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Abstract: Energy sufficiency is a critical requirement for the economic prosperity of modern countries.
Efficient harnessing of solar energy using technologies such as the dye-sensitized solar cell could
solve the energy problem which persistently plagues developing countries. Despite having a simple
operational procedure and modest power conversion efficiency of 13.8%, the dye-sensitized solar cell
consists of an expensive platinum counter electrode which makes commercial success futile. Thus,
this review intends to establish the progress researchers have attained in the development of sulphide
based counter electrodes as alternatives to platinum, thereby lowering cost of production. Metallic
sulphides are good electrocatalysts and cheap, hence, they possess the necessary requirements for
effective functional counter electrodes. Furthermore, ternary metallic sulphides are known to exhibit
higher efficiencies stemming from the synergistic effect produced by the co-existence of two metal ions
in a crystal structure, which is believed to induce greater catalytic capability. Incorporation of metallic
sulphides with carbon materials, which are exceptional electrical conductors, could potentially
produce more efficient counter electrodes. In that regard, this review seeks to establish the effect
recently developed composite counter electrodes comprising metallic sulphides and carbon-based
materials have induced on the functionality of the counter electrode (CE).

Keywords: dye-sensitized solar cell; counter electrode; power conversion efficiency; metal sulphides;
platinum

1. Introduction

Every single day, the sun radiates more energy than the whole world requires per year [1]. However,
despite its huge potential, solar energy is amongst the least-used electricity sources. The minimal
contribution by solar to the electricity generation sector can be attributed to the high cost of installation,
electricity generation relative to existing electricity prices, as well as the low photo-to-electricity
conversion efficiency most solar technologies exhibit [2]. A study in South Arica found significant
reductions in production costs and rising demand for solar panels resulted in a decline of the cost
of electricity generation for a photovoltaic system from 5 Rand per kilowatt/hour (kWh) in 2011
to 0.62 Rand per kWh in 2017 [3]. The steep decline in cost makes solar energy very attractive
compared to the rising cost of electricity generated from coal, which was estimated to have risen
from 1 to 1.84 Rand per kWh during the same period of time [3]. To further advance the use of solar
energy for electricity generation, the cost of solar panel production should be reduced either through
improving the manufacturing process, implementing newer and advanced technologies or changing
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the composition of the solar cells to constitute cheaper materials. The most common technology used
for solar exploitation are silicon solar cells with a power conversion efficiency of 24% [4]. Silicon solar
cells are afflicted by the high cost of silicon processing, the large amount of silicon required to meet the
threshold for adequate electricity generation, as well as an average power conversion efficiency [2].
These significant problems make electricity generation from solar energy cost ineffective, therefore,
development of technologies that can be used to exploit solar power at a cheaper cost is a priority.
Recent progress in thin-film technologies has shown that efficiencies for electricity generation from
solar energy can be vastly improved [5]. One such thin-film technology is the dye-sensitized solar cell
(DSSC) which is cheaper and uses a simple mechanism for solar power generation [6]. Despite all the
outlined advantages, the DSSC consists of two expensive platinum group metals, namely, ruthenium
in the dye as well as platinum in the counter electrode (CE). In order to meet the goal of reducing the
cost of solar power generation and attaining parity of prices with other sources of electricity generation,
replacements for these two expensive metals must be sought. Replacements for the platinum counter
electrode should be cheap and exceed, or at the very least maintain, the same efficiency of 13.8% as the
best performing platinum counter electrode [7]. As such, this review outlines the progress attained up
to date in the development of a suitable CE for the DSSC. Catalysts such as transition metal alloys [8,9],
sulphides [10] and carbon-based materials [11,12] have already been tried and tested as potential
replacements for platinum in dye-sensitized solar cell counter electrodes yielding various results.
Despite most non-metallic counter electrode materials being cheaper than platinum, their catalytic
activity is significantly lower which results in poor photovoltaic parameters, although it would reduce
the cost of production for the DSSC. Implementation of these materials would basically be trading
relatively high efficiency for cost effectiveness. Since the dye is the most significant component of the
DSSC through its photon to electrons generation process, thus, any significant improvement to the
power conversion efficiency (PCE), short circuit current and open circuit voltage can only be attained
through improving the function of the dye. Kakiage et al. [7] reported on the implementation of
collaborative dye molecules in a bid to increase the photon conversion efficiency. In his work, Kakiage
et al. [7] utilized a silyl and carboxy anchor dyes termed ADEKA 1 and LEG 4 respectively. Resultantly
Kakiage produced the best performing dye-sensitized solar cell up to date with 14.7% PCE. The best
performing DSSC was composed of an TiO2 photoanode, ADEKA 1-LEG 4 dye Co(phen)3(PF6

−)2

electrolyte and an Au/graphene nanoplatelets (GNP) counter electrode. In the same report, Kakiage
et al. [7] noted that the performance of the DSSC composed of the Pt counter electrode was lower at
13.8% PCE. The work conducted by Kakiage et al. [7] involved the use of gold- and platinum-based
counter electrodes which are expensive and would do less to promote the commercialization of
DSSCs. Furthermore, available results show that appreciable efficiency was attained when the counter
electrodes were metal based. Research into metallic-based counter electrodes has shown that sulphides
produce better efficiency parameters as compared to nitrides [13], phosphates [14], and oxides [15].
Power conversion efficiencies (PCEs) for most of the materials mentioned above have been inadequate,
resulting in the synthesis of composite materials in order to meet efficiency requirements. The metal
sulphide/carbon material composite is the most exciting because of the qualities each individual
material gives to the composite [16]. Metal sulphides particularly molybdenum disulphide is well
known for its electrocatalytic ability, thereby finding wide use in the oil refinery industries as catalyst
for sulphur removal in fossil fuels [17]. Furthermore, metal sulphides are easily accessible, thus making
them ideal and cost-effective replacements for platinum in DSSC CE. On the other hand, carbon-based
materials such as graphite are equally cheap while providing excellent electrical conductivity [18],
whereas the more advanced carbon materials like carbon nanotubes are expensive [18]. As such,
this review seeks to highlight how effective metal sulphide/carbon material composites have performed
as replacements for platinum. In addition, discussions on how synthesis methods and composition
affected the performance of the counter electrode are provided. Operational procedures of the DSSC as
well as its composition are detailed in this review.
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2. Working Principle

The DSSC consists of four main components which are: the dye-sensitizer, mesoporous
semiconducting photoanode, electrolyte, and counter electrode [6]. Under illumination from the sun,
dye molecules (S) in the highest occupied molecular orbital (HOMO) absorb photons from the sun
and their electrons become excited. These excited electrons (S*) subsequently move to the lowest
unoccupied molecular orbital (LUMO) of the dye, provided the energy gained from the photons is
large enough to overcome the energy difference between the HOMO and the LUMO (i). The excited
electrons (e−) are then injected into the conduction band of the titanium dioxide photoanode (ii), diffuse
through it and are subsequently led to the external circuit where they migrate towards the counter
electrode (iv). At the counter electrode, the electrons are stripped (v) by the oxidized triiodide ion
(I3
−) in the iodine electrolyte, thereby itself being reduced to the iodide ion (I−). The reduced iodide

ions then transfer the electrons back to the oxidized dye (vi) molecule reducing it in the process while
becoming oxidized back to the triiodide ion. The transfer of electrons from the counter electrode to
the dye by the iodide ion, thus, facilitates regeneration of the dye molecule and completion of the
cycle of sunlight conversion into electricity. The difference in potential between the Fermi level of the
nanocrystalline semiconductor photoanode and the redox potential of I−/I3

− gives the open circuit
voltage. The operational cycle of the DSSC can be summarized by the following equations:

S + hv→ S*; sunlight absorption (1)

S*
→ S+ + e−; electron injection into the photoanode conduction band (2)

S+ + 3/2 I−→S + 1/2 I3
−; dye regeneration (3)

1/2 I3
− + e−→ 3/2 I−; iodine electrolyte regeneration (4)

The operational cycle for a DSSC is illustrated in Figure 1.
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Figure 1. Illustration of the operational mechanism of the dye-sensitized solar cell. HOMO:
highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital (hv—energy,
ECB—conduction band energy, R—resistance, VOC—open circuit voltage. Reproduced with permission
from Reference [19], MDPI 2018.
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3. Counter Electrode

The DSSC CE serves two critical functions which are to facilitate the reduction of the electrolyte,
thereby ensuring the continued generation of electricity as well as being the conduit for electron transfer
from the outer circuit back to the electrolyte [20]. In order for the CE to undertake its duties effectively,
it requires a catalytic material that can simultaneously enhance efficient reduction of the electrolyte
while being an excellent electron conductor [19]. Since platinum can offer both qualities, it was the
preferred catalyst of choice in the first assembled DSSC. However, platinum being such a versatile
catalyst is widely used in the motor, pharmaceutical and oil refinery industries, etc. As a result of the
high demand, the price for platinum is astronomically high. For all the well-established industries
mentioned above, the price of platinum is economical since significant revenues are generated, thereby
mitigating the expensiveness of platinum compared to the newer dye-sensitized solar cell technology.
Consequently, other alternatives have had to be sought which are cheaper and can offer the same
performance as the platinum CE. Furthermore, the platinum counter electrode undergoes significant
corrosion in the iodine electrolyte resulting in efficiency decline. Despite being catalytically active,
platinum metal exhibits modest charge transportation capability which results in high charge transfer
resistance. Poor electron transportation by all four components of the dye-sensitized solar cell leads
to recombinations between the generated electrons and their holes in the dye, and the triiodide
ion, thus, lowers the power conversion efficiency. Consequently, all the materials incorporated in
the dye-sensitized solar cell should exhibit good-to-excellent electron conductivity. Cheap metallic
sulphides with excellent catalytic activity and conductivity make for good DSSC CE. Metallic sulphides
are attractive as possible replacements to the platinum counter electrode due to their cheapness as well
as modest catalytic capability. Metallic sulphides are more catalytically active because of the synergistic
effect created by the metal and sulphide atoms. Initial research into the influence of sulphides on
counter electrodes was explored on binary sulphides yielding varied results. Han et al. [21] developed
PbS, Ag2S, CuS, CdS, and ZnS counter electrodes which performed better at 6.49, 6.11, 5.29, 2.45,
and 1.76% PCE as compared to 3.86% for the platinum counter electrode developed under similar
conditions. Charge transfer resistance for the sulphide counter electrodes decreased in the order ZnS >

CdS > Pt > CuS > Ag2S > PbS at 59.37 > 40.56 > 12.94 > 6.94 > 5.32 > 5.12 Ω, respectively. The obtained
results showed greater efficiency by the three sulphide counter electrodes PbS, Ag2S, and CuS as
compared to the platinum counter electrode developed under similar conditions. Power conversion
efficiency values reflect on the overall functionality of all its four components, thus, more effective
determination of how the counter electrode affects the dye-sensitized solar cell can be made from the
electrochemical analysis. The sole effect of the CE can be determined through analysis of the rate of
progression of the reduction reaction occurring at the counter electrode. This is achieved through
undertaking cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and tafel polarization
analysis. In this work, determination of the catalytic effectiveness of each developed counter electrode
was made through evaluation of the resistance to electron transfer obtainable from cyclic voltammetry
(CV) and EIS analysis as well as the PCE. Cyclic voltammetry analysis provides two valuable figures
which describe the electrocatalytic capability of the counter electrode. These are the reduction current
density and the peak-to-peak potential difference ∆Epp. The higher the peak reduction current density,
the greater the rate of reduction occurring at the counter electrode, whereas ∆Epp signifies the amount
of over potential in the counter electrode. Generally, the standard electrochemical rate constant of a
redox reaction is inversely proportional to ∆Epp, as such, its value should be minimum [19]. Zhou [22]
synthesized a NiS CE which produced a low 7.39% power conversion efficiency (PCE). Figure 2 shows
the CV and EIS graphs of the as-synthesized counter electrodes.



Materials 2019, 12, 1980 5 of 22
Materials 2019, 12, x FOR PEER REVIEW 5 of 23 

 

  
               (a)                                    

(a) 

(b) 

Figure 2. (a) Electrochemical Impedance Spectroscopy (EIS) and (b) Cyclic Voltammetry (CV) analysis 

for NiS and Pt counter electrodes. Reproduced with permission from Reference [22], Elsevier 2016. 

The ∆Epp values for the two CEs at 364 mV and 446 mV for NiS and platinum, respectively, 

showed that the rate of the reduction reaction was much faster when the metal sulphide CE was used. 

Electrochemical impedance spectroscopy analysis undertaken to confirm the CV results produced a 

larger charge transfer resistance Rct of 1.72 Ω for the Pt CE compared to 0.81 Ω for NiS. This result 

indicates that lesser impedance-to-electron movement occurred when NiS was used as the CE. 

Despite producing efficiency parameters higher than the Pt CE, this metal sulphide counter electrode 

cannot compare to the 24% efficiency associated with silicon-based solar cells. Table 1 shows the 

photovoltaic performances of various binary sulphides as counter electrodes in DSSC. 

Table 1. Photovoltaic parameters of various binary sulphide counter electrodes. 

Sample  Synthesis Method Rct/Ω∙cm−1 Rs/Ω∙cm−1 Jsc/mA∙cm−2 Voc/V  ɳ/%  Ref. 

NiCo2S2 Solvothermal 3.40 11.12 17.17 0.690 7.43 [23] 

SnS2 Solvothermal 26.3  9 0.68 2.82 [24] 

CoS Hydrothermal 2.09 9.95 16.81 0.747 7.16 [25] 

FeS2 Hydrothermal 5.99 2.91 12.08 0.74 5.78 [26] 

CoS Electrophoretic deposition 1.05 18.9 16.50 0.757 7.72 [27] 

NiCo2S4 Solvothermal 3.40 11.12 17.17 0.690 7.43 [23] 

NiCo2S4 Hydrothermal 4.00 10.6 17.40 0.743 8.50 [10] 

CuInS2 Bath deposition 4.42 20.49 12.48 0.780 5.79 [28] 

Table 1 outlines the various techniques utilized in the fabrication and development of binary 

and ternary sulphide counter electrodes. The method of synthesis is vital in producing materials with 

conforming morphologies, that is, they should have nanometer-size diameters and should exhibit 

limited aggregation. Nevertheless, the cost factor contributes significantly to the decision of which 

methods can experimentally be utilized for counter electrode material synthesis. Table 1 clearly 

shows that hydrothermal synthesis is the most utilized technique for counter electrode synthesis. 

Hydrothermal synthesis is attractive because of the high-quality crystals it produces. [29] Although 

the method makes use of the expensive autoclave as well as the inability to observe the growth of the 

crystals in real time, its products are of high quality as evidenced by the high PCE and low charge 

transfer resistance. The other methods such as bath deposition and solvothermal, do not require any 

specialized material; however, the reduced control of reaction conditions leads to lower photovoltaic 

parameters.  

It is also evidently clear from Table 1 that most metal sulphides do perform well as CE in DSSC, 

as such, they possess the necessary qualities required for synthesis of effective CE. Efforts to improve 

efficiency by fabricating ternary and other multi-metallic sulphide counter electrodes have not 

yielded the desired product. Huo [10] synthesized a composite flower like nickel cobalt sulfide CE 

Figure 2. (a) Electrochemical Impedance Spectroscopy (EIS) and (b) Cyclic Voltammetry (CV) analysis
for NiS and Pt counter electrodes. Reproduced with permission from Reference [22], Elsevier 2016.

The ∆Epp values for the two CEs at 364 mV and 446 mV for NiS and platinum, respectively,
showed that the rate of the reduction reaction was much faster when the metal sulphide CE was used.
Electrochemical impedance spectroscopy analysis undertaken to confirm the CV results produced a
larger charge transfer resistance Rct of 1.72 Ω for the Pt CE compared to 0.81 Ω for NiS. This result
indicates that lesser impedance-to-electron movement occurred when NiS was used as the CE. Despite
producing efficiency parameters higher than the Pt CE, this metal sulphide counter electrode cannot
compare to the 24% efficiency associated with silicon-based solar cells. Table 1 shows the photovoltaic
performances of various binary sulphides as counter electrodes in DSSC.

Table 1. Photovoltaic parameters of various binary sulphide counter electrodes.

Sample Synthesis Method Rct/Ω·cm−1 Rs/Ω·cm−1 Jsc/mA·cm−2 Voc/V η/% Ref.

NiCo2S2 Solvothermal 3.40 11.12 17.17 0.690 7.43 [23]
SnS2 Solvothermal 26.3 9 0.68 2.82 [24]
CoS Hydrothermal 2.09 9.95 16.81 0.747 7.16 [25]
FeS2 Hydrothermal 5.99 2.91 12.08 0.74 5.78 [26]
CoS Electrophoretic deposition 1.05 18.9 16.50 0.757 7.72 [27]

NiCo2S4 Solvothermal 3.40 11.12 17.17 0.690 7.43 [23]
NiCo2S4 Hydrothermal 4.00 10.6 17.40 0.743 8.50 [10]
CuInS2 Bath deposition 4.42 20.49 12.48 0.780 5.79 [28]

Table 1 outlines the various techniques utilized in the fabrication and development of binary and
ternary sulphide counter electrodes. The method of synthesis is vital in producing materials with
conforming morphologies, that is, they should have nanometer-size diameters and should exhibit
limited aggregation. Nevertheless, the cost factor contributes significantly to the decision of which
methods can experimentally be utilized for counter electrode material synthesis. Table 1 clearly
shows that hydrothermal synthesis is the most utilized technique for counter electrode synthesis.
Hydrothermal synthesis is attractive because of the high-quality crystals it produces. [29] Although
the method makes use of the expensive autoclave as well as the inability to observe the growth
of the crystals in real time, its products are of high quality as evidenced by the high PCE and low
charge transfer resistance. The other methods such as bath deposition and solvothermal, do not
require any specialized material; however, the reduced control of reaction conditions leads to lower
photovoltaic parameters.

It is also evidently clear from Table 1 that most metal sulphides do perform well as CE in DSSC,
as such, they possess the necessary qualities required for synthesis of effective CE. Efforts to improve
efficiency by fabricating ternary and other multi-metallic sulphide counter electrodes have not yielded
the desired product. Huo [10] synthesized a composite flower like nickel cobalt sulfide CE which was
modified with NiS (NiCo2S4/NiS). The developed counter electrode only managed an 8.8% PCE with
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charge transfer resistance reaching 2.2 Ω·cm2. Furthermore, a sputtering platinum like NiCo2S4 CE
developed by Huang [30] exhibited an 8.1% PCE with 4.42 Ω·cm2 charge transfer resistance. Although
development of ternary sulphides increased the efficiency of the counter electrode as evidenced by the
higher PCE and lower charge transfer resistance. The increases affected by the ternary sulphides were
only marginal as compared to the 14.3% PCE for the platinum counter electrode. It should also be
noted that the greater the multi-metallic sulphide to be fabricated, the more tedious and expensive
the fabrication process becomes. Hence, it is evident that in the present form, sulphides only provide
a cheaper option which does not meet the required efficiency to either replace the platinum counter
electrode or to increase the commercial viability of the DSSC. As such, other alternatives should be
sought. It is clear that higher power conversion efficiencies are required for the commercial success of
the DSSC. Many factors affect the performance of a catalyst including the surface area and morphology
of the catalyst. Surface area and morphology are two factors which, if efficiently manipulated at the
nanoscale range, could lead to higher reduction rates since they ensure a higher rate of electrolyte
adsorption as well as a wider area for adsorption [31]. In order to show how surface morphology and
method of synthesis affects the performance of the CE, Punnoose et al. [32] undertook the synthesis
of four NiS CE. Through varying the concentration of the reagents used in the fabrication of the
CEs, Punnoose et al. [32] managed to produce varied morphologies ranging from nanoparticles to
nanoplatelets. In order to evaluate how the variation in concentration affects surface morphology of
the as-synthesized CEs, SEM analysis was conducted. Figure 3 shows the SEM images of the four
synthesized NiS counter electrodes labelled Sample A–D.
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Figure 3. SEM images of NiS thin films deposited with different molar concentrations of thioacetamide.
(a) Sample A, (b) Sample B, deposited with 0.4 M thioacetamide, (c) Sample C, (d) Sample D deposited
with 0.8 M thioacetamide. Reproduced with permission from Reference [22] Elsevier 2015.

Figure 3 clearly shows that variation in the concentration of the reagents used for fabrication led
to varied surface morphologies. Figure 3a illustrates the agglomeration of nanoparticles in Sample
A, whereas Sample B, consisting of nanowheat structures with a high surface area and uniform
distribution, are shown in Figure 3b. The desirable properties of Sample B were attributed to the
presence of triethanolamine. Upon increasing the concentration of thioacetamide from 0.4 to 0.8 M in the
synthesized samples, a conversion of nanoparticles (Sample A) to nanoplatelets was observed. Sample
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D, fabricated without triethanolamine, showed a wider and uniform distribution of nanoplatelets
compared to Sample C. Counter electrodes fabricated from well-distributed Samples A and D would
be expected to perform better in DSSCs than those from Samples A and C, which are likely to be
characterized by low charge transfer resistance, low ∆Epp, and higher PCEs. Samples A and B have
the least charge transfer resistance Rct with 3.64 and 5.22 Ω, respectively, compared to 11.62 and 7.15 Ω
for Samples C and D. This result indicates greater conductivity by the nanoparticles compared to the
nanoplatelets. The higher surface area and wider distribution of nanoparticles resulted in a higher
rate of electrolyte adsorption, thus, greater catalytic activity was also experienced. This work also
illustrates the problem associated with assigning CE performance solely on PCE values. Comparison
of Rct values for Samples A and D at 3.64 and 7.15 Ω, respectively, were indicative of greater electrical
conductivity in Sample A, furthermore, open circuit voltage at 0.70 and 0.63 V indicated a higher
electron movement when Sample A was used. However, the PCE values for the two samples showed
that the DSSC using a counter electrode developed from Sample D performed better than Sample
A. Therefore, parameters associated directly with the performance of the CE such as Rct Rs, and ∆Eff

are better indicators of measuring how a CE performs. From the work undertaken by Pannoose
et al. [32], it is evidently clear that despite efforts to manipulate the morphology of the CE so as to
attain higher catalytic performance, PCEs still remain low. Recent studies into the functionality of
sulphide counter electrodes were conducted by Cho et al. [33], who developed the nickel–sulphide
NiSx counter electrode for DSSC applications. The developed sulphide counter electrode exhibited a
7.12% PCE compared to a platinum counter electrode fabricated under similar conditions. Ganesh et
al. [34] also attempted the fabrication of carbon supported metals sulphide counter electrodes doped
with nitrogen NiMoS-Nitrogen and CuMoS-Nitrogen. Despite all the enhancement, the efficiencies of
the developed counter electrodes were 2.85% and 2.62% for NiMoS-NG and CuMoS-NG, respectively.
These values were obtained despite the NiMoS-NG exhibiting a peak-to-peak potential difference of
382 mV, which is indicative of greater catalytic activity as compared to the platinum counter electrode
with 450 mV. Hou et al. [35] fabricated an interconnected CoInS4 CE with a nanosheet structure,
which produced PCE of 8.83% as compared to 8.19% for the platinum counter electrode. The CoInS4

counter electrode exhibited higher charge transportation with resistance being 2.39 Ω·cm2 as well
as decent catalytic activity indicated by its low peak-to-peak potential difference of 0.51 V to 0.56
V for platinum. The higher activity for the ternary sulphide counter electrode was ascribed to its
interconnected nanosheet structure, which facilitated a greater area for catalytic activity and electron
transportation. Further studies into multi-metallic sulphide-based counter electrodes were conducted
by Qian et al. [36] through development of CoNiMoSx yolk shell nanospheres for use as counter
electrodes in DSSC. Figure 4 shows the procedure utilized by Quan et al. [36] to produce the yolk
shell nanospheres.
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Figure 4. Schematic illustration of the procedure utilized for the preparation of CoNiMoSx. Reproduced
with permission from Reference [36], Elsevier 2019.

The developed ternary and quaternary yolk shell nanospheres exhibited high catalytic activity and
electrical conductivity as indicated by the low charge transfer resistance and peak-to-peak potential
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difference for CoNiMoSx at 0.37 Ω and 255 mV as compared to 2.38 Ω and 328 mV for platinum CE.
The high catalytic activity resulted in an efficient photo to electricity conversion process which yielded
a 9.12% PCE compared to 8.24% for the platinum counter electrode. The higher catalytic activity of
the yolk shell nanospheres was credited to the coarser surface of the nanospheres, which increase
surface area as well as the synergy created between the elements in the composite which potentially
results in charge transfer from one element to another resulting in enhanced catalytic active sites
on the outer surface. Additional studies in the functionality of sulphide-based counter electrodes
were recently conducted by Xu et al. [37] through development of cobalt–molybdenum disulphide
CoMoSx nanocubes using a step template conversion process. The CoMoSx counter electrode yielded
an impressive 9.64% PCE compared to 8.39% for the platinum counter electrode. Figure 5 shows the
morphology of the CoMoSx nanocubes with an average size ≈ 300 nm.
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Reproduced with permission from Reference [37], Elsevier 2018.

The catalytic activity of the nanocubes was significantly higher as indicated by the lower
peak-to-peak potential difference of 280 mV as compared to 56 mV for platinum. Electron migration
was resultantly higher for CoMoSx, with the charge transfer resistance being a lowly 1.70 Ω to 3 Ω
for the platinum CE. As clearly shown, newer fabrication techniques have resulted in higher yield
samples possessing morphologies that enhance the electrocatalytic capability of the sample as well
as electron transfer process. These techniques could potentially be beneficial for the development of
the counter electrode that exceeds the performance of the platinum counter electrode. Despite recent
improvements and newer methods of metal-sulphide preparation the catalytic ability and PCE of
the sulphide-based counter electrodes was still lower than for the best functioning platinum counter
electrode at 13.8% PCE. Therefore, other alternatives to increase efficiency have to be sought. One such
method is to fabricate composites with other materials which enhance the properties of the sulphide
compound. Ideal materials that can be used for synthesis of sulphide composites are carbon-based
materials, since they possess excellent electrical conductivity which is a necessity of charge transfer
between the counter electrode and the electrolyte. Carbon materials have for a long time been known
to be good electrical conductors and also possess excellent chemical stability [18]. They are especially
attractive since they are abundant, easily accessible, and moderately cheap [18]. Also significant is
the modest chemical activity of carbon-based materials which can be attributed to the high internal
surface area of carbon atoms that offer, abundant catalytic active sites, thereby leading to a small charge
transfer resistance [18]. A smaller charge transfer resistance signifies a higher rate of generation of
iodide ions from the triiodide ions, resulting in higher PCEs. Table 2 illustrates some of the advantages
associated with carbon-based materials.
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Table 2. Properties of various carbon-based materials. Reproduced with permission from Reference [18],
Elsevier 2016.

Material Advantages Disadvantages

Carbon nanotube High electrical conductivity, large surface area Low quantities of defective sites
Graphene Remarkable carrier mobility, high electrical

conductivity
Susceptibility to oxidative

environments, low defective sites
Carbon black Numerous defective sites, high

surface-area-to-volume ratio
Poor conductivity

Graphite Excellent conductivity and corrosion resistance Low surface area

Amongst all the carbon-based materials, graphene commands the most attention due to its specific
properties which, if effectively harnessed and developed, could lead to significant improvement in the
electronic and optical industries, cost and performance wise. Graphene consists of a single atomic
layer composed of sp2-hybridized carbon. Due to its unique electronic configuration, graphene has
high conductivity and transparency which is ideal for use as electrodes or interlayers in photovoltaic
devices [12]. Excellent electrical conductivity by graphene stems from its high charge carrier mobilities
averaging 200,000 cm2

·V−1
·s−1 compared to 980 cm2

·V−1
·s−1 for MoS2 [12]. The excellent conductivity

by graphene is helpful for metallic sulphides which exhibit sufficient catalytic capability with relatively
poor electrical conductivity as indicated by the high charge transfer values. In order for the synthesized
counter electrode to effectively catalyze the reduction of the electrolyte, the maximum specific area
in which adsorption of the electrolyte can take place should be available. With the specific surface
area of a single layer of graphene equaling 2630 m2g−1, graphene certainly provides adequate
surface area to enhance interaction between the electrolyte and the thin catalyst film attached on
the counter electrode [18]. Theoretically, graphene possesses all the necessary properties to be a
good counter electrode material; however, practical results in which graphene has solely been the
counter electrode have produced mediocre performances. Sahito [38] fabricated a DSSC composed of
graphene nanosheets as the counter electrode, while phenoxazine was used as the dye. The DSSC
fabricated by Sahito [38] produced a low 6.61% PCE which was nevertheless higher than the 5.09%
attained by the platinum counter electrode synthesized under similar conditions. Table 3 shows
photovoltaic parameters for the most commonly used carbonaceous counter electrodes. Although
they have exceptional electrical conductivity, most carbonaceous materials also exhibit poor catalytic
activity as counter electrodes in DSSC characterized by low reduction current densities and PCEs.
It is evident from Table 3 that the only feasible approach to developing efficient counter electrodes
based on carbon materials is the incorporation of the various carbon materials into composites, since it
leads to even lower charge transfer resistance and higher reduction current density. Charge transfer
resistance for almost all the listed carbonaceous CE were very low, which suggests high electrical
conductivity. This is an exceptional quality required for counter electrodes to facilitate unimpeded
transfer of electrons from the outer circuit through the counter electrode to the electrolyte. The excellent
electrical conductivity has led to most carbonaceous materials being used as supports in composites so
as to shore up electron conductivity, as well as facilitating a large surface area for electrolyte contact
with the counter electrode [39].
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Table 3. Photovoltaic parameters for various carbon-based materials.

Sample Synthesis Method Rct/Ω·cm−1 Rs /Ω·cm−1 Jsc/mA·cm−2 Voc/V η/% Ref.

Graphite 2.190 8.170 15.80 0.767 8.478 [40]
CNT-graphene hydrothermal 0.32 12.88 20.76 0.760 10.56 [41]
MWCNT-lipase coating 1.39 8.83 14.57 0.693 7.52 [42]

MWCNT/Charcoal acid functionalization 0.60 5.40 15.90 0.714 8.42 [43]
Graphite 1.54 16.59 0.700 7.88 [44]

Carbon black doctor blading 0.54 15.19 0.770 8.29 [45]
rGO doctor blading 5.39 30.72 9.89 0.690 4.04 [46]

Graphene/CNT doctor blading 1.10 27.80 8.80 0.770 4.00 [47]
Graphene acid functionalization 750 12.9 8.9 0.700 2.50 [48]

MWCNT—Multi walled carbon nanotubes. CNT—Carbon nanotubes. rGO—Reduced graphene oxide

Although most of the tabulated pure-carbon materials exhibited poor catalytic properties, their
composites performed exceptionally well with the graphene/carbon nanotube (GCT) composite,
producing a 20.76 mA·cm−2 reduction current density. This graphene/carbon nanotube composite
(GCT), which was synthesized by Yu [41], possessed a three-dimensional (3D) structure and exhibited
a 10.69% PCE. This high PCE was attributed to the 3D structure of the CE which offered a large
specific surface area, thereby ensuring higher rates of electrolyte adsorption and catalytic activity.
Figure 6 shows a comparison of the SEM micrographs for the reduced graphene oxide (RGO) and
the 3D graphene/CNT counter electrodes fabricated by Yu [41]. The SEM diagrams reveal thin
graphene nanosheets which self-assemble into 3D loosely structured aerogels that randomly extended
in various directions.
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According to Yu [41], the graphene/CNT (GCT) composite exhibited limited aggregation which
was attributed to the cross linking, intertwining, and interspersion of single-walled carbon nanotubes
in the graphene sheets. These activities are believed to support the graphene sheets and effectively
expand the distance of the graphene sheets thereby weakening their curl and limiting them from being
stacked by Π–Π bonds, thus, they exhibit less agglomeration. The electrochemical properties of the
carbon composites show that less impedance to electron transfer was experienced when the GCT
composite was used as compared to the platinum and reduced graphene oxide (RGO) CEs. Charge
transfer resistance was minimal for GCT at 0.32 Ω compared to 0.57 and 0.74 Ω for the platinum and
RGO counter electrodes, respectively. The lower charge transfer for GCT is indicative of its superior
electrical conductivity, which facilitates faster dye regeneration thereby limiting charge recombination
and ultimately improves power conversion efficiency. Cyclic voltammetry analysis for the three CEs
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clearly illustrated the excellent catalytic capability of GCT. Reduction current density (Jp) was highest
for RGO at 3.62 mA·cm−2 compared to 3.61 and 3.57 mA·cm−2 for GCT and platinum, respectively.
This implies that both RGO and GCT are equally effective as electrocatalysts. Peak-to-peak potential
difference (∆Epp), which signifies how fast the reduction reaction transpired, was highest for platinum
at 327 mV compared to 224 and 236 mV for RGO and GCT, respectively. Furthermore, the charge
transfer resistance (Rct) for RGO at 0.74 Ω was almost twice that for GCT, indicating that the addition
of CNT to the reduced graphene oxide improves charge transfer between the counter electrode and
electrolyte. According to Yu [41], the incorporation of single-walled carbon nanotubes which have a
large specific surface area provides more catalytic sites for iodide reduction, thereby enhancing catalytic
activity. Overall power conversion efficiency shows that the DSSC with the GCT counter electrode
performed the best with 10.26% compared to 7.64 and 7.25% for platinum and RGO counter electrodes,
respectively. The PCE values validate the electrochemical analysis data which outlined the superior
catalytic activity exhibited by GCT compared to RGO and platinum counter electrodes. The work by
Yu [41] clearly showed how carbonaceous materials could be viable platinum-free counter electrodes
in DSSC. However, the high prices for all the best performing carbon materials listed in Table 4 show
that, at the present moment, it would be uneconomical to fabricate counter electrodes from them.
The prices of carbon nanotubes, reduced graphene oxide, and graphene are extremely higher than
for platinum. In order for carbon materials to be considered as viable replacements for platinum,
they have to significantly lower the cost factor which is the largest impediment to commercialization

Table 4. Prices of metallic sulphides and carbon-based materials.

Material/g Sigma–Aldrich/Rands Cheaptubes/Rands

SWCNT 1010 156–300
MWCNT 129 20
Graphene 1188 2–30
Graphite 50.25

Carbon black 32.40
Reduced Graphene oxide 660 190–200

CoS2 10.88
MoS2 0.414
FeS2 0.2544

Platinum 275–614

SWCNT-single walled carbon nanotubes.

The cheaper forms of carbon like graphite do not exhibit the desired electrochemical performance
to be effective counter electrodes. According to Table 3, carbon black performs exceptionally well, while
also being the cheapest carbonaceous material. All the same, the 9.1% efficiency exhibited by carbon
black is still very low compared to the platinum efficiency as such incorporation of carbon materials into
composites with other materials could potentially produce the required efficiency which would exceed
the platinum and silicon cell efficiencies. Composites of carbon materials with metallic sulphides
are especially attractive since sulphides are cheap as clearly illustrated in Table 5. Development of
these composites could potentially mitigate the poor power conversion efficiencies of both metallic
sulphides and carbonaceous materials through synergistic influence of each material in the composite.
Ideally composites should consist of materials that complement each other. Since metallic sulphides
are catalytically more active than graphene they will be tasked with enhancing the reduction reaction
of the electrolyte whilethe carbon material offers greater electrical conductivity as well as a large
specific surface area. To determine how effective metallic sulphide composites with carbon could
be Li [49] fabricated a MoS2/graphene counter electrode which exhibited 8.01% PCE compared to
8.21% for the platinum counter electrode. In this composite MoS2 was tasked with enhancing the
electrocatalytic capability of the composite while graphene ensured the availability of a large surface
area for electrolyte adsorption as well as enhancing electrical conductivity. Cyclic voltammograms
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of the MoS2, MoS2/graphene, and Pt counter electrodes showed the existence of two pairs of redox
peaks Ox-1/Red-1 and Ox-2/Red-2, indicating catalytic activity towards the reduction of the triiodide
ion). Cyclic voltammetry (CV) analysis offers two valuable indicators of how effective the catalytic
process proceeds. Figure 7 shows the cyclic voltammetry analysis results for the MoS2/graphene
composite. The ∆Epps for the three electrodes under investigation were 691 mV, 584 mV, and 572 mV
corresponding to the platinum, MoS2/graphene, and MoS2 counter electrodes, respectively. This gives
a clear indication of the increase in the rate of reaction when graphene is added to MoS2, albeit being
lower than the platinum rate. Further evaluation of the cathodic peak reduction current densities
at 1, 1.2, and 0.7 mA·cm−2 for MoS2, MoS2/graphene, and platinum, respectively, validate the better
efficiency of the composite compared to MoS2. To further elucidate on the effect of graphene on the
composite, electrochemical impedance spectroscopy (EIS) measurements were undertaken. Charge
transfer resistance Rct, which gives an indication of the electron movement occurring between the
counter electrode and the electrolyte, shows that the composite MoS2/graphene performs better than the
MoS2 counter electrode, with 3.71 Ω·cm−2. Li [49] attributed the enhanced conductivity to the superior
carrier mobility of graphene. Figure 7b shows the Nyquist plots obtained for the EIS measurements for
the three counter electrodes. The Rct semicircle for MoS2 was clearly larger than the other two counter
electrodes indicative of its poor electrical conductivity. Charge transfer resistance for platinum was the
least, as clearly shown by the smaller semicircle in the EIS diagram.
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As illustrated in Table 2, carbon nanotubes do possess high electrical conductivity which is
vital for electron transfer from the CE surface to the electrolyte, which directly impacts the catalytic
capability of the CE. To ascertain how effective carbon nanotubes could be in composites with metal
sulphides, Yue [39] undertook research to fabricate a hybrid vanadium sulphide CE decorated with
carbon nanotubes. Synthesis of the VS2/CNT (vanadium sulphide/carbon nanotube) composite was
conducted in a hydrothermal autoclave. Samples were generated at temperatures 140 ◦C, 160 ◦C,
180 ◦C, and 200 ◦C for 24 h, respectively. Morphologies of the synthesized VS2 and VS2/CNT are shown
on the SEM diagrams in Figure 8.
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Figure 8. SEM micrographs for (a) VS2, (b–d) VS2/CNT. (c,d) Enlarged display of a VS2/CNT.
Reproduced with permission from Reference [40], Elsevier 2017.

The VS2 nanofibers facilitated adsorption of large electrolyte amounts as well as provided greater
electron movement. It is also noteworthy that the morphology of the fabricated VS2 nanoparticles
changed from nanofibers at 140 ◦C to nanosheets at 180 ◦C, and finally, nanopetals at 200 ◦C. This was
attributed to supersaturation and crystal growth becoming higher as temperatures increased. In order
to determine how the morphology of the synthesized nanoparticles affected electrolyte adsorption and
the overall counter electrode performance, electrochemical measurements were undertaken. Results
from cyclic voltammetry (CV) analysis of the synthesized nanoparticles are illustrated in Figure 9.
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As illustrated in Figure 9a, peak cathodic reduction current density for the VS2 nanoparticles
decreased in the order 180 ◦C > 160 ◦C > 200 ◦C > 140 ◦C signaling that maximum catalytic activity
was attained at the optimum temperature of 180 ◦C. Furthermore, this work illustrates how surface
area perhaps plays an integral part in influencing catalytic activity. At 140 ◦C, nanofibers which were
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touted by Li [49] as the ideal particle morphology for maximum productivity were outperformed
by nanosheets which offer maximum surface area for electrolyte adsorption. Figure 9b shows the
influence carbon nanotubes have on the VS2/CNT composite. As clearly shown, VS2/CNTs exhibited
the highest reduction current density compared to the platinum and VS2 CEs. The synergistic effect
produced by the greater catalytic effect of VS2 and the excellent electrical conductivity of CNTs as well
as their large surface area improved the interfacial charge transfer while also increasing the number of
catalytically active sites. Resultantly, greater catalytic activity towards I3

– reduction was experienced
when VS2/CNT CE was used compared to the VS2 and Pt counter electrodes. Further analysis of the
catalytic superiority of the VS2/CNT CE compared to the Pt and VS2 CEs is illustrated in the charge
transfer resistance values from the electrochemical impedance spectroscopy analysis results depicted
in Figure 10.
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Charge transfer resistance is represented by the 1st semicircle in the high-frequency region of
the EIS graph. Ideally, Rct values should be smaller signaling faster electron transfer from the CE
to the electrolyte. Variation of charge transfer resistance with an increase in temperature for the
VS2/CNT counter electrode is illustrated in Figure 10a. At 180 ◦C, the smallest semicircle can be
observed for the VS2/CNT CE producing a charge transfer resistance of 2.85 Ω·cm2. From Figure 10b,
it is clearly visible that VS2/CNT performed better than the Pt and VS2 counter electrodes which
had 3.65 and 3.37 Ω·cm2, respectively. Therefore, the VS2/CNT composite can be deemed to exhibit
greater electrical conductivity compared to the other two counter electrodes. The lower charge transfer
resistance for VS2/CNT was attributed to the excellent electrical conductivity of carbon nanotubes,
thereby resulting in less impedance to electron movement. Incorporation of carbon nanotubes with
binary VS2 to form VS2/CNT composites improves the overall effectiveness of the CE, as shown by
its higher PCE of 8.02% compared to 6.49% and 6.22% for Pt and VS2, respectively. The effect of the
carbon support on the functionality of the metal sulphide counter electrode was also recently studied
by Sarkar et al. [50] through development of the NiS/rGO counter electrode. Upon incorporation
of reduced graphene oxide support on the NiS sample, charge transfer resistance reduced by 50%
from 1.5 Ω·cm2 to 3 Ω·cm2, while peak reduction current density increased from 1.4 mA·cm2 to
2.4 mA·cm2. Resultantly, the photo-to-electricity conversion capacity of the DSSC with the NiS/rGO
CE was substantially higher at 9.5% compared to 7.7% for the NiS counter electrode, while also being
lower than the platinum counter electrode at 9.8% PCE. The higher efficiency parameters for the
NiS/rGO electrode were attributed to the excellent distribution of its particles with a 25 nm diameter
as well as the excellent conductivity and facilitation of a larger surface area of contact by reduced
graphene oxide. Further studies were conducted by Vijaya et al. [51] who developed a MoS2/GO-based
counter electrode which produced PCE of 8.1% up from 6.8% for the MoS2. The platinum counter
electrode developed under similar conditions yielded a 6.6% PCE. Zhou et al. [52] also studied the
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effect of graphene through development of a composite In2.77S4/GO which yielded a significantly better
electron transfer process with charge transfer resistance of 0.57 Ω·cm2 from 96.8 Ω·cm2 for the In2.77S4

CE. Catalytic activity was also better than the platinum counter electrode with a reduction current
density and peak-to-peak potential difference of 3.01 mA·cm2 and 396 mV compared to 2.54 mA·cm2

and 588 mV for platinum. Resultantly, higher photovoltaic parameters were obtained with In2.77S4/GO
yielding a 7.32% PCE as compared to 6.48% and 2.71% for the platinum and In2.77S4 counter electrodes,
respectively. The development of a metal sulphide/carbon composite was further studied by Sun
et al. [53] through the fabrication of the CoS/graphene composite. Charge transfer resistance for the
developed composite was observed to still be higher than for platinum at 5.9 Ω as compared to 4.1 Ω.
Resultantly its PCE was only 5.37% to 5.60 for platinum. Although the efficiency values were still
low compared to the silicon-based solar cells, the better performances of the NiS/rGO CE compared
to the platinum counter electrode have galvanized researchers towards the development of better
counter electrodes. As clearly outlined earlier, the DSSC has to function at levels exceeding that
of the silicon-based solar cell as well as cells from other thin-film technologies in the photovoltaic
industry. As such, the abovementioned CEs offer insufficient solutions to the efficiency problem in
DSSCs, thus, recently, more ternary and quaternary sulphides have been fabricated. Anuratha [16]
undertook fabrication of a composite consisting of reduced graphene and the ternary nickel–cobalt
sulphide (rGO-NiCoS4) counter electrode which exhibited high electrical conductivity. The good
electrical and catalytic properties of rGO-NiCoS4 were attributed to the synergistic effect between
the two materials in the composite as well as the inverse spinel structure of NiCoS4, which provides
more octahedral catalytic active sites of Co3+. The fabricated rGO-NCS counter electrode produced
8.15% PCE as compared to 7.36 and 7.15% for NiCo2S4 and platinum, respectively. Figure 11 shows the
current-voltage (J–V) curves for the DSSCs with various rGO-NiCo2S4 counter electrodes.
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Open-circuit voltage was almost similar for all the fabricated counter electrodes since it is
dependent on the photoanode, which is the same for all the counter electrodes. The higher short-circuit
current was the highest for rGO-NCS-2, which was attributed to the superior electrocatalytic capability
of this counter electrode. Efficiency parameters obtained for this counter electrode were lower than the
best performing carbon-based counter electrode fabricated by Yue [41]. Charge transfer resistance for
the best performing rGO-NCS-2 at 0.37 Ω was almost equivalent to the 0.32 Ω for the GCT composite.
As clearly shown, the performance of composites composed of ternary metallic sulphides and carbon
materials were barely sufficient to replace platinum. The lure of cheaper metallic sulphides with
carbon-based materials could be cost effective for mass production. However, currently, research has
spilled into fabrication of quaternary metallic–sulphide composites. Li [54] undertook the fabrication
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of a CuZnSnS4–graphene counter electrode for use in DSSCs. The CuZnSnS4 (CZTS) being a p-type
semiconductor has a large optical absorption coefficient (>104 cm−1) as well as excellent electrocatalytic
activity. The CZTS–graphene counter electrode was synthesized via a solvothermal method at 230 ◦C
for 24 h. Figure 12a shows the SEM micrographs for the CZTS counter electrode.
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CZTS–graphene. Reproduced with permission from Reference [54], Elsevier 2016.

It is evident from Figure 12a that CZTS particles formed nanosheets which were vital in widening
surface area coverage, thereby improving electrolyte interaction with the CE. Cyclic voltammetry
analysis carried out with a three-electrode system are shown in Figure 12b. It was clear that the
CZTS–graphene CE, despite its efficient properties, was less catalytically active than the Pt counter
electrode. This was derived from the higher reduction current density for the Pt CE as compared to
CZTS–graphene. Resultantly, the charge transfer resistance for CZTS–graphene was higher than that
of platinum. Nyquist plots in Figure 12c, however, contradict this point, with a larger semicircle for Pt
and CZTS compared to CZTS–graphene. The lower charge transfer resistance for CZTS–graphene
was attributed to the higher specific surface of the CZTS microspheres and graphene which enlarged
the contact area, thereby influencing higher charge transfer. Power conversion efficiencies of the four
CEs were 8.12, 7.34, 5.40, and 4.83% for the Pt, CZTS—graphene, CZTS, and graphene, respectively.
In this case, it was evident that, despite facilitating greater electron movement thereby increasing
the rate of reduction, PCE hinges more on the operations of the other components of the DSSC than
the CE. The CZTS/CNTs synthesized by Nemala [55] with 6.8% PCE outperformed the platinum
counter electrode which had 6.3% efficiency. The CZTS–graphene with 7.34% efficiency fared better
than CZTS/CNTs in contradiction to Table 2, which describes carbon nanotubes as being superior
to graphene. Since the methods of synthesis were different, definitive comparison between the two
can only be attained with reference to the platinum (Pt) CEs, which were fabricated simultaneously
with each CZTS counter electrode. The CZTS/CNTs synthesized via a solid-state reaction produced
microspheres which exhibited aggregation, as shown in Figure 13a. This could potentially have been a
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drawback to the effectiveness of the CZTS/CNT counter electrode, since aggregation reduces surface
accessibility, thereby limiting interaction between the electrolyte and the counter electrode.
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Figure 13. SEM images of (a) CZTS nanoparticles, (b) CZTS/CNT composite, and (c) CV micrograph
for the Pt, CZTS, and CZTS/CNT counter electrodes. Reproduced with permission from Reference [55],
Elsevier 2016.

Cyclic voltammetry measurements depicted in Figure 13c show that CZTS/CNT had a greater
peak reduction current density to the Pt and CZTS counter electrodes. The unavailability of
electrochemical data for CZTS/CNT makes it difficult to analyze and validate which of the two
counter electrodes performed better. However, according to the PCE values, CZTS–graphene
performed better than the CZTS/CNT counter electrode. Other notable composites from multi-metallic
sulphides have found wider use in supercapacitors. Shen [56] developed a CoNi2S4/CNT/graphene
nanocomposite which was touted as inducing remarkable electrochemical properties. The EIS
analysis for the CoNi2S4/CNT/graphene counter electrode showed that in the lower frequency region,
CoNi2S4/CNT/graphene exhibited lower Rct compared to CoNi2S4–graphene signifying greater catalytic
activity when carbon nanotubes were introduced in the composite. The effective catalytic work of
CoNi2S4/CNT/graphene was attributed to the desirable nanosheet structures these particles exhibit.
Table 5 shows the performance of varied sulphide composites that have been developed up to date.
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Table 5. Photovoltaic parameters for various metallic sulphide/carbon composite CEs.

Sample Synthesis Method Rct/Ω·cm−1 Rs /Ω·cm−1 Jsc/mA·cm−2 Voc/V η/% Ref.

MoS/CNF Solvothermal 2.50 11.70 15.64 0.771 8.40 [57]
MoS/GO Electrodeposition 1.99 2.50 16.96 0.722 8.01 [49]
SnS/GO Solvothermal 19.12 13.28 0.690 3.91 [24]

VS2/CNT Hydrothermal 2.85 6.83 15.57 0.755 8.02 [39]
CZTS–graphene Solvothermal 13.33 25.90 27.15 0.711 8.39 [54]

CZTS–CNT Solvothermal 4.19 19.22 16.62 0.760 9.04 [55]
rGO-NiCo2S4-1 Solvothermal 1.11 9.81 14.90 0.750 7.06 [16]
rGO-NiCo2S4-2 Solvothermal 0.37 9.71 16.40 0.752 8.15 [16]
rGO-NiCo2S4-3 Solvothermal 1.32 11.1 12.50 0.746 6.01 [16]
rGO-NiCo2S4 Co-precipitation 2.81 20.56 11.66 0.742 6.01 [58]

CZTS-MWCNT Solvothermal 4.19 19.22 16.62 0.760 9.04 [59]

The efficiencies of most sulphide/carbon composite counter electrodes are still very low. Charge
transfer resistance for most of the analyzed composites is still very high, despite being incorporated with
extremely conductive carbon materials such as carbon nanotubes, graphene, and reduced graphene
oxide. Furthermore, ternary and quaternary sulphide composites which were believed to enhance
catalytic capability through their spinel structures do not exhibit any significant advantage over the
binary metallic sulphide composites. The efficiency of the best performing sulphide/carbon composite
CZTS/CNT counter electrode is lower than the graphene/CNT (GCT) counter electrode. Charge
transfer resistance for these two composites showed that the CZTS/CNT exhibited an extremely large
impedance of 4.19 Ω·cm compared to GCT, which had 0.32 Ω·cm. The superior catalytic capability
of GCT was also indicated by its higher current density of 20.76 mA·cm−2, while the CZTS–CNT
counter electrode managed only 16.62 mA·cm−2. The performances of these counter electrodes were
lower than the best performing platinum-based counter electrode, which possessed a 13.8% PCE [7].
Although efficiencies and electrochemical properties for all metal sulphide/carbon counter electrodes
are still lacking as compared to the platinum electrode, the continuous research and development of
existing technologies provides a promising future towards development of a suitable replacement to
the platinum counter electrode.

4. Conclusion

The dye-sensitized solar cell offers a plausible alternative to the expensive silicon-based solar
cells. However, the low photo-to-current conversion efficiency as well as the high cost of the platinum
counter electrode in the DSSC makes it a cost ineffective alternative. Research towards the development
of alternatives to the platinum counter electrode has led to the fabrication of varied materials exhibiting
varied photo-to-current conversion efficiency. Amongst the feasible alternatives are sulphides, which
individually produced modest photovoltaic parameters, as indicated by the PCEs for CoMoSX and
CoNiMoSx at 9.64% and 9.12%. Composites of metallic sulphides and carbon materials were observed
to also perform well due to the synergy between the two materials, which facilitated greater catalytic
activity as well as excellent electrical conductivity. Binary NiS/rGO Ternary rGO-NiCo2S4 and
quaternary CZTS–CNT produced efficiencies of 9.5%, 8.15%, and 9.04%, respectively, which were
lower than the 13.8% for platinum. Incorporation of carbon materials into sulphide composites
was shown to enhance the electrical conductivity of the composite as indicated by the reduction of
charge transfer resistance from 0.85Ω·cm2 for NiCo2S4 to 0.37Ω·cm2 for rGO-NiCo2S4. Furthermore,
composites of only carbon materials were shown to perform better than all of the analyzed metallic
sulphide/carbon composites. The graphene/carbon nanotube composite (GCT) with 10.96% PCE offers
a better alternative to all the counter electrodes. As clearly indicated, the efficiency of all the developed
counter electrodes were just slightly less than the platinum efficiency, thus little improvements could
lead to higher efficiencies. In that regard, more research to develop effective counter electrodes should
be conducted.
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5. Recommendation

As clearly outlined in this review, metallic sulphides and their composites with carbon materials
have efficiencies slightly less than the expensive platinum counter electrode. More research is required
to produce an effective metal-sulphide counter electrode. The most feasible approach to developing
materials which could potentially produce higher catalytic effectiveness and photovoltaic parameters
than platinum is through manipulating their morphology such that they offer sufficient area for
catalytic activity and facilitate efficient electron transportation as shown by the work conducted by
Sarkar [50], Qian [36], and Xu et al. [37]. Further improvements can be achieved by the incorporation
of higher performing carbon-based composites such as the graphene/carbon nanotube composite
with 10.96% PCE. The higher efficiency of the graphene/carbon nanotube counter electrode offers a
feasible approach in which it could partake in composites with metallic sulphides so as to shore-up
electrical conductivity and facilitate efficient electron transfer to the oxidized dye, thereby eliminating
the potential of electron hole recombinations.
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