiate
inhibitory signals to NK cells (288). The presence of certain
peptides (such as certain EBV epitopes) in the peptide binding
groove of HLA-B27 could limit its ability to bind KIR3DL1 and
thereby influence NK functions (289, 290). Therefore, peptide
specificity of HLA-B27 molecule, trimming of the peptides by
ERAP-1 and the function of KIR molecules can potentially
influence NK function through the above-mentioned pathways.

There is conflicting data regarding the changes in the
peripheral blood proportions of NK cells in patients with AS.
Although two studies demonstrated an increase in the number of
NK cells in the peripheral blood of AS patients (291, 292), this
observation could not be replicated in another study (230). There
was also a prominent increase in the expression of carcino-
embryonic antigen-cell adhesion molecule (CEACAM1)
expression on NK cells in peripheral blood of AS patients and
CEACAM1 was able to inhibit NK cytotoxicity in vitro (292).
The functional subsets of NK cells were further investigated in
AS and the cytotoxic CD16+ CD56dim subset of NK cells were
increased in comparison with healthy individuals (293). A20
functions as an inhibitor of inflammatory cytokines in several
cell types and A20 expression was decreased in the CD56bright

NK cell subset of AS patients compared to healthy individuals
(294). Patients with AS have a higher expression of T-bet
compared to healthy individuals especially in NK and CD8+ T
cells. T-bet expressing NK cells have inflammatory functions
through IFN-g and IL-17 secretion (295). AS patients with
intestinal inflammation had increased numbers of IL‐22
expressing CD3−CD56+NKp44+NKp46− NK cells compared to
other AS patients, Crohn’s disease patients as well as healthy
individuals (277). NK cytotoxicity was unchanged in the synovial
fluid of patients with AS compared to patients with psoriatic
arthritis and juvenile chronic arthritis and in the peripheral
blood of AS patients compared to healthy individuals (296).
Cytotoxic activity of NK cells were also compared between HLA-
B27 positive and negative AS patients and there was no significant
difference between the patients groups and healthy individuals
(297). NKG2A can interact with HLA-E, a non-classical MHC-
class I molecule, and function as an inhibitory NK receptor, while
NKG2C functions as an activating receptor. The number of
CD94/NKG2A expressing NK cells were higher compared to
CD94/NKG2C expressing NK cells in patients with AS. In
addition, HLA-E expression was also increased in CD14+

monocytes of these patients, suggesting that this signaling
pathway was functional in AS (298). A recent study
demonstrated that increased number of CD8 expressing NK
cells was associated with a better clinical response to anti-TNF-a
Frontiers in Immunology | www.frontiersin.org 12
therapies and could be suggested as a biomarker for monitorization
of a better treatment response (299).

In conclusion, the genes associated with AS (HLA-B27,
ERAP-1, KIRs) can potentially influence NK cell functions.
There are some functional changes in the NK cell subsets
indicating a NK cell response similar to Th1 pathway and
certain changes in NK cell phenotype/functions may be used
to predict treatment response in patients with AS.

Type-1 Diabetes
Type-1 diabetes is a chronic disorder of autoimmune etiology,
with dramatically increased incidence during the recent years.
The complete pathogenesis is still not clearly known. Pancreatic
b-cells that are responsible for insulin secretion, in order to
regulate blood glucose, are under immune attack. Both innate
and adaptive arms of immunity contribute in disease
pathogenesis, which could mainly be driven by over-activated
T cells and also B cells, while studies support contribution of DCs
as well as NK cells in the pathogenesis of T1D (300, 301). A
number of mouse studies revealed clues about the relationship
between T1D and NK cells. Increased numbers of NK cells were
revealed to infiltrate the pancreatic Langerhans islets which
encompass b-cells in T1D, which also had positive correlation
with disease severity (302). Defects in gut NK cell numbers and
also decreased cytotoxic activity were claimed to be important
preceding factors for T1D onset (303). Impaired function of
activating NKG2D receptor of NK cells was revealed in non-
obese diabetic mouse, which was linked with down-modulation
as a consequence of exposure to NKG2D ligands in pancreatic
islets (304). While, infection with coxackievirus-B4 was revealed
to induce an acute form of autoimmune diabetes, which could be
returned by depletion of NK cells and proposed that NK-cell
mediated killing of pancreatic islets in vivo could be initiated by
coxackievirus-B4 infection (305).

In human T1D, due to toughness of having direct samples
from pancreas and due to peripheral blood samples not
completely reflecting the pancreatic pathogenesis, the results
are conflicting. Recent onset but not long-established T1D was
associated with a reduction in peripheral blood NK cell
frequencies (306). When NK cytotoxic functions were
investigated, some studies reported compromised cytotoxicity
(307, 308) while one study reported increased NK cytotoxicity in
newly diagnosed T1D patients (309). Reduced NKG2D levels
were found to be associated with T1D (306). Reduced NK cell
functions revealed by diminished expressions of NKp30 and
NKp46 as well as reduced IFN-g and perforin production
capabilities were revealed in long-standing T1D patients, all of
which could occur as consequences of metabolic alterations,
therapy with insulin as well as exhaustion of NK cells (301,
306, 310, 311).

NK cell functions are well known to be regulated by a delicate
balance of surface-expressed activating and inhibitory KIRs, which
works by interacting with HLA-class 1 ligands on target cells.
Contribution of KIRs in pathogenesis of autoimmune diabetes has
been questioned. Accordingly, absence of 2DL2 and HLA-C1
together with absence of 2DS1 and 2DS2 were attributed as
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“protective” while presence of 2DL2 and HLA-C1 with the
absence of 2DS1 and 2DS2 was attributed as “predisposing”
factors in Latvian T1D patients (312). In another study, KIRs
2DL1, 2DS2 and 2DS4 were reported to be associated with
susceptibility, while 2DS5 with protection, in Latvian patients
with late-onset autoimmune diabetes (LADA). The same study
reported 2DL5 and 3DL1 as predisposing while 2DS1 and 2DS3 as
protective KIRs in LADA patients of Asian Indian origin,
underlining both the contribution of KIRs in diabetes and
importance of ethnicity in disease susceptibility (313)

In conclusion, defects in NK cell functions during viral
infections could trigger autoimmunity and in turn accelerate
the b-cell destruction in pancreatic Langerhans islets. KIRs and
certain HLA-class I alleles could be influential in initiation and
onset of diabetes, however, still, a number of questions have to
be answered.

Psoriasis
Psoriasis is a relapsing and remitting, chronic inflammatory
disease of skin, which is affecting almost 2% of the world’s
population (314, 315). Psoriasis is a multifactorial disease in
which genetic and environmental factors play a role in the
pathogenesis but the etiopathology of the disease has not been
fully clarified yet. The most accepted mechanism in the
etiopathogenesis of psoriasis is the induction of inflammation
with keratinocyte hyper-proliferation (316). The pathologic
collaboration between innate and acquired immunity results in
the production of cytokines, chemokines, and growth factors all
of which cumulatively contribute in the inflammatory infiltrate
seen in psoriatic plaques. T cells, DCs, macrophages and
keratinocytes have roles in pathogenesis. Besides the largely
documented role of T cells, emerging literature supports a
potential involvement of innate immune effectors, the NK cells,
in pathology (317, 318). Although the roles of NK cells against
cancer or virally infected cells are well known, studies
demonstrating their contribution in pathogenesis of psoriasis
are still insufficient (314). Some studies indicated possible
contributions of NK cells in psoriasis, with controversial
results. Some studies revealed reduced CD56dim and CD56bright

NK cell subsets in peripheral blood of patients (318), but the
others indicated that there are no differences NK cell subsets
between patients and healthy individuals (314). Similar situation
is valid for NK cell cytotoxicity. However, studies indicated
increased numbers of infiltrated NK cells into psoriatic plaques
(316, 319). Several studies suggested that NK cell receptors may
be associated with psoriasis (320). NKG2C is an activating
receptor of NK cells that could bind to HLA-E. Wilson Liao
and colleagues have identified an association between NKG2C
deficiency and psoriasis (321). High NKG2C expressing NK cells
can respond to virus-infected cells, and can kill autoreactive T
cell, thereby could be influential in prevention from psoriasis
(321). Zeng et al. revealed NKG2C deletion and HLA-E
polymorphism in 611 psoriasis patients and 493 controls (320).
They found that NKG2C deletion was increased, and low-
expression of HLA-E*01:01 allele was associated with disease
(320). Granulysin is a cytolytic antimicrobial peptide, and
Frontiers in Immunology | www.frontiersin.org 13
secreted with perforin and granzyme by NK and CD8+ T cells.
The studies indicated increased granulysin positive cells in
lesions and peripheral blood of patients and there is a link
between granulysin and severe patients (315, 322). Ermis et al.
showed that Granulysin rs7908 CC genotype and C allele had a
protective effect against psoriasis and decreased the disease
severity (322).

Some studies indicated that there is a link between resistance to
disease and HLA and KIR receptor genotypes (54, 323). It was
shown that above forty genes especially HLA and KIR genes have a
role in pathogenesis of psoriasis (324). KIR gene family may act as
a potential susceptibility factor for psoriasis (325). It was reported
that activating receptors KIR2DS1 and KIR2DS2 increased the risk
of developing psoriatic arthritis (PsA), particularly inhibitor
receptors KIR2DL1 and KIR2DL2/3 were missing (54). Presence
of KIR2DS1-HLA-C is a major risk factor for psoriasis (326).
Meta-analysis studies indicated that KIR2DL2, KIR2DS1,
KIR2DS2 and KIR2DS3 genes were positively associated with
susceptibility to PsA (325), and KIR2DS4 and 3DL1 genes
appear to confer protection (327). HLA-Cw6 was found to be
associated with guttate psoriasis (328, 329).

More studies are a requisite to establish a clear link between
NK cells and still unclear underlying pathology of psoriasis.
DISCUSSION AND CONCLUSION

Being under focus of immunologists for decades, NK cells, their
biology, functions as well as their contributions in the
pathogenesis of a number of diseases are being better
illuminated day by day. There is strong evidence that the innate
immune system, specifically NK cells, influence subsequent
adaptive immune responses. Thanks to their ability to rapidly
kill abnormal cells and produce cytokines and chemokines, NK
cells are positioned for a key role in regulation of autoimmune
responses, and can either suppress or augment autoimmunity,
directly or indirectly. NK cells could play roles with functional
alterations in autoimmune conditions (Figure 2).

Activating and inhibitory receptors of the NK cells are
essential for the regulation of NK activity and some of these
NK cell receptor related genes are strongly associated with
autoimmunity (330). Inhibitory receptor signals are usually
generated by the binding of the MHC-class I molecules.
Therefore, the functions of these receptors are especially prone
to be affected in MHC-class I molecule related diseases (MHC-I-
opathies) such as ankylosing spondylitis, psoriasis, and Behçet’s
disease (331). Certain activating KIR receptor polymorphisms
can also cause susceptibility to autoimmunity. Activating
receptors KIR2DS1 and KIR2DS2 are implicated in the
pathogenesis of autoimmune diseases such as in the examples
of RA and psoriasis (332, 333). The expression of the ligands of
the activating receptors, such as MICA also contributes to the
disease pathogenesis such that alternated receptor affinty may
lead to activaiton in predisposed individuals, observed in various
autoimmune diseases including RA, BD and type 1 diabetes
(334–336). Finally, certain KIR/HLA combinations reduce the
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activation threshold of the NK cells and can be protective against
some infections, while the same KIR/HLA combination may also
predispose autoimmunity. Individuals with HIV have a slower
progression to AIDS and reduced viral loads, when they express
KIR3DS1 and HLA-B Bw4-801 (337). However, the same genetic
combination also causes susceptibility to autoimmunity such as
in the examples of BD and AS (338, 339). The delicate balance of
the activating and inhibitory KIR molecules and their ligands are
important in NK cell homeostasis. Genetic and environmental
factors affecting this delicate balance can potentially induce
autoimmunity in susceptible individuals.

Further investigations are needed in order to unravel the roles
played by NK cells, as a bridge between innate and adaptive
immunity in the onset of autoimmune diseases. Expression of
different subsets of NK and also ILC subsets might serve as a
biomarker in the follow-up of different autoimmune diseases.
The TCR-NK cells operate with a mechanism that is distinct
from CAR-T cells. They can target molecules located not only on
the surface of cancer cells, but inside them as well, meaning that
they can reach places that are inaccessible to CAR-T cells. This
Frontiers in Immunology | www.frontiersin.org 14
technology can be adapted to target any other form of cancer and
also to autoimmune diseases.

Briefly, NK cells harbor great potential both for being
biomarkers and also for utilization in a number of therapeutic
interventions, especially in autoimmune diseases and in cancer,
all of which warrants more intense investigations to be
carried out.
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