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Abstract: Fiber-reinforced composites are among the most investigated and industrially applied
materials. Many studies on these composites using fibers, especially with natural fibers, were
made in response to an urgent action for ambient preservation. A particularly relevant situation
exists nowadays in the area of materials durability. In this respect, no studies on water-immersion-
accelerated aging in fique fiber–epoxy composites are reported. This work aimed to fill this gap by
investigating the epoxy matrix composites reinforced with 40 vol% fique fabric. The epoxy matrix
and the composite, both unaged and aged, were characterized by weight variation, water absorption,
morphology, colorimetry (CIELAB method), Fourier transform infrared spectroscopy (FTIR) and
dynamic–mechanical analysis (DMA). The main results were that degradation by water presents
appearance of complex microfibril structures, plasticization of epoxy resin, and debonding of the
fique fiber/epoxy matrix. The most intense color change was obtained for the water-immersion-aged
epoxy by 1440 h. Cole–Cole diagrams revealed the heterogeneity of the materials studied.

Keywords: natural fiber; fique fabric; epoxy resin; composite; aging; water immersion; dynamic–
mechanical analysis

1. Introduction

In recent years, a rapid growth in the use of polymeric composites reinforced with
fibers occurred, producing a combination of high performance, versatility and advantages
at favorable costs [1]. In this respect, natural fibers have become an important class of
reinforcement materials, having characteristics that are of great interest in the area of
polymeric composites, due to their low density, low cost, biodegradability, flexibility in
processing and their renewable and non-toxic sources. The mechanical properties of these
composites might also be significantly improved, as in the exemplary case of toughness of
flax fiber-reinforced epoxy matrix composites added with silica nanoparticles [2]. How-
ever, the hydrophilic characteristic of a natural fiber hinders not only its adhesion to the
hydrophobic polymer matrix but may also affect the durability of the composite in the case
of prolonged contact with water. Water absorption by composite materials exposed to the
environment, after a long period in use, is considered an unavoidable phenomenon and can
result in matrix plasticization, structural damage and crack growth [3,4]. Green composites
are prone to moisture absorption in a humid environment or when immersed in water.
In these cases, moisture diffusion can be described by three mechanisms. First, moisture
diffuses through pores and cracks in the polymer matrix. Second, capillary transport occurs
between the fiber/matrix interface. Ultimately, natural fibers swell after absorbing mois-
ture, and this leads to microcracks in the matrix around the swollen fibers. Eventually, this
leads to a permanent debonding of the matrix and fiber because water-soluble substances
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leach from the fiber surface [5,6]. The hygroscopic behavior of natural fibers influences
the biodegradation characteristic of the material. Moreover, greater moisture absorption
facilitates microbial attack. All these phenomena affect the interfacial adhesion between
fiber and matrix, which leads to poor stress transfer and changes the physical, mechanical
and thermal properties of the composite [5,7,8]. The moisture diffusivity in the composite
depends mainly on time, temperature, environment, matrix properties, curing technique,
and fiber orientation, among others [9]. It is known that water can affect not only the
polymer matrix but also the fibers and even the interface, causing loss of adhesion, thus
influencing the integrity of the composite. The polymer matrix absorbs water by a diffusion
process, in which case the kinetics of absorption generally follow Fick’s law [4,10–13].

Haameem et al. [14] suggested that moisture diffusion can be briefly categorized into
three mechanisms. The first mechanism is associated with the diffusion of water molecules
within the microgaps between the polymer chains. In the second, water molecules are
transported by capillary to the gaps and gaps between the fibers, as well as to the adhesive
bond of the matrix. Finally, in the third mechanism, microcracks occur in the composites
due to the swelling of the natural fibers. In general, moisture diffusion in a composite
depends on certain factors such as fiber volume fraction, void content, matrix viscosity,
moisture and temperature. Additionally, other factors that may influence mechanical
properties are the size of the natural fiber (short or long), porosity, relative humidity and
manufacturing method.

The dynamic thermomechanical analysis (DMA) of polymeric matrix materials has
been applied in the development of materials to evaluate mechanical stability [7,15], thermal
limit [16,17] and sound isolation [18]. In combination with the damping energy determi-
nation, which is associated with molecular motions displayed by a polymer in solid state,
this analysis can be applied to the study of morphology in multiphase systems. DMA tests
are mainly considered to study modifications in the composite, with the incorporation of
fiber and the performance as a function of properties. The current literature presents ample
findings in this field [10,16,17,19–21]. However, there is an absence of DMA studies on
water-immersion-accelerated aging in natural fiber–epoxy composites. Fique fibers are
quite a unique natural fiber occurring mainly in Colombia [22–27], which are of regional
importance and valid for other natural fibers. Therefore, this work investigated for the
first time the water immersion aging epoxy matrix composites reinforced with 40 vol%
fique fabric. The epoxy matrix and the composite were characterized by weight variation,
water absorption, scanning electron microscopy on the aged surface, structure of individual
molecules and the composition of molecular mixtures considered using Fourier transform
infrared spectroscopy, as well as dynamic mechanical analysis.

2. Materials and Methods
2.1. Materials

The fique fabric, Figure 1, was purchased in the market of Medellin, Colombia. The
development of techniques for spinning and weaving the natural fibers results in the
production of composites with superior mechanical properties [28]. The fabrics are man-
ufactured by interlacing the weft yarns (0◦) with the warp yarns (90◦) in a simple and
regular arrangement. The bidirectional fabric areal density, i.e., 859 g/cm2, was measured
according to the corresponding standards in a previous article [22,29]. Table 1 summarizes
the main properties of fique fibers.

The matrix phase consisted of the diglycidyl ether of bisphenol A (DGEBA) epoxy
resin mixed with the triethylenetetramine (TETA) hardener in the stoichiometric proportion
of 100/13 (DGEBA/TETA). Both DGEBA and TETA were supplied by Epoxyfiber, Rio de
Janeiro, Brazil.
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Table 1. Chemical and mechanical properties of fique fibers [22–27].

Fique

Cellulose
(wt%)

Hemicellulose
(wt%)

Lignin
(wt%)

Wax
(mm)

Pectin
(wt%)

Ash
(wt%)

18.7–70 22.1–27.1 6.81–16.6 - - -

Microfibril
Angle (◦)

Apparently
Density
(g/cm3)

Real
Density
(g/cm3)

Fiber
Diameter

(mm)

Tensile
Strength

(MPa)

Elongation
at Break

(%)

29.4 0.65–0.87 1.47 0.16–0.24 132.4–237 6–9.8

Figure 1. Fique fabric reinforcement.

2.2. Fabrication of Fique Fabric–Epoxy Matrix Composites

The fique fabric pieces were placed in an oven at 70 ◦C for at least 24 h. The 40 vol%
fique fabric–epoxy matrix composite was fabricated by placing the previously dried fabric
inside a steel mold while pouring fluid DGEBA-TETA resin in a layer by layer manner.
Laminated plates of 150 × 120 × 3.2 mm were prepared by the compression molding process
and cured inside the mold under a 5-ton load at room temperature (RT) for 24 h. For the
DMA tests, these plates were cut using a jigsaw model BOSCH Professional GST 75 E into
specimens with dimensions of 50 × 13 × 3.2 mm. After manufacturing, these specimens
were subjected to accelerated water absorption aging in the process described as follows.

2.3. Water Absorption

Absorption tests were performed on dried rectangle specimens of both the neat epoxy
resin and the composite. The tests were carried out in a deionized water bath (closed
container) at RT (25 ◦C), according to ASTM D570-98 [30]. Long-term water absorption
was conducted by immersing the specimens for different time periods, of up to 144 days,
aiming to study their durability. After immersion for a determined time, the specimens
were taken out and thoroughly dried with a clean cloth. All specimens were weighted
again. The difference of weight between the sample in dry condition and that after water
immersion time t was obtained by:

%WA =
w f inal − winitial

winitial
(1)

where w f inal is the weight of the sample at a specific time period of water immersion
and winitial is the weight of the dry sample at t = 0. The content of absorbed water in
composites after immersion time t (Mt) was calculated by the weight difference between
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the samples immersed in water and the dry composite samples. The water absorption
kinetic model [31–33] was used to describe the sorption curves, as:

Mt

M∞
= ktn (2)

where Mt and M∞ are water content at time t and at equilibrium; k and n are constants
which provide information about the diffusion mechanism that is acting in the composites.
The diffusion capacity of composites, which is represented by the ability of the water
molecules to move inside the specimens, was evaluated by the water diffusion coefficient
(D) via the following equation:

D = π

(
kh

4M∞

)2
(3)

2.4. Accelerated Aging

The water-immersion-aged samples were conditioned at RT in a plastic box and
stayed submerged during the entire aging period. Three groups were tested corresponding
to aging of 10, 20 [34] and 30 days [35] of exposure. Table 2 presents the specimen’s
nomenclature.

Table 2. Nomenclature adopted for all specimens.

Specimen Nomenclature

Unaged Epoxy UE
Water Immersion Epoxy Aged for 240 h AE/240 h
Water Immersion Epoxy Aged for 720 h AE/720 h

Water Immersion Epoxy Aged for 1440 h AE/1440 h
Unaged Composite UC

Water Immersion Composite Aged for 240 h AC/240 h
Water Immersion Composite Aged for 720 h AC/720 h
Water Immersion Composite Aged for 1440 h AC/1440 h

2.5. Scanning Electron Microscopy Analysis

Samples from the fique fabric, neat epoxy and composites aged by immersion in water
were analyzed by scanning electron microscopy (SEM) in a model Quanta FEG250, FEI. To
carry out these analyses, a metallic coating was applied on the surface of the samples using
the LEICA equipment, model EM ACE600.

2.6. Colorimetry Analyses: CIELAB Color Space

The CIELAB color space, Figure 2, is a second method for providing a perceptually
uniform color space. In this color space, the distance between two points approximately
tells how different the colors are in luminance, chroma and hue. Colorimetric analysis was
performed to assess surface color changes, using a chromometer, and evaluate the results
using the coordinates of this method. The L∗ represents the brightness value, as in the
darkest black L∗ = 0 and in the brightest white L∗ = 100. The components green–red and
blue–yellow are represented by the chromaticity coordinates a∗ and b∗, respectively.

The red and yellow components are shown in the positive direction, while the green
and blue components are in the negative direction. The total color changes (∆E) were
calculated as described in ISO 7724-1 [36] according to:

∆E =

√(
L∗2 − L∗1

)2
+
(
a∗2 − a∗1

)2
+
(
b∗2 − b∗1

)2 (4)

where L, a and b are the differences between the initial values (unweathered sample (1))
and final (weathered sample (2)) of L∗, a∗ and b∗. The whiteness index, Equation (5), is a
numeric indicator used as the degree of whiteness. In the CIELAB color space, two of the
axes are perceptibly orthogonal to the luminosity. The hue can be calculated along with
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the chroma, Equation (6), transforming coordinates a and b from rectangular form to polar
form. The hue is the angular component of the polar representation, while chroma is the
radial angular component.

Wi = 100−
√
(100− L)2 + a2 + b2 (5)

C∗ab =
√
(a2 + b2) (6)

The colorimetric pattern evaluation of the plates was performed in a colorimeter
portable model WR-10QC of the brand ARTBULL, CN.

Figure 2. Three-dimensional CIELAB color space.

2.7. Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy (FTIR) was performed to identify and de-
termine functional groups of composite and epoxy structures in the infrared (IR) region
between 400 cm−1 and 4000 cm−1. The absorption spectra were obtained with a resolu-
tion of 4 cm−1 and 64 scans in each assay. The equipment used was a Thermo Scientific
spectrometer, using the OMNIC Spectra software.

2.8. Dynamic–Mechanical Analysis (DMA)

DMA, also known as thermodynamic-mechanical, was performed to obtain informa-
tion on the viscoelastic behavior, such as the storage modulus (E′), loss modulus (E′′), the
ratio between these moduli, i.e., tan δ, as well as the glass transition temperature (Tg) of
the samples, described in Table 2. The procedure was carried out following the ASTM
D4065 [37] standard in the three-point bending mode. The samples dimensions were
55 × 13 × 3 mm. The equipment used was a DMA Q800 from TA Instruments. The test
parameters were: amplitude of 20 µm, frequency of 1 Hz, static force of 2 N, range of
heating from 30 to 190 ◦C and heating rate of 3 ◦C/min in a nitrogen atmosphere.

3. Results and Discussion
3.1. Water Absorption

The moisture diffusion in the natural fiber composites is influenced by the volume
fraction of fiber [32], as well as the humidity, the voids, the viscosity of the matrix and the
temperature [38,39]. It is well-known that the water absorption capacity depends upon the
constituents of natural fibers and might reveal how their composites behave when moisture
is present in practical applications, either in a total immersion or partial water exposure
situations. Figure 3 shows the water absorption and diffusion coefficients graphs, as well
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as the n and k parameters, for both the epoxy and the fique fabric/epoxy composite. One
should note that there is a large increase in the water diffusion process when the epoxy
resin (0.006 × 10−4) is compared with the fique-fabric-reinforced composite (3.044 × 10−4),
as well as a significant increase in water absorption values in the composites. These results
are expected since natural fibers are hydrophilic materials and, in this case, absorb a
considerable volume of water since they are the composite’s reinforcement with 40 vol%.
Meanwhile, porosity and microvoids in the epoxy matrix might also have contributed to
the resulting water absorbed. The variation in moisture content can cause a network of
microfractures on the surface of the epoxy and the composite.

Figure 3. Weight variation of epoxy (E) and fique fabric–reinforced epoxy matrix composite (C)
during water immersion aging.

3.2. Weight Variation

An initial increase in weight was observed, as shown in Figure 4. It was mainly
associated with the composite water diffusion process. This event was followed by a
second increase in weight that reaches a maximum value, around 23%. Exposure for 1440 h
recorded a weight variation of the order of 20%, indicating that the saturation for the
composite is around 20%, since there was no significant change in the percentage of weight
variation. As mentioned before, natural fibers typically have a high moisture absorption
capacity, which can lead to fiber swelling and loss of dimensional stability. In addition,
swollen fibers decrease the fiber/matrix adhesion as well as the mechanical properties of
their composites [40]. Regarding the epoxy matrix, the hydrolytic degradation process
in the polymer is characterized by a decrease in the crosslink density, an increase in the
hydrophilicity of the network and leaching of low molecular weight products [41]. Krauklis
et al. [41] point out three types of leaching that are potentially possible: (i) hardener leaching;
(ii) leaching of epoxy compounds; and (iii) leaching of impurities or additives. In theory,
there is a possibility that some amount of unlinked hardener, in the case it is water soluble,
would be washed out of the crosslinked polymer network or used in further crosslinking.
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Figure 4. Weight variation of epoxy and fique fabric–reinforced epoxy matrix composite during water
immersion aging.

3.3. Effects of Water Immersion Aging on Fique Fabric

Figure 5 shows the evolution of the degradation in the fique fabric due to water
immersion. Through SEM images, the appearance of complex microfibril structures is
noticed as the aging process proceeds. Excessive water absorption leads to an increase in
bound-absorbed water and a decrease in free water. In this situation, water can penetrate
the cellulose network of the fiber as well as in the capillaries and spaces between the fibrils
and less connected areas. Additionally, water can also form chemical bonds with groups
on cellulose molecules. The rigidity of the cellulose structure is destroyed by the water
molecules in that structure, in which moisture acts as a plasticizer, allowing the cellulose
molecules to move freely. Hence, the cellulose mass is softened and can change the fiber
dimensions easily with an application of force [42,43]. Wei and Meyer [44] observed in
their study that fibers with an intact surface, which did not receive any surface treatment,
present better resistance to degradation, while fibers with surface defects are prone to high
precipitation of calcium hydroxide in the cell walls, when applied in a cement matrix. The
authors’ conclude that internal lignin and hemicellulose easily undergo alkaline hydrolysis,
which further leads to the separation of the cellulose microfibrils. Gómez Hoyos and
Vázquez [34] observed the same structure present in this study for the fibers after alkaline
treatment. The authors inferred that the removal of hemicellulose and lignin made the
interfibrillar regions less dense and rigid, allowing the fibrils to reorganize along the
direction of tension, resulting in better charge sharing.

3.4. Effects of Water Immersion Aging on Epoxy

Figure 6 presents the effects of water immersion degradation on the epoxy resin. The
SEM images show that the epoxy surface was markedly damaged, consequently, microvessels,
infiltration species through which water can be percolated, are easily observable. In addition,
a slight yellowing of the samples was observed, as well as an increase in the amount of
pores. The nature of the interaction of sorbed water with epoxy has long been debated in
the literature [8,41,45–48]. Although it is well-accepted that the sorbed water plasticizes the
resin, resulting in a change in the glass transition temperature, modulus and shear strength
of the polymer, the exact mechanism of the adsorbed water/epoxy interaction is not fully
understood. A schematic diagram was proposed by Panchagnula et al. [47] to represent the
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nature of the water/epoxy interaction in which water molecules are shown not only to be
hydrogen-bonded to the epoxy but also hydrogen-bonded to themselves, resulting in the
formation of free interstitial water.

Figure 5. SEM microscopy appearance of the fique fabric: control group (a) and water immersion
aged after 240 h (b), 720 h (c) and 1440 h (d).
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Figure 6. SEM microscopy appearance of the epoxy: control group (a) and water immersion aged
after 240 h (b), 720 h (c) and 1440 h (d).

3.5. Effects of Water Immersion Aging on Fique-Fabric-Reinforced Epoxy Composite

Figure 7 shows that one of the main events that water caused in composites is the
fiber–epoxy debonding. It might have occurred due to the aforementioned swelling of the
fique fiber. As a result, microcracking of the brittle epoxy matrix occurs [42]. The high
cellulose content in the natural fiber further contributes to more water penetrating the
interface through the microcracks induced by fiber swelling and creating stresses that lead to
composite failure [42]. As the composite cracks and is damaged, mechanisms of capillarity
and transport through microcracks become active. The capillarity mechanism involves
the flow of water molecules along the fique fiber/epoxy matrix interfaces and a diffusion
process through the matrix. Water molecules actively degrade the interface, resulting in
debonding between the fique fiber and the matrix [42,49]. Diffusion can occur due to
capillary action and is predominant in composites where fiber wettability by the matrix is
incomplete. The transport behavior of matrix voids and the fiber/matrix interface might
have a substantial effect on the overall diffusivity of composite materials [50]. Induced
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moisture has detrimental effects on the performance of composite materials, leading to
matrix plasticization, chemical and mechanical degradation [6–8,48].

Figure 7. SEM microscopy appearance of the composite: control group (a) and water immersion aged
after 240 h (b), 720 h (c) and 1440 h (d).

3.6. Colorimetry Analysis: CIELAB

It is important to have an objective way to characterize colors of polymers and their
composites which were subjected to water absorption, as well as to quantify differences
between colors. Considering that, the CIELAB analysis was of paramount importance.
Figure 8a shows an increase in L∗ and b∗ parameters as water exposure increase for epoxy
resin. The parameter a∗ was stable, i.e., without significant changes. Regarding the
composite, a greater variation in the parameters was observed, but when compared with the
unaged composite and to the most severe exposure condition (AC/1440 h), no significant
change was found in the intensity of L∗, a∗ or b∗. Figure 8b shows that the most intense
color change was obtained for the AE/1440 h, also increasing the whiteness index. This
is due to a more whitish film observed on the epoxy surface after exposure to water. The
initial uncured epoxy resin, and even the yellowish TETA, could explain the yellowing of
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the epoxy resin and its composite over time. Residual crosslinking can also cause a decrease
in the concentration of the unreacted amine group causing the color change [41].

Figure 8. (a) Changes in color coordinates of the color space CIELAB for epoxy resin, composite and
their (b) main parameters during water immersion aging.

3.7. Fourier Transform Infrared Spectroscopy

Figure 9 shows the FTIR spectra of the epoxy and composite samples, both unaged
and under more severe aging conditions (1440 h).

Figure 9. Fourier transform infrared spectra of (a) epoxy and (b) composite unaged and water
immersion aged for 1440 h.

Regarding the epoxy (Figure 9a), the band displacement can be seen at 560 cm−1,
1491 cm−1 and 1614 cm−1. Significant increases in absorbance bands at 818 cm−1 and 2354
cm−1, and decreases at 943 cm−1, associated with the stretching C-O of the oxirane group,
1158 cm−1, 1326 cm−1 and 1570 cm−1, associated with the bending vibration of the primary
amino group, were observed. Cañavate et al. [51] reported that the bands close to 863 and
917 cm−1 own the assignment of the epoxy and anhydrous ring, and these bands are known
to be intensity-decreased during the curing reaction due to the opening of the epoxy rings.
Therefore, both are used as an indication for the progression of the curing reaction. In contrast
to this, and unexpectedly, the band at 3419 cm−1 was greatly reduced. This band is attributed
to the O-H stretching of the hydroxyl groups (3650–3600 cm−1 (free) and 3400–3200 cm−1

(hydrogen bond), which is commonly increased due to the hydrolysis reaction. Ether bonds
(C-O ⇒ 1300–1000 cm−1) are the most sensitive bonds to hydrolysis in the epoxy net-
work and explain the lack of band at 3400 cm−1 [45]. This band is known to be related to
O-H stretching [47,52]. The Blackburn et al. [53] studies indicated increases in the degree of
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polymerization throughout the 8-week exposure period despite variations in moisture and
temperature conditioning. This occurs based on the fact that the epoxy was initially cured
under laboratory conditions. Regarding the composite (Figure 9b), a shift and increase was
observed in the band 580 cm−1 and an increase at 1486 cm−1, associated with the symmet-
rical stretching CH2, as well as a significant decrease in the absorbance bands at 723 cm−1,
890 cm−1 and 1796 cm−1. Reductions in the bands 810 cm−1 and 1063 cm−1, associated with
the C-O-C ether elongation, and 1264 cm−1 were noted, as well as the appearance of the band
in 2345 cm−1. According to Ray and Rathore [50], the chemical degradation of the composite
includes the hydrolysis of the bond at the epoxy/fiber interface.

3.8. Effects of Water Immersion Aging on DMA

One of the main objectives of DMA is to relate macroscopic properties to molecular
relaxations associated with conformational changes and microscopic deformations gener-
ated from molecular rearrangements. The DMA technique separates the dynamic modulus
(E) of the material into two distinct parts: an elastic (storage) (E′) and a viscous (loss) (E′′)
components. The ratio of E′′ to E′ (E′′/E′) gives the tangent of the phase angle δ, tan δ,
which is known as the damping and may be regarded as a measure of the energy dissipation
capacity of the material. By using the curve of tan δ, the glass transition temperature (Tg)
can be obtained, which may also be used to evaluate the material characteristics. The DMA
curves in the α-transition zone of the epoxy and composite aged by water immersion are
shown in sequence.

3.8.1. Storage Modulus (E′)

Figure 10 shows the storage modulus values (E′) vs. temperature curves for each
investigated material. One can see that AC/1440 h had a decrease in the E′, which could
be due to the softening and the beginning of the relaxation processes within the polymer
matrix [15]. Arias et al. [45] also observed that the storage modulus and the glass transition
values decreased with hydrolysis. These -OH bridges have been reported to be the reason
for the more stable storage modulus of epoxy, as observed at AE/240 h and AE/720 h.
Regarding the composite, the AC/240 h showed a significant drop (lower E′) due to the
damaged matrix, deteriorated interfacial adhesion and bond strength between the matrix
and the fiber. Chemical combination behaviors of the chains, van der Waals bonding and
hydrogen bonding in polymer molecular construction were responsible for the material’s
ability to carry the external stress. Once water molecules entered the epoxy, the hydrolysis
and plasticization of the matrix damage the chemical combinations and bondings. Expe-
riencing a stress may induce greater strains that could lead to an E′ decrease. The E′ of
AC/720 h and AC/1440 h was higher when compared with the UC.

Figure 10. DMA storage modulus (E′) curves for (a) epoxy resin and its composite unaged and
water-immersion-aged (b).
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3.8.2. Loss Modulus (E′′)

Figure 11 shows the variation of E′′ with temperature for the investigated epoxy resin
and its composite.

Figure 11. DMA loss modulus (E′′) curves for (a) epoxy resin and its composite unaged and water-
immersion-aged (b).

An increase in the loss modulus is observed in all cases, i.e., the increase in viscosity
with the aging process. It is suggested that the shifts to higher temperatures are caused by a
decrease in the molecular movement. Additionally, with increasing time exposure to water,
the intensity of E′′ peaks gradually increases and becomes broader for both the epoxy resin
and its composite. This behavior reveals that the aging effectively suppresses the polymeric
chains mobility, resulting in a broadening of the Tg range. Such behavior is related to the
degradation processes such as plasticization, residual stress relaxation, hydrolysis and so
forth [19,54]. Despite this, based on the presented results, it is not possible to differentiate
these phenomena and individually evaluate their influence on the degradation process.

3.8.3. Tangent Delta (tan δ)

The tan δ or damping curve of the epoxy resin and its composite after different saturation
times in the water are presented in Figure 12. One may notice that the damping value
decreased with the prolonged water immersion time, indicating higher elasticity [20,45,46].
The intensity of the tan δ peaks for the immersed composites decreased to around half of
the untreated sample values. Arias et al. [45] observed the existence of two peaks, indicating
bimodal chain lengths. In the present study, two peaks were also observed after aging for
AE/720 h, becoming more apparent after 1440 h of exposure. As for the composite, the same
behavior was observed, and all curves presented bimodal or more chain lengths.

Figure 12. DMA tangent δ curves for (a) epoxy resin and its composite unaged and water-immersion-
aged (b).

The Tg related to the observed peaks of tan δ showed a slight decrease based on
the water exposure, i.e., there is an increase in the temperature at which the transition
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from a glassy state occurs (in which the molecules of the amorphous phase do not have
mobility) to a rubbery state (when the amorphous phase molecules become mobile). This
phenomenon possibly occurs due to the presence of water molecules bound to the epoxy
network. Incontestably, the value of Tg was the most affected property in this process due
to the existence of secondary -OH groups in the network [45], which are also associated
with epoxy degradation. Water became a bridge between the -OH groups in the epoxy
network and as a lubricant when in excess, producing greater mobility of these chains. All
aged conditions showed an increased Tg when compared with the UC. After 1440 h, the
Tg had a reduction of 4% in comparison with that achieved after aging for 720 h, this was
also observed by Uthaman et al. [46]. The authors reported that the Tg of the composites
first increased and then was similar to the control group samples, remaining stable under
all submersion conditions. Concerning this final reduction, the authors attributed it to
the plasticization effect on the materials submerged for a long period of time. This effect
is generally defined as the increase in the segmentation mobility of the polymeric chains.
However, an increase in the restriction of the movement of the epoxy molecules was
observed based on the decrease in the peak in tan δ. Energy dissipation may have been
increased due to increased voids in the epoxy.

3.9. Qualitative Discussion

Table 3 presents the main parameters obtained from the E′, E′′ and tan δ curves in
Figures 10–12, respectively. The results in this table reveal a significant effect of water
immersion aging on important DMA parameters of the fique-fabric-reinforced epoxy
composites. With up to 720 h, the epoxy resin storage modulus was increased by more
than 81% with respect to the UE. On the other hand, E′ decreased by 30% after 1440 h of
water exposure. Regarding the composite, the storage modulus was increased by more
than 73% compared with the UC. As for the loss modulus, the AE/1440 h was heightened
by more than 160% as compared with the UE. Regarding the composite, the loss modulus
was elevated more than 90% to AC/1440 h as compared with the UC.

The maximum internal friction associated with the peak in E′′ was slightly affected by
water immersion aging. Indeed, the internal friction of either AE/240 h or AC/240 h in
Table 3 was more than 15% greater than that of the UE and UC, respectively. In contrast,
the maximum damping associated with the peak in tan δ decreased, while the dynamic
Tg temperature at the peak increased with the exposure time to the water immersion
aging. The transition temperature from the glassy to the rubbery conditions in Table 3
was significantly increased. This suggests that water immersion aging interfered in the
thermally activated mechanisms that promote the glassy to rubbery transition.

3.10. The Cole–Cole Plot

The viscoelastic parameters E′ and E′′ can also be represented in the Cole–Cole plot,
where E′′ is plotted as a function of E′ on the linear axes, as shown in Figure 13. Cole–
Cole plots provide information about the secondary relaxations, structural changes after
filler addition [20] and system heterogeneity. Homogeneous polymeric systems exhibit
semicircular curves, while heterogeneous multiphase systems present imperfect or elliptical
curves [21]. The imperfect semicircular shapes have been associated with the relatively
good interfacial adhesion at fiber loading [16]. Figure 13 shows the Cole–Cole diagrams for
the UE and UC and their aged treatments.

The Cole–Cole curves in this figure show that the UE and aged epoxy conditions
are homogeneous systems with a concave shape (semicircles). However, one can see an
increased widening effect on the curves for the conditions with exposure times of up to
720 h, which result in higher final E′ values. For the samples with 1440 h of exposure, a
reduction in amplitude and a decrease in final E′ were noticed, as well as the beginning of
an “irregularity”, i.e., the formation of two semicircles. This irregularity has been related to
two different relaxation mechanisms which correspond to the secondary relaxations [15].
All conditions presented higher E′′ in comparison with the unaged epoxy. Regarding the
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UC and aged composite treatments, the Cole–Cole diagram shows only one semicircle to
the UC and two semicircles for the other conditions. Additionally, an increase in the values
of the E′ and E′′ was observed after the aging treatments. These results show that the aging
process effectively suppresses the polymeric chains mobility and is indicative of materials’
heterogeneity associated with greater differences in relaxation processes of the epoxy matrix
when exposure continues. Moreover, the Cole–Cole diagram in Figure 13b shows that the
1440 h exposure treatment resulted in the highest E′ and E′′ values. Therefore, it can be
inferred that CA/1140 h can absorb higher external loads while exhibiting elastic behavior
and maintaining its characteristics at higher temperatures [15].

Table 3. DMA parameters for epoxy resin and its composites with 40 vol% fique fabric of both unaged
and aged-by-water immersion.

DMA Parameter UE AE/240 h AE/720 h AE/1440 h UC AC/240 h AC/720 h AC/1440 h

E′ at RT (GPa) 3.21 5.33 5.82 2.26 2.81 1.70 4.14 4.87
End of Glass condition (◦C) 58 77 78 74 64 83 84 83

Onset of Rubbery condition (◦C) 79 157 158 159 135 158 160 160
E′′ at RT (GPa) 0.038 0.072 0.082 0.100 0.062 0.119 0.117 0.123

Maximum Internal friction (GPa) 0.434 0.535 0.514 0.500 0.286 0.329 0.283 0.330
Begin glass transition Tg (◦C) 68 112 112 110 90 110 113 118

Maximum damping (dimensionless) 0.87 0.64 0.54 0.50 0.40 0.26 0.21 0.21
Dynamic Tg 78 129 123 119 87 122 123 119

Figure 13. Cole–Cole plots of (a) the UE aged epoxy treatments and (b) the UC aged composite
treatments.

4. Summary and Conclusions

Dynamic mechanical analysis was conducted in both epoxy resin and 40 vol% fique-
fabric-reinforced epoxy matrix composites. Data obtained after accelerated water immer-
sion aging were analyzed thoroughly in order to understand the relationship between
long-term performance properties and various physico-mechanical parameters. The fol-
lowing conclusions can be drawn from the above study:

• The analysis of water absorption showed a large increase in water diffusion coefficient
when comparing the epoxy resin and the fique fabric composites. The weight variation
did not show a clear connection between the amount of water absorbed and the
duration of exposure. However, a general trend in the obtained values suggests an
increase in the weight with the increase in exposure duration.

• The SEM analyses showed the deteriorated structure and, in particular, that the inter-
face may initiate complex microfibril structures, microvessels, pores and microcracking
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of the epoxy matrix due to fiber swelling or fique fiber/epoxy matrix debonding. Con-
sequently, this may additionally influence the composite’s behavior and/or structure
integrity. The process of water immersion aging, especially for the epoxy resin, was
dominated by residual crosslinking interfering with the color change in the sample.

• Based on the specific reductions in the absorbance bands (943 and 810 cm−1) of the
epoxy and composite observed, respectively, it can be inferred that the curing process
occurred through exposure by water immersion.

• The dynamic moduli behavior confirms the degradation of the investigated epoxy
resin and composite during accelerated aging. The E′ decreased and the E′′ increased
during continued water exposure. The penetration of water molecules inside the
composite’s structure caused the plasticization of the epoxy matrix and initiated the
degradation process, possibly by breaking the hydrogen bondings. This behavior is
related to the degradation process, which decreases the strength of a structure and
increases its viscosity and damping under elevated temperatures. After the accelerated
aging, all three aging conditions show considerably higher Tg values for both materials,
which is attributed to residual crosslinking.

Therefore, it can be stated that DMA experiments on aged materials can give valuable
indications about their long-term performance properties. The reported results can be
helpful both on design and operation stages for epoxy-reinforced fique fabric composites
when in contact with water.

Author Contributions: Conceptualization, M.S.O., F.S.d.L. and S.N.M.; methodology, M.S.O., U.O.C.,
W.B.A.B. and J.d.S.C.d.C.; validation, M.S.O., F.S.L. and S.N.M.; resource, H.A.C.L. and S.N.M.;
formal analysis, M.S.O. and A.C.P.; investigation, M.S.O.; writing—original draft preparation, M.S.O.;
writing—review and editing, M.S.O., A.C.P., U.O.C., H.A.C.L. and W.B.A.B.; supervision, S.N.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Brazilian governmental research agencies CAPES (Coor-
denação de Aperfeiçoamento de Pessoal de Nível Superior), Brazil–Finance code 001, and FAPERJ
(Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) (processes E-26/202.286/2018 and
E-26/202.045/2020) for their support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors thank the Institute of Macromolecules Professora Eloisa Mano
(IMA), specially Livia Rodrigues de Menezes and Vinícius Oliveira Aguiar for their support in
carrying out the CIELAB experiment and DMA tests.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. da Luz, F.S.; Garcia Filho, F.d.C.; Oliveira, M.S.; Nascimento, L.F.C.; Monteiro, S.N. Composites with Natural Fibers and

Conventional Materials Applied in a Hard Armor: A Comparison. Polymers 2020, 12, 1920. [CrossRef] [PubMed]
2. Kinloch, A.J.; Taylor, A.C.; Techapaitoon, M.; Teo, W.S.; Sprenger, S. From matrix nano- and micro-phase tougheners to composite

macro-properties. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20150275. [CrossRef] [PubMed]
3. Meng, J.; Wang, Y. A Review on Artificial Aging Behaviors of Fiber Reinforced Polymer-matrix Composites. MATEC Web Conf.

2016, 67, 06041. [CrossRef]
4. Boukhoulda, B.; Adda-Bedia, E.; Madani, K. The effect of fiber orientation angle in composite materials on moisture absorption and

material degradation after hygrothermal ageing. Compos. Struct. 2006, 74, 406–418. [CrossRef]
5. Chee, S.S.; Jawaid, M.; Sultan, M.; Alothman, O.Y.; Abdullah, L.C. Accelerated weathering and soil burial effects on colour,

biodegradability and thermal properties of bamboo/kenaf/epoxy hybrid composites. Polym. Test. 2019, 79, 106054. [CrossRef]
6. Kazi, A.M.; Ramasastry, D.; Waddar, S.; Shaikh, T.M.; Tamboli, A.A. Water Absorption and Thickness Swelling Behaviour of

Woven Roselle Fibre Epoxy Composites. Int. J. Veh. Struct. Syst. 2022, 14, 37–40. [CrossRef]

http://doi.org/10.3390/polym12091920
http://www.ncbi.nlm.nih.gov/pubmed/32858794
http://dx.doi.org/10.1098/rsta.2015.0275
http://www.ncbi.nlm.nih.gov/pubmed/27242298
http://dx.doi.org/10.1051/matecconf/20166706041
http://dx.doi.org/10.1016/j.compstruct.2005.04.032
http://dx.doi.org/10.1016/j.polymertesting.2019.106054
http://dx.doi.org/10.4273/ijvss.14.1.09


Polymers 2022, 14, 3650 17 of 18

7. Shettahalli Mantaiah, V.K. Water Absorption Behavior and Its Effect on Static Mechanical and Dynamic Mechanical Properties of
Flax Fabric Reinforced Epoxy Composites. J. Nat. Fibers 2022. [CrossRef]

8. Kumar, R.; Ul Haq, M.I.; Sharma, S.M.; Raina, A.; Anand, A. Effect of water absorption on mechanical and tribological properties
of Indian ramie/epoxy composites. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 236, 1871–1879. [CrossRef]

9. Behera, A.; Thawre, M.; Ballal, A. Hygrothermal aging effect on physical and mechanical properties of carbon fiber/epoxy
cross-ply composite laminate. Mater. Today Proc. 2020, 28, 940–943. [CrossRef]

10. Chateauminois, A.; Vincent, L.; Chabert, B.; Soulier, J. Study of the interfacial degradation of a glass-epoxy composite during
hygrothermal ageing using water diffusion measurements and dynamic mechanical thermal analysis. Polymer 1994, 35, 4766–4774.
[CrossRef]

11. Badyankal, P.V.; Manjunatha, T.; Vaggar, G.B.; Praveen, K. Compression and water absorption behaviour of banana and sisal
hybrid fiber polymer composites. Mater. Today Proc. 2021, 35, 383–386. [CrossRef]

12. Espert, A.; Vilaplana, F.; Karlsson, S. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in
polypropylene composites and its influence on their mechanical properties. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1267–1276.
[CrossRef]

13. Thwe, M.M.; Liao, K. Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer
matrix hybrid composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 43–52. [CrossRef]

14. Haameem, J.A.M.; Abdul Majid, M.; Afendi, M.; Marzuki, H.; Hilmi, E.A.; Fahmi, I.; Gibson, A. Effects of water absorption on
Napier grass fibre/polyester composites. Compos. Struct. 2016, 144, 138–146. [CrossRef]

15. Hidalgo-Salazar, M.A.; Correa-Aguirre, J.P.; García-Navarro, S.; Roca-Blay, L. Injection Molding of Coir Coconut Fiber Reinforced
Polyolefin Blends: Mechanical, Viscoelastic, Thermal Behavior and Three-Dimensional Microscopy Study. Polymers 2020, 12, 1507.
[CrossRef]

16. Jacob, R.; Isac, D.J. Dynamic mechanical analysis and thermal degradation of jute fiber reinforced BSFT (Ba0.6Sr0.4FexTi(1-x)
O3-δ), (x = 0.1)-polypropylene composite. Indian J. Pure Appl. Phys. 2017, 55, 497–502.

17. Oliveira, M.; Garcia, F.D.C.; Luz, F.; Demosthenes, L.; Pereira, A.; Colorado, H.; Nascimento, L.; Monteiro, S. Evaluation of
Dynamic Mechanical Properties of Fique Fabric/Epoxy Composites. Mater. Res. 2019, 22, 175–182. [CrossRef]

18. Sabet, S.M.; Ohadi, A. Sound transmission loss comparision for compression molded polycarbonate and PMMA. In Proceedings
of the 22nd International Congress on Sound and Vibration, ICSV 2015, Florence, Italy, 12–16 July 2015.

19. Katunin, A.; Gnatowski, A.; Kajzer, W. Evolution of Static and Dynamic Properties of Gfrp Laminates during Ageing in Deionized
and Seawater. Adv. Compos. Lett. 2015, 24, 38–43. [CrossRef]

20. Costa, U.O.; Nascimento, L.F.C.; Bezerra, W.B.A.; Neves, P.P.; Huaman, N.R.C.; Monteiro, S.N.; Pinheiro, W.A. Dynamic and
Ballistic Performance of Graphene Oxide Functionalized Curaua Fiber-Reinforced Epoxy Nanocomposites. Polymers 2022, 14,
1859. [CrossRef]

21. Fredi, G.; Dorigato, A.; Pegoretti, A. Dynamic-mechanical response of carbon fiber laminates with a reactive thermoplastic resin
containing phase change microcapsules. Mech. Time-Depend. Mater. 2020, 24, 395–418. [CrossRef]

22. Neves Monteiro, S.; Salgado de Assis, F.; Ferreira, C.L.; Tonini Simonassi, N.; Pondé Weber, R.; Souza Oliveira, M.; Colorado,
H.A.; Camposo Pereira, A. Fique Fabric: A Promising Reinforcement for Polymer Composites. Polymers 2018, 10, 246. [CrossRef]

23. Gomez, T.; Navacerrada, M.; Díaz, C.; Fernández-Morales, P. Fique fibres as a sustainable material for thermoacoustic conditioning.
Appl. Acoust. 2020, 164, 107240. [CrossRef]

24. Guzman, C.; Bacterióloga, L.; Hernández, H.; Castro, L. Influence of Particle Size and Temperature on Methane Production From
Fique’s Bagasse Influencia del tamaño de partícula y la temperatura sobre la producción de metano a partir del bagazo de fique.
Iteckne 2012, 9, 72–77.

25. Gañán, P.; Mondragon, I. Surface modification of fique fibers. Effect on their physico-mechanical properties. Polym. Compos. 2002,
23, 383–394. [CrossRef]

26. Delvasto, S.; Toro, E.; Perdomo, F.; de Gutiérrez, R.M. An appropriate vacuum technology for manufacture of corrugated fique
fiber reinforced cementitious sheets. Constr. Build. Mater. 2010, 24, 187–192. [CrossRef]

27. Manfredi, L.B.; De Santis, H. Influence of the addition of montmorillonite to the matrix of unidirectional glass fibre/epoxy
composites on their mechanical and water absorption properties. Compos. Part A Appl. Sci. Manuf. 2012, 39, 1726–1731.
[CrossRef]

28. John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [CrossRef]
29. Oliveira, M.S.; Luz, F.S.d.; Lopera, H.A.C.; Nascimento, L.F.C.; Garcia Filho, F.d.C.; Monteiro, S.N. Energy Absorption and

Limit Velocity of Epoxy Composites Incorporated with Fique Fabric as Ballistic Armor—A Brief Report. Polymers 2021, 13, 2727.
[CrossRef]

30. ASTM D570-98; Standard Test Method for Water Absorption of Plastics. American Society For Testing Materials: West Con-
shohocken, PA, USA, 2018.

31. Muñoz, E.; Garcia-Manrique, J. Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced
Bioepoxy Composites. Int. J. Polym. Sci. 2015, 2015, 390275. [CrossRef]

32. da Cunha, J.d.S.C.; Nascimento, L.F.C.; da Luz, F.S.; Monteiro, S.N.; Lemos, M.F.; da Silva, C.G.; Simonassi, N.T. Physical and
Mechanical Characterization of Titica Vine (Heteropsis flexuosa) Incorporated Epoxy Matrix Composites. Polymers 2021, 13, 4079.
[CrossRef]

http://dx.doi.org/10.1080/15440478.2022.2060404
http://dx.doi.org/10.1177/13506501211005635
http://dx.doi.org/10.1016/j.matpr.2019.12.329
http://dx.doi.org/10.1016/0032-3861(94)90730-7
http://dx.doi.org/10.1016/j.matpr.2020.02.695
http://dx.doi.org/10.1016/j.compositesa.2004.04.004
http://dx.doi.org/10.1016/S1359-835X(01)00071-9
http://dx.doi.org/10.1016/j.compstruct.2016.02.067
http://dx.doi.org/10.3390/polym12071507
http://dx.doi.org/10.1590/1980-5373-mr-2019-0125
http://dx.doi.org/10.1177/096369351502400302
http://dx.doi.org/10.3390/polym14091859
http://dx.doi.org/10.1007/s11043-019-09427-y
http://dx.doi.org/10.3390/polym10030246
http://dx.doi.org/10.1016/j.apacoust.2020.107240
http://dx.doi.org/10.1002/pc.10440
http://dx.doi.org/10.1016/j.conbuildmat.2009.01.010
http://dx.doi.org/10.1016/j.compositesa.2008.07.016
http://dx.doi.org/10.1016/j.carbpol.2007.05.040
http://dx.doi.org/10.3390/polym13162727
http://dx.doi.org/10.1155/2015/390275
http://dx.doi.org/10.3390/polym13234079


Polymers 2022, 14, 3650 18 of 18

33. Stevulova, N.; Cigasova, J.; Purcz, P.; Schwarzova, I.; Kacik, F.; Geffert, A. Water Absorption Behavior of Hemp Hurds Composites.
Materials 2015, 8, 2243–2257. [CrossRef]

34. Gómez Hoyos, C.; Vázquez, A. Flexural properties loss of unidirectional epoxy/fique composites immersed in water and alkaline
medium for construction application. Compos. Part B Eng. 2012, 43, 3120–3130. [CrossRef]

35. Lu, M.M.; Van Vuure, A.W. Effects of water immersion ageing on composites made of non-dry flax fibres. Mater. Today Proc. 2020,
31, S206–S208. [CrossRef]

36. ISO 7724-1; Paints and Varnishes—Colorimetry. ISO: Geneva, Switzerland, 1984.
37. ASTM D4065-20; Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures.

American Society For Testing Materials: West Conshohocken, PA, USA, 2018.
38. Chaudhary, V.; Bajpai, P.K.; Maheshwari, S. Effect of moisture absorption on the mechanical performance of natural fiber

reinforced woven hybrid bio-composites. J. Nat. Fibers 2020, 17, 84–100. [CrossRef]
39. Oliveira, M.S.; da Luz, F.S.; da Costa Garcia Filho, F.; Pereira, A.C.; de Oliveira Aguiar, V.; Lopera, H.A.C.; Monteiro, S.N.

Dynamic Mechanical Analysis of Thermally Aged Fique Fabric-Reinforced Epoxy Composites. Polymers 2021, 13, 4037. [CrossRef]
[PubMed]

40. Balla, V.K.; Kate, K.H.; Satyavolu, J.; Singh, P.; Tadimeti, J.G.D. Additive manufacturing of natural fiber reinforced polymer
composites: Processing and prospects. Compos. Part B Eng. 2019, 174, 106956. [CrossRef]

41. Krauklis, A.E.; Echtermeyer, A.T. Mechanism of Yellowing: Carbonyl Formation during Hygrothermal Aging in a Common
Amine Epoxy. Polymers 2018, 10, 1017. [CrossRef]

42. Dhakal, H.; Zhang, Z.; Richardson, M. Effect of water absorption on the mechanical properties of hemp fibre reinforced
unsaturated polyester composites. Compos. Sci. Technol. 2007, 67, 1674–1683. [CrossRef]

43. Chen, H.; Miao, M.; Ding, X. Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites.
Compos. Part A Appl. Sci. Manuf. 2009, 40, 2013–2019. [CrossRef]

44. Wei, J.; Meyer, C. Degradation rate of natural fiber in cement composites exposed to various accelerated aging environment
conditions. Corros. Sci. 2014, 88, 118–132. [CrossRef]

45. Arias, J.P.M.; Bernal, C.; Vázquez, A.; Escobar, M.M. Aging in Water and in an Alkaline Medium of Unsaturated Polyester and
Epoxy Resins: Experimental Study and Modeling. Adv. Polym. Technol. 2018, 37, 450–460. [CrossRef]

46. Uthaman, A.; Xian, G.; Thomas, S.; Wang, Y.; Zheng, Q.; Liu, X. Durability of an Epoxy Resin and Its Carbon Fiber- Reinforced
Polymer Composite upon Immersion in Water, Acidic, and Alkaline Solutions. Polymers 2020, 12, 614. [CrossRef] [PubMed]

47. Panchagnula, S.S.; Mitra, N.; Ghindani, D.; Prabhu, S. Epoxy Resin (DGEBA/TETA) Exposed to Water: A Spectroscopic
Investigation to Determine Water-Epoxy Interactions. J. Infrared Millim. Terahertz Waves 2021, 42, 558–571. [CrossRef]

48. Dezulier, Q.; Clement, A.; Davies, P.; Arhant, M.; Flageul, B.; Jacquemin, F. Water ageing effects on the elastic and viscoelastic
behaviour of epoxy-based materials used in marine environment. Compos. Part B Eng. 2022, 242. [CrossRef]

49. van den Oever, M.J.A.; Snijder, M.H.B. Jute fiber reinforced polypropylene produced by continuous extrusion compounding, part
1: Processing and ageing properties. J. Appl. Polym. Sci. 2008, 110, 1009–1018. [CrossRef]

50. Ray, B.C.; Rathore, D. Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites:
Critical concepts and comments. Adv. Colloid Interface Sci. 2014, 209, 68–83. [CrossRef] [PubMed]

51. Cañavate, J.; Colom, X.; Pages, P.; Carrasco, F. Study of the curing process of an epoxy resin by FTIR spectroscopy. Polym.-Plast.
Technol.-Eng. 2000, 39, 937–943. [CrossRef]

52. González, M.; Cabanelas, J.; Baselga, J. Applications of FTIR on Epoxy Resins—Identification, Monitoring the Curing Process,
Phase Separation and Water Uptake. Infrared Spectrosc. Mater. Sci. Eng. Technol. 2012, 2, 261–284. [CrossRef]

53. Blackburn, P.; Tatar, J.; Douglas, E.; Hamilton, H. Effects of Hygrothermal Conditioning on Epoxy Adhesives Used in FRP
Composites. Constr. Build. Mater. 2015, 96, 679–689. [CrossRef]

54. Gu, H. Dynamic mechanical analysis of the seawater treated glass/polyester composites. Mater. Des. 2009, 30, 2774–2777.
[CrossRef]

http://dx.doi.org/10.3390/ma8052243
http://dx.doi.org/10.1016/j.compositesb.2012.04.027
http://dx.doi.org/10.1016/j.matpr.2019.11.061
http://dx.doi.org/10.1080/15440478.2018.1469451
http://dx.doi.org/10.3390/polym13224037
http://www.ncbi.nlm.nih.gov/pubmed/34833335
http://dx.doi.org/10.1016/j.compositesb.2019.106956
http://dx.doi.org/10.3390/polym10091017
http://dx.doi.org/10.1016/j.compscitech.2006.06.019
http://dx.doi.org/10.1016/j.compositesa.2009.09.003
http://dx.doi.org/10.1016/j.corsci.2014.07.029
http://dx.doi.org/10.1002/adv.21684
http://dx.doi.org/10.3390/polym12030614
http://www.ncbi.nlm.nih.gov/pubmed/32156099
http://dx.doi.org/10.1007/s10762-021-00788-5
http://dx.doi.org/10.1016/j.compositesb.2022.110090
http://dx.doi.org/10.1002/app.28682
http://dx.doi.org/10.1016/j.cis.2013.12.014
http://www.ncbi.nlm.nih.gov/pubmed/24484896
http://dx.doi.org/10.1081/PPT-100101414
http://dx.doi.org/10.5772/36323
http://dx.doi.org/10.1016/j.conbuildmat.2015.08.056
http://dx.doi.org/10.1016/j.matdes.2008.09.029

	Introduction
	Materials and Methods
	Materials
	Fabrication of Fique Fabric–Epoxy Matrix Composites
	Water Absorption
	Accelerated Aging
	Scanning Electron Microscopy Analysis
	Colorimetry Analyses: CIELAB Color Space
	Fourier Transform Infrared Spectroscopy
	Dynamic–Mechanical Analysis (DMA)

	Results and Discussion
	Water Absorption
	Weight Variation
	Effects of Water Immersion Aging on Fique Fabric
	Effects of Water Immersion Aging on Epoxy
	Effects of Water Immersion Aging on Fique-Fabric-Reinforced Epoxy Composite
	Colorimetry Analysis: CIELAB
	Fourier Transform Infrared Spectroscopy
	Effects of Water Immersion Aging on DMA
	Storage Modulus (E')
	Loss Modulus (E'')
	Tangent Delta (tan )

	Qualitative Discussion
	The Cole–Cole Plot

	Summary and Conclusions
	References

