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Abstract: A novel method was used to fabricate the bio-carrier with both a high specific surface
area and good compatibility. The results of monitoring the growth of biofilms at a low C/N ratio
(0.83) showed that resulting carrier-PLA-cavity offered certain advantages for biofilm growth by
providing an appropriate microenvironment for bacterial growth in wastewater treatment. The
biofilm on carrier-PLA-cavity grew and updated faster than the naked-carrier. The biomass and
thickness of biofilms growing on carrier-PLA-cavity were 10 kg/m3 and 500 µm, respectively. From
the wastewater tests, 90% of the total nitrogen was removed via simultaneous nitrification and
denitrification (SND) by the biofilm biomass attached to carrier-PLA-cavity, compared to 68% for
the naked-carrier. The COD removal efficiency values of the carrier-PLA-cavity and naked-carrier
were 94% and 86%, respectively. The microbial community analysis of carrier biofilms showed
that Halomonas was the most abundant genus, and heterotrophic nitrification and denitrification
were responsible for nitrogen removal in both reactors. Notably, this method does not require any
complicated equipment or structural design. This novel method might be a promising strategy for
fabricating biocarriers for treating wastewater with a low C/N ratio.

Keywords: biodegradable polymers; biofilm; nitrate removal; solid carbon source; wastewater treatment

1. Introduction

Wastewater treatment with biofilms is mostly based on activated sludge technology
that removes nutrients from wastewater by micro-organic biofilms growing in/on carri-
ers. The method of the biofilm process is low-cost and useful for wastewater treatment,
but a shortage of carbon sources for denitrification limits the performance for treating
wastewater with a low C/N ratio [1]. Biofilm carriers, as the key element of this technology,
greatly affect the efficiency of wastewater treatment [2–10]. Therefore, reasonable selection
in biocarriers is important. A large specific surface area and good compatibility of carrier
material are the two crucial bases for biocarrier evaluation [11–15].

Various efforts have been made to increase the specific surface area of carriers, such
as changing the formation of carriers with porous structures, adding textures with high
length–diameter ratios, and grafting natural fibers and nanofillers with high mechanical
properties [2,4,7,16–20]. For example, Szikora et al. [2] used granular solids with tiny pores
to increase the specific surface area of biofilm carriers and discovered that biofilms on
granular solids had more intensive dehydrogenase enzyme activity than those grown on
normal solids. Maslon et al. [3] studied the removal of organics and nutrients from synthetic
wastewater by a moving bed sequencing batch biofilm reactor using Bio-Ball® carriers,
which had a higher specific surface area and provided a better attachment medium than
classical plastic carriers for the growth of microorganisms. Choi et al. [4] used activated
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carbon as a porous material to improve the specific surface area, which enhanced the
stability of biological perchlorate reduction in fixed-bed biofilm reactors. An excellent
effect of wastewater treatment by polymer fiber-based carriers with a high length–diameter
ratio was reported by Tamas et al. [5]. The biofilm community grown on the fiber-based
carrier with good colonization properties was dominated by polymer fiber-based carriers.
Gapes et al. [6] compared two types of biocarriers with different structures in terms of
their internal and external mass transfer resistance when a biofilm was present. Dong
et al. designed and fabricated a fullerene-type biocarrier with a high specific surface area
using a 3D printing technique [7]. The biofilms on the 3D-printed biocarriers exhibited
higher microbial activity and stronger adhesion ability than traditional plastic carriers. The
above literature is concerned with improving the sewage treatment effect by increasing the
carrier surface area, but the compatibility between microorganisms and carriers has not
been well-studied.

To improve the compatibility between microorganisms and carriers, it is important to
choose a suitable carrier material with good biocompatibility. Some biodegradable polymer
materials can be used as carriers, as they not only have good compatibility but also can be
used as carbon sources for biological heterotrophic denitrification [1]. Such biodegradable
polymers (BDPs) can be divided into two classes [21]: natural materials including starch
and cross-linked starch [22] and synthetic polymers such as polycaprolactone (PCL; [1],
poly(butylene succinate) (PBS; [23]) and polylactic acid (PLA; [24]). Advantages of natural
materials lie in their low price and extensive sources [1,25]. However, due to the low
mechanical properties of natural materials [26,27], synthetic polymers with enhanced
biocompatibility have been used in wastewater treatment [28].

There are two ways to improve biofilm growth: one is to increase the specific surface
area of the carrier, and the other is to improve the compatibility between the carrier and
microorganism. However, for conventional methods of preparing biocarriers, such as
surface modification and grafted BDP methods, there are no effective ways to increase both
the quantity and efficiency of biofilm formation at the same time.

Therefore, in this study, we demonstrate a novel method to fabricate biocarriers with
both a high specific surface area and good compatibility, denoted as the coating–etching
method. BDPs are first wrapped on the surface of the biocarrier by the coating method, and
then the biocarrier with the coating of BDPs is corroded by the chemical etching method.
This method can improve both the biocompatibility and the specific surface area of the
biofilm carrier, and facilitates the adhesion/growth and shedding of biofilms through the
microporous BDP coating. In particular, these methods do not require any complicated
equipment or structural design. This novel research has promising potential in the large-
scale fabrication of carrier BDPs with micropore formation to improve the low C/N ratio
of wastewater treatment performance.

2. Materials and Methods
2.1. Materials

The carrier was K3 (Texture: polyethylene, diameter: 30 mm, MBBR, MIER Co., Ltd.,
Wuxi, China). The biodegradable polymer was PLA (4032D, Nature works Co. Ltd., Blair,
NE, USA). The dosage of PLA was 0.89% by mass to treat K3 per ton. NaOH and CH2Cl2
were purchased from Chemical Reagent Company, Tianjin, China. Activated sludge was
acquired from Beibei Municipal Wastewater Plant (Chongqing, China). The physical and
chemical properties of materials are shown in Table 1.

Table 1. The physical and chemical properties of materials.

Materials Melting Point (◦C) Boiling Point (◦C) Density (g/cm3) Tensile Strength (MPa) Elongation (%) Form

K3 105 - 0.96 15 90 Particle
PLA 170 - 1.25 55 5 Powder

NaOH 318 1388 2.13 - - Powder
CH2Cl2 −97 39 1.32 - - Liquid
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2.2. Two-Step Coating–Etching Method

The two-step coating–etching method was used to deposit BDP films with cavities.
Initially, the PLA particles were dissolved in CH2Cl2 to prepare a PLA solution (30 g/L).
Then, the carrier was immersed into the PLA solution for ~60 s to maintain sufficient
interaction time of the carrier with the coating solution for complete wetting. In addition,
the carrier was pulled upward at a constant speed (~2 mm/s). Then, a thin layer of PLA
solution was entrained, which was named carrier-PLA. The excess liquid on the surface of
carrier-PLA was drained from the surface. Ultimately, the carrier-PLA was immersed in
NaOH solution (20 g/L) for 2 min at 50 ◦C. The microporous cavity formation of carrier-PLA
was formed, which was denoted as carrier-PLA-cavity. After cooling to room temperature,
the carrier-PLA-cavity was rinsed with water and dried at 60 ◦C for 15 min. The thickness
of the PLA layer was controlled by the number of coatings. The size and density of the
microporous cavity on the surface of carrier-PLA was adjusted by the concentration of
NaOH solution.

2.3. Synthetic Wastewater

The synthetic wastewater was composed of four parts: substrates, salt, trace elements,
and mineral media. The substrates were ammonium, nitrate, and chemical oxygen demand
(COD). The compositions of the trace element solution and mineral media are shown in
Tables 2 and 3. The parameters of synthetic wastewater are shown in Table 4. The COD/TN
ratio of the synthetic wastewater was 0.83.

Table 2. The composition and content of the trace element solution.

Component Dosage (g/L)

EDTA 15.000
ZnSO4·7H2O 0.430
CoCl2·6H2O 0.240
MnCl2·4H2O 0.990
CuSO4·5H2O 0.250

NaMoO4·2H2O 0.220
NiCl2·2H2O 0.190

Na2SeO4·10H2O 0.210
H3BO4 0.014

Na2WO4·2H2O 0.050

Table 3. The composition and content of the mineral medium.

Component Dosage (g/L)

NaH2PO4·2H2O 0.029
CaCl2·2H2O 0.300

MgSO4·7H2O 0.200
FeSO4·7H2O 0.00625

EDTA 0.00625

Table 4. The parameters of synthetic wastewater.

Component Dosage

COD in influent 50 mg/L
NH4

+-N in influent 50 mg/L
NO3

−-N in influent 10 mg/L
NaCl in influent 30 g/L

pH 7.0~8.2
Trace elements 1.25 mL/L

Mineral medium As Table 2 showed
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2.4. Reactor Set-Ups and Operation

A lab-scale batch reactor was constructed from commercially available Plexiglas
vessels (size: 24 cm × 50 cm) with a working volume of 22.6 L [7]. It consisted of two
parts (Figure 1). One was an outside water bath thermal insulation layer to maintain the
temperature at 27 ◦C, and another one was an inner zone of reaction site. The carriers were
suspended in the reaction zone and organized by lines.

Figure 1. Schematic of the sequencing biofilm batch reactor.

The reactor was inoculated with activated sludge, which had a mixed liquor suspended
solid (MLSS) content of 11.275 g/L and an SV (setting velocity) of 82. The mixed liquor
from the secondary sedimentation tank was inoculated at a ratio of 1:3 (v/v) with reactor
volume, and the reactor was operated with a designed synthetic feed to support biomass
formation on the carriers [7]. After 48 h, the activated sludge was discharged, and simulated
wastewater was added to the reactor. To maintain the stability of the experimental system,
an aerobic metabolic mode was adopted, with a total cycle period of 8 h (retention time),
consisting of a 15 min fill phase, 6.5 h aerobic reaction phase with recycling, 15 min out
phase, and 1 h decant time [7].

2.5. Characterization of the Carrier and Biofilm

The surface of the carrier (carrier, carrier-PLA, and carrier-PLA- cavity) was observed
by LEICA-DMLP light microscopy at 23 ◦C, and images (200×magnification) were collected
with a CCD camera. The structure of the biofilm attached to the carriers was examined
by scanning electron microscopy (SEM, JSM-7800F, JEOL, Tokyo, Japan) at an acceleration
voltage of 5 kV. The scale bar was 100 µm. The working range was 100 nm~500 µm.

To evaluate the biomass supported by biocarriers, samples of biocarrier elements were
taken from the reactor. Biofilm solids were determined by the difference in weight of dried
biocarriers (105 ◦C for ≥ 1 h) before and after biofilm removal. Removal of biofilm solids
was performed in NaOH through mechanical shaking and ultrasound treatment at 60 ◦C.
All the parameters were measured according to standard methods [29].

A subset of the bio-carriers was selected for biofilm thickness measurements. Bio-
carriers with attached biofilm were carefully cut into several sections, and biofilm thickness
was measured with a pair of vernier calipers. On account of the thickness heterogeneity
of the biofilm, 10 measurements were averaged to determine the biofilm thickness. The
mass and thickness of the biofilm were directly measured and the PLA layer was ignored
because it was too thin.
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2.6. DNA Extraction and Microbial Community Analysis

Ten-gram biofilm samples were obtained from each reactor with stable water qual-
ity for DNA extraction and microbial community analysis. DNA was extracted from
biofilms with the Power Soil DNA Kit (QIAGEN, Redwood City, CA, USA) according to
the manufacturer’s instructions, and extracted DNA was quantified by a NanoVue plus
Spectrophotometer (GE, Boston, MA, USA).

The bacterial community structure was assessed by Illumina PE300 sequencing at
the Shanghai Majorbio Biopharm Biotechnology Co., Ltd. (Shanghai, China). Bacterial
amplicon libraries were constructed for Illumina sequencing using the primers 338F (5′;-
ACTCCTACGGGAGGCAGCAG-3′;) and 806R (5′;- GGACTACHVGGGTWTCTAAT-3′;)
for the V3–V4 regions of the 16S rRNA gene [30]. All data processing was conducted using
Mothurv.1.31.2 (East Lansing, MI, USA). To obtain high-quality sequences, the low-quality
sequences were removed by eliminating those without exact matches to the forward primer,
those without recognizable reverse primers, those with lengths shorter than 200 nucleotides,
and those containing any ambiguous base calls (Ns). To create operational taxonomic units
(OTUs), tags were aligned to the SILVER 111-compatible alignment database using the
align.seqs command. The remaining sequences were then assessed for potential chimeras,
and the chimeras were removed. The sequences were clustered into OTUs by setting
a 0.03 or a 0.05 distance limit (equivalent to 97% or 95% similarity, respectively), and
rarefaction data and Shannon and Chao diversity indices were generated for each sample.
The sequences were phylogenetically assigned to taxonomic classifications using an RDP-
naïve Bayesian rRNA classifier with a confidence threshold of 80% [30]. The sequences
obtained through this process are listed in Table 4.

Based on the OTU information, rarefaction curves and alpha diversity indices referring
to community diversity (Shannon and Simpson), community richness (Chao and Ace),
and sequencing depth (Coverage) were calculated by Mothur. The 100% stacked column
reflecting community structures at the phylum and genus levels was drawn by Origin 2018.

2.7. Analytical Method for Wastewater

The performance of the reactor was assessed by monitoring COD and total nitrogen
(TN), i.e., NH4-N, NO3

−-N, and nitrite (NO2-N), throughout the operation. Both of these
parameters were analyzed according to standard methods for the examination of wastewa-
ter [29]. All experiments were conducted in duplicate, and average values were used for
data analysis.

3. Results and Discussion
3.1. Structure of PLA Films by Light Microscopy

A schematic diagram of carrier-PLA-cavity is shown in Figure 2. It has three parts:
carrier, PLA film, and microporous cavity on the film.

Figure 2. Schematic diagram of Carrier-PLA-Cavity.
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A PLA film with a microporous cavity was coated on the surface of the carrier. The
structure of the PLA film was observed by light microscopy with and without the etching
treatment process. The surface of the naked-carrier was smooth (Figure 3a). After coating
treatment, the naked-carrier was coated with a thin film of PLA (Figure 3b). The relative
degree of embossment on the surface of carrier-PLA was larger than that of the naked-
carrier after coating with the PLA film. Upon further etching processing, the islands-in-
the-sea structure of the carrier-PLA-cavity was observed by the corrosion of NaOH to
PLA molecules (Figure 3c). Therefore, the surface roughness of the carrier-PLA-cavity was
higher than that of the naked-carrier.

Figure 3. Surface appearance of samples observed: (a) naked-carrier, (b) carrier-PLA, and (c) carrier-
PLA-cavity (optical microscopy, 200×magnification).

3.2. Biofilm on the Carriers

From SEM observation, the structure of the biofilm attached to the naked-carrier and
carrier-PLA-cavity appeared to be significantly different (Figure 4). The biofilm of the
naked-carrier contained coccal and short rod bacteria (Figure 4a). The carrier-PLA-cavity
biofilm comprised predominately filamentous bacteria as structural support, coccal, and rod
bacteria interspersed into the support (Figure 4b), while mildew fungi were more plentiful,
with some short rod bacteria in the naked-carrier biofilm. In addition, the bacteria were
surrounded by extracellular polymers, which combined to form a whole connected biofilm
structure, increasing the contact area between the biofilm and substrate. Chu et al. [1]
illustrated that microorganisms only adhered and grew on the surface of carriers, leading
to low biomass and weak attachment. Guillaume et al. [31] and Grumezescu et al. [24]
reported the fabrication of PLA-PCL or PLA-PVA microspheres with several layers that
showed excellent properties in terms of microorganism adhesion and biofilm formation.

Few studies have focused on the growth stages of biofilms of solid carbon source
carriers, which are crucial to understanding the impact of biofilms on wastewater treat-
ment [14,28,32–34]. Figure 5 shows the growth trend of bacterial biofilms on carrier-PLA-
cavity and naked-carrier.

The process of the colonization experiment for the development of biofilm is described
as four successive periods, namely, the incubation period (stage I: 0–10 days), the growth
and mature period (stage II: 10–30 days), the aging period (stage III: 30–45 days), and the
next cycle growth period (stage IV: 45–60 days). In stage I, the carrier is slowly inoculated
by microorganisms, resulting in low biofilm growth. By stage II, after inoculation by the
activated sludge in the reactor, biofilms grew faster with a higher specific surface area of
the carrier. Figure 3 shows that carrier-PLA-cavity, with more roughness, has more biomass
than the naked-carrier. This continues until stage III, and the biofilm is stable during this
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period until shedding. After approximately 40 days, the next biofilm growth cycle begins.
To facilitate the analysis of the wastewater performance trend, the thickness and mass were
used to characterize the growth process of biofilms on carriers.

Figure 4. SEM of biofilm attached to carriers: (a) Naked-carrier, (b) Carrier-PLA-cavity.

Figure 5. Growth trend of biofilms of Naked-carrier and Carrier-PLA-Cavity.

The biofilm attached to the carrier-PLA-cavity was thicker than that attached to the
naked-carrier (Figure 6). This indicates that the biofilm growth speed of carrier-PLA-cavity
is faster than that of the naked-carrier.
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Figure 6. Biomass formed on the different carriers: Carrier-PLA-Cavity and Naked-Carrier, respectively.

The biomass value of carrier-PLA-cavity was three times higher than that of the naked-
carrier at day 30. This can be attributed to the larger specific surface area and greater
compatibility of carrier-PLA-cavity, leading to shortened growth and maturation periods.
After 40 days, the biofilm was removed from the carrier. Since the PLA film/matrix is more
easily hydrolyzed than the PE matrix in wastewater, the aging time of the carrier-PLA-
cavity biofilm was longer than that of the naked-carrier biofilm, which serves the purpose
of updating the biofilm. If the biofilm could not be self-renewed, the aging biofilm would
accumulate, leading to a decline in the water quality. The next cycle of biofilm growth began
at approximately 44 days. The biomass value of carrier-PLA-cavity was higher than that
of the naked-carrier. The highest biomass values of carrier-PLA-cavity and naked-carrier
were 10 and 6.5 kg/m3 at 60 days, respectively. This indicates the more suitable adhesion
of microorganisms on the carrier-PLA-cavity compared to the naked-carrier for the new
cycle of biofilm growth, which follows our hypothesis.

Biofilm thickness is a principal parameter used to evaluate the substrate consumption
rate in biofilms [35]. According to Chu et al. [1], because the substrates (e.g., carbon and
nitrogen sources) crossed the biofilm–liquid interface and were transported through the
biofilm to reach the microbial cells and be consumed, there was a limited biofilm thickness.

In this study, the increased thickness of the biofilm limited the mass transfer of sub-
strate, resulting in the maximum biofilm thicknesses of carrier-PLA-cavity and naked-
carrier being 500 and 350 µm at 60 days, respectively (Figure 7).

Moreover, the higher specific surface area of carriers enabled the ability to retain more
microbes from the inoculated sludge, resulting in a higher biofilm thickness [36]. Since
carrier-PLA-cavity is etched by NaOH, it has a higher specific surface area than the naked-
carrier. For the naked-carrier, the biofilm mainly accumulated in the biocarrier interspaces.
However, the biofilm of carrier-PLA-cavity existed not only inside the carrier but also on
the surface of the carrier. Therefore, the biofilm thickness of carrier-PLA-cavity was higher
than that of the naked-carrier (Figure 7). This indicates that carrier-PLA-cavity can offer
certain advantages for biofilm growth by providing an appropriate microenvironment for
microbe growth in wastewater treatment.
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Figure 7. The thickness of biofilms attached to different carriers: Carrier-PLA-Cavity and Naked-
Carrier, respectively.

3.3. Wastewater Treatment Performance of Bio-Carriers

The COD values were measured over the operating life from 4 days to 60 days,
when the biofilm was considered changed from inoculation to mature and stable periods
(Figure 8).

Figure 8. COD removal efficiency (RE) for Carrier-PLA-Cavity and Naked-Carrier.

Initially, the effluent COD was decreased by the residual activated sludge inside
the carriers. After 4 days, the effluent COD of carrier-PLA-cavity increased greatly and
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then decreased. The decomposition of PLA released organics as a carbon source, which
promoted the growth of microorganisms. In turn, microbes consumed organics, resulting
in a decrease in effluent COD. In stage II, the COD removal efficiency began to increase
rapidly. This is mainly dependent on the growth of biofilms, which consume more organics.
This indirectly indicates that carrier-PLA-cavity has better biological activity than the
naked-carrier. In stage III, the shedding of biofilm led to the decline in COD removal
efficiency. It is interesting that the next growth cycle of biofilms was observed in this study.
With the secondary growth of biofilm, COD removal efficiency was further promoted to
94% for carrier-PLA-cavity and 86% for the naked-carrier.

The removal of TN, i.e., NH4-N, NO3
−-N, and NO2-N, has always been the main

index that restricts the standard discharge of low-C/N-ratio wastewater treatment. The
TN removal rates were relatively low during the initial phase of sequence batch operation;
with increasing sequence time, more rapid TN removal was observed (Figure 9). At the end
of stage III, the removal efficiencies of TN of carrier-PLA-cavity and naked-carrier were
66% and 43%, respectively. In stage IV, it was finally increased to 90% and 68%, respectively.
Further studies on nitrification and denitrification of the carriers are needed to explain
this phenomenon.

Figure 9. TN removal efficiency for Carrier-PLA-Cavity and Naked-Carrier.

3.4. Microbial Community Analysis

The bacterial community of the carrier biofilms was analyzed for the number of
operational taxonomic units (OTUs), rarefaction, and species richness (Table 5). The
numbers of OTUs were estimated at 97% 16S rRNA gene sequence similarity. In the two
samples, the OTUs were 195 (carrier-PLA-cavity) and 192 (naked-carrier), the Shannon
index was 2.427 and 2.496, and the Chao value was 206 and 222.

The community structure of each sample was analyzed at all levels (domain, kingdom,
phylum, class, order, family, genus, and species). In this paper, the phylum- and genus-
level taxonomic distributions are mainly discussed. Among the trimmed sequences, a
total of 20 phyla and 178 genera were identified in the biofilm samples. As shown in
Figure 10a, at the phylum level, Proteobacteria (96.46%, 93.9%), Bacteroidota (3.84%, 5.12%),
and Actinobacteriota (4.48%, 4.48%) were the three most abundant phyla in all samples.
At the genus level, the results (Figure 10b) showed that the fabricated carrier exerted
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little influence on the microbial community structure compared with the original carrier.
Halomonas (32%, 30%), Salinicola (15%, 14%), Parvibaculum (11%, 11%), Chujaibacter (10%,
12%), and Oleiagrimonas (9%, 10%) were dominant bacteria in both reactors. These bacteria
are all heterotrophic and show tolerance to salinity [37], which might be an important
reason for their enrichment in the reactor. Halomonas was the most abundant genus and
is related to the removal of nitrogen [12], suggesting that heterotrophic nitrification and
denitrification significantly contributed to the removal of ammonium and nitrate in both
reactors. In contrast, autotrophic nitrifiers were not found in the carrier biofilm and further
indicated that heterotrophic nitrification was responsible for ammonium oxidation.

Table 5. The sequence information and diversity index.

Sample
Sequence
Number OUT

Alpha Diversity Index

Ace Chao Shannon Simpson Coverage

Carrier-PLA-Cavity 53,617 195 212 206 2.427 0.163 0.999
Naked-Carrier 58,259 192 223 222 2.496 0.151 0.999

Figure 10. Bacterial community composition at phylum level (a) and genus level (b).

3.5. Degradation of Carrier-PLA-Cavity and Denitrification

Simultaneous nitrification and denitrification (SND) can be used to describe the ni-
trification and denitrification of biofilms [25]. The biofilm is the site where SND occurs.
According to the microbial community data, nitrification and denitrification were all
accomplished by heterotrophic bacteria in both reactors. Despite the assimilation of am-
monium and nitrate, heterotrophic nitrifiers converted NH4

+ to NO2
− or NO3

−, and
then NO2

− or NO3
− was reduced by heterotrophic denitrifiers in the traditional way

(NO3
−→NO2

−→NO→N2O→N2↑). Therefore, a certain amount of carbon is necessary to
denitrify the nitrite and nitrate that are formed during nitrification. Comparing the SEM
images of the used carriers (Figure 11) revealed that the surface of the naked-carrier was
flat and smooth, whereas the surface of the carrier-PLA-cavity was pitted and perforated by
microbial degradation. This indicates that carrier-PLA-cavity can provide a carbon source
for denitrification, which is conducive to the removal of TN.

In general, for the most readily available organic carbon source, a COD/NO3
−-N ratio

from 3.0 to 6.0 enables complete nitrate reduction to nitrogen gas [25]. To clarify the nitrification
and denitrification of different carriers at a low COD/NO3

−-N ratio (approximately 0.83),
NH4

+-N, NO3
−-N, and NO2

−-N of carriers were monitored, as shown in Figures 12 and 13.
The effluent NO2

−-N remained at a low level (less than 0.9 mgL−1) throughout the experiments,
indicating that nitrite oxidation took place almost completely.
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Figure 11. SEM of used carriers: (a) Naked-carrier, (b) Carrier-PLA-cavity.

Figure 12. NH4
+-N removal effect for Carrier-PLA-Cavity and Naked-Carrier.

NH4
+-N gradually decreases with the progress of the reaction, but the removal rate of

NH4
+-N by the naked-carrier is slower than that of carrier-PLA-cavity (Figure 12). Due to

the loose and porous structure of carrier-PLA-cavity, this substrate is more conducive to
the transport of oxygen and increases the ammonium oxidation rate.

Considering the very low COD/TN ratio in the influent, it is apparent that the
biodegradable polymer PLA was responsible for the denitrified nitrate in the reactor.
Shen et al. studied blends of cross-linked starch/polycaprolactone biocarriers and showed
a NO3

−-N removal efficiency greater than 90% when adding a sufficient carbon source [22].
Chu et al. compared the NO3

−-N removal efficiency of the biocarrier with and without
glucose and showed that denitrification was greatly stimulated by glucose. In this study,
the removal of NO3

−-N from the treated carrier was gradually reduced as the reaction
progressed (Figure 13). However, the NO3

−-N of the naked-carriers decreased first and
then gradually increased and accumulated. This is due to the lack of carbon sources, which
prevents denitrification.
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Figure 13. NO3
−-N removal effect for Carrier-PLA-Cavity and Naked-Carrier.

The rSND could be defined as follows by neglecting the effect of assimilation and
cellular decay on ammonium during the experiments [25]:

rSND =

(
1− [NOXN]remained

[NH4N]removed

)
× 100% (1)

Compared with the naked-carrier, carrier-PLA-cavity has higher rSND values (Figure 14),
indicating that it can remove more NH4

+-N and retain less NOx-N. This is because PLA can be
used as a solid carbon source and release carbon through gradual hydrolysis, providing power
for denitrification. At a low C/N ratio, the naked-carrier is unable to digest NOx-N due to its
low denitrification, leading to gradual accumulation [25]. In addition, this also explains why
carrier-PLA-cavity can achieve a higher TN removal rate, because it can effectively reduce
NOx-N through denitrification.

Figure 14. The rSND for Carrier-PLA-Cavity and Naked-Carrier during the reaction.
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4. Conclusions

In this research, a novel two-step coating–etching method was used to fabricate
biocarriers with a high specific surface area and biodegradability. By monitoring the
biofilm growth cycle, it was found that the biofilm on carrier-PLA-cavity grew and updated
faster than the naked-carrier. The biomass and thickness of biofilms growing on carrier-
PLA-cavity were higher than those on the naked-carrier, indicating that the bioactivity
of the biofilm attached to carrier-PLA-cavity was higher. The COD and TN removal
efficiency values of the carrier-PLA-cavity were higher than those of the naked-carrier.
The rSND monitoring results showed that carrier-PLA-cavity dominated denitrification to
consume NOx-N. The microbial community analysis of the carrier biofilms showed that
Halomonas was the most abundant genus, and heterotrophic nitrification and denitrification
were responsible for nitrogen removal in both reactors. These results demonstrate that
the low cost and facilitation of the coating–etching process for depositing BDP films with
microporous cavities on substrates provides a good strategy for the fabrication of biocarriers
for treating wastewater with a low C/N ratio.
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