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In recent years, scientists have made great achievements in understanding the development of human brain and elucidating critical
elements of stepwise spatiotemporal control strategies in neural stem cell specification lineage, which facilitates successful induction
of neural organoid in vitro including the cerebral cortex, cerebellar, neural tube, hippocampus cortex, pituitary, and optic cup.
Besides, emerging researches on neural organogenesis promote the application of 3D organoid system transplantation in
treating central nervous system (CNS) diseases. Present review will categorize current researches on organogenesis into three
approaches: (a) stepwise, direct organization of region-specific or population-enriched neural organoid; (b) assemble and direct
distinct organ-specific progenitor cells or stem cells to form specific morphogenesis organoid; and (c) assemble embryoid bodies
for induction of multilayer organoid. However, the majority of these researches focus on elucidating cellular and molecular
mechanisms involving in brain organogenesis or disease development and only a few of them conducted for treating diseases. In
this work, we will compare three approaches and also analyze their possible indications for diseases in future treatment on the

basis of their distinct characteristics.

1. Introduction

Stem cell therapy provides with an alternative and the last
resort for curing many diseases in an extensive CNS spec-
trum of disease. However, poor clinical efficiency casts a
showdown for stem cell therapy. In general, if neural stem
cells take action, they should undergo three steps: proliferate
and differentiate into due neural cells, migrate and distribute
to accurate location, and integrate into host tissue and form
synapse connection [1]. Unfortunately, this process usually
takes several weeks [2]. Only a fringe of them finally survives
and takes action. Currently, researchers and scientists devote
themselves to improving the efficiency through optimizing
various parameters such as engineering ideal matrices,
suitable delivery approaches, and improving differentiation

efficacy. However, stem cells are poorly manipulated
in vivo. Once they are engrafted in vivo, they lose our
control. Therefore, high-survival rate and stable environ-
ment in vivo are critical for stem cell transplantation. In
order to solve these problems, organoid-like tissue might
provide us with a promising approach.

Organoid is defined as a multicellular formation that
spontaneously develops and self-organizes from stem cells
or organ progenitors, resembling the structure and function
of an organ in vivo [3]. Organoid system recapitulates the
process of organogenesis in vivo and harbors stable hemo-
stasis and architecture. Different from traditional stem cell
therapy which always concentrated on specific populations
of stem cells or progenitor cells, organoids provide with a
complete set of cell types of an organ [3-6]. This novel
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FIGURE 1: Steered with the specific spatiotemporal control strategies, a single embryonic stem cell (ESC) or pluripotent stem cell (PSC) can
develop to a three germ layer brain and pure neural type. The outline has been depicted in Tao’s paper (Tao et al.). BNP: bone morphogenetic
protein; ESC: embryonic stem cell; FGF: fibroblast growth factor; LGE: lateral ganglionic eminence; MGE: medial ganglionic eminence;
NSC: neural stem cell; PSC: pluripotent stem cell; RA: retinoic acid; Shh: sonic hedgehog.

therapy renders an obvious advantage over traditional
stem cell therapy. Besides, this method focuses on full-
functional organ-like tissue transplantation rather than
purified neural cell type treatments. After engrafting into
the host, they still have a stable environment in situ and
can support themselves for self-renew and self-organize
to integrate with host tissue. Thus, stem cells in the orga-
noids have a higher survival rate and form functional con-
nections with the surrounding tissue in the host [4, 7-9].

In recent decades, neural organoid has entered into and
captured our eyes. Lancaster and his team successfully estab-
lished a protocol for culturing pluripotent stem cell- (PSC-)
derived “cerebral organoids” that recapitulated the develop-
ing human brain’s cellular organization segregates into dis-
tinct brain regions [10]. Although cerebral organoids could
not fully model the organization of the brain, the method still
shed a light for future treatment of diseases through organoid
system transplantation which can be established in vitro cul-
turing. In addition to Lancaster’s team, several other teams
developed region-specific neural organoid such as the neo-
cortex [11], telencephalon [12], cerebellar [13], neural tube
[14], pituitary gland [15], hippocampus cortex [16], optic
cup [17], neural retina [18], and inner ear sensory epithelial
tissue. Single embryonic stem cells (ESCs) or PSCs can be
self-organized to form three-layer cerebral organoid but can
also be directed to develop a region-specific neural organoid.

Furthermore, they can also be manipulated and assembled to
form specific morphogenesis organ (Figure 1). In specific
spatiotemporal control conditions, scientists have directed
ES or PSC to differentiate into both neuronal subtypes and
glial subtypes. Neuronal progenitors can be specified into
GABAergic, glutamatergic neurons, dopaminergic neurons,
interneurons, and motoneurons [19-26], while glial progen-
itors can be specified into astrocytes, oligodentrocytes, and
other glial subtypes [19, 27-29]. It is worthwhile mentioning
that special signals can also be utilized to enhance the acqui-
sition of the transmitter phenotype [19, 23]. These findings
stretch a promising panorama for clinical treatment by dis-
tinct organoid system transplantation. Over the past decades,
scientists have devoted themselves to elucidating critical
element brain development and spatiotemporal control of
the processes, which are extensively and fully reviewed in
several perfect papers [5, 19-21, 27, 30-35]. These findings
provide us with rationale and logistical feasibility to steer
organogenesis to specific region. In addition, we can also
design and assemble organoid to form specific morphology
or function through manipulating numbers of specific stem
cell types, neural network composition, numbers of recep-
tors, and ligands. These organoids could be applied to treat
central nervous system (CNS) diseases.

Although the classification of organoid was reviewed in
previous papers [3], the authors focused on the purpose of
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organoid researches rather than the approaches to organoid
formatting. Based on methods and application orientations,
present review categorizes the organogenesis into three
approaches. According to distinct procedure in the induction
of organoid organization, we categorize these researches
into three approaches (Table 1): (a) stepwise, direct organi-
zation of region-specific or population-enriched organoids
[12, 18, 36-47]; (b) assemble and coculture distinct organ-
specific progenitor cells or stem cells to form specific
morphogenesis organoid [7, 8, 13, 17, 26, 48]; and (c)
assemble embryoid bodies for induction of full layer
organoid [14, 49, 50]. Besides, it will also provide with
details of the examples and discuss on the rationale and
logistical feasibility. In the following parts, we also com-
pare distinct approaches and analyze for their possible
indications for diseases.

2. Neural Organogenesis Approach

2.1. Stepwise, Direct Organization of Region-Specific or
Population-Enriched Organoids. Currently, most researches
on neural organogenesis adopt stepwise spatiotemporal con-
trol strategies to acquire neural organoids from ESCs or
IPSCs [12, 18, 36-47]. In the initial stage, ESCs or IPSs are
allowed to reaggregate in low-adhesion condition, namely,
serum-free EB-like protocol (SFEBq), which ensures that
they have enough time to proliferate and expand [47, 51].
In this stage, ESCs or IPSCs maintain pluripotency and EB-
like masses harbor three germ layers (ectoderm, mesoderm,
and endoderm). In the stage of neural induction, referring
to neuroectodermal formation, EB-like masses are trans-
ferred to N2 medium to induce neural germ layers. Treating
with exogenous signal inhibitor of BMP, Wnt, and nodal
inhibitor, they can efficiently form neuroepithelial tissue,
neural tube construct [14], or neocortex [42]. The early
neural organoids usually display initial structure and mor-
phology with apical-basal polarity and dorsal-ventral
polarity. Further induction can promote region identity
and acquire region-specific organoids. Human cerebral
cortex is well structured with six layer neurons. Deep
and superficial layers of neurons are distinct populations,
which are connected with each other and have distinct
projections and functional fate [33, 52]. As a result, with
a good master of region-specific neural organoid induction
technology, we can prepare specific population of progenitor
cells which we want to perform cell replacement therapy.
Although we cannot get purified cell population, high number
of specific neural population can be acquired through using
this method [13, 23, 39, 42]. Thus, this organogenesis
approach will be neural type population orientated.

With the support of specific spatiotemporal control
strategies, this approach efficiently directs ESCs or PSCs
differentiate into and self-organize region-specific neural
organoids with a high number of specific progenitor cells
(Figure 2(a)). Both intrinsic and extrinsic signals are
involved in the regulations. During embryonic days 9
and 10, corticogenesis in mice takes places in a polarized
epithelium with its apical surface forming the lumen of
the tube (future ventricles). Early cortical neural stem cells

(NSCs) divide symmetrically. At E1l, NSCs begin to
divide asymmetrically. One daughter cell retains its NSC
identity while the other becomes a neuron. Early-born
neurons form the deep layers of the cortical plate (layers
5 and 6), and later-born neurons migrate outward past
the deep layers to establish the superficial or upper layers
(layers 2-4). Although this neural induction process seems
to be a cell fate program, it could be manipulated by this
approach. For example, Muguruma et al. [13] reported
that they acquired polarized cerebellar plate in 3D culture
with a stepwise spatiotemporal control strategy. Firstly,
they dissociated ESCs at day 0. In order to promote
neuroectodermal differentiation, they inhibit mesenchymal
differentiation by addition of the transforming growth fac-
tor B- (TGF-B-) receptor blocker. On days 2-14, ESCs
were treated with FGF2 and insulin with the aim to be
steered to differentiate into cerebellar progenitors. On
day 14, additional FGF19 and SDF1 treatments induced
progenitors to self-form cerebellar plate neuroepithelial
structures with dorsal-ventral polarity. After these treat-
ments, neuroepithelial rosettes had transformed into large
and continuous flat-oval structures with the apical side
inward regarding the ova. Admittedly, major portion of
the cerebellar plate neuroepithelium generates Purkinje
cells and interneurons and they finally acquired those elec-
trophysiologically functional Purkinje cells.

Muguruma et al’s success displays a good example
which shows how scientists manipulate lineage of organo-
genesis. However, it will be the tip of an iceberg in the
future. Recently, considerable excellent review papers have
mapped neural subtype specification lineage and funda-
mental developmental principles [19-21, 28, 30, 32, 53];
based on which, we can briefly conclude as following: (1)
Early cortical neural stem cells (NSCs) residing in a polarized
epithelium divide symmetrically at their early expansion. At
E11 in mice, NSCs begin to divide asymmetrically, generating
one neuronal progenitors and the other continuing main-
taining NSC identity. In this stage, apical surface forming
the lumen of the tube (future ventricles), early neural pro-
genitors migrate up and down within the ventricular zone
(VZ) of the neuroepithelium. Neuronal daughters detach
and migrate to subventricular zone (SVZ). (2) Although
neocortical excitatory or inhibitory neurons can be gener-
ated in both VZ and SVZ, different regulator factors still
determine their subtypes. Cux2 and Cux2+ excitatory pro-
genitors, respectively, generate distinct subtypes of upper-
layer and deep-layer neurons. SST+ or PV+ progenitors
result in inhibitory neurons in all layers except layer I
whereas CR+ or VIP+ cells give rise to inhibitory neurons
particularly abundant in layers IV, III, and II. NPY+-derived
cells could be found in all cortical layers; transcription fac-
tor FOXA2 is critical for midbrain DA neuron develop-
ment while coexpressions of the floor plate (FP) marker
FOXA2 and the roof plate marker LMXI1A are as well
required. (3) Astrocytes in the cerebral cortex are pro-
duced from the cortical ventricular zone (VZ) or from
the ventral forebrain. In addition, glia of the cerebral cor-
tex is also produced from the postnatal SVZ, a specialized
reservoir of glial and neuronal progenitors. Almost all of
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FIGURE 2: Schematic of three neural organogenesis approaches
in vitro. (a) Stepwise, direct organization of region-specific or
population-enriched organoids; (b) assemble and direct distinct
organ-specific progenitor cells or stem cells to form specific
morphogenesis organ; (c) assemble embryoid bodies for induction
of multilayer organoids.

the neural subtype specification can be mapped in recent
year researches [19] and could be manipulated to induce
what we want (Figure 1).

Neural organogenesis via this approach is always neu-
ral population orientated. Also, it is expected to efficiently
acquire specific neural progenitors or stem cells after
region-specific  differentiation induction. The region-
specific identity, regulated by cell surface signals, is impor-
tant for neural network reconstruction [54] in the process
of neuronal self-recognition and non-self-discrimination.
Differentiation is directed by series of distinct epigenetic
mechanisms [55-57]. In the stage of stepwise induction,
ESCs or IPSs gradually lose their differentiation pluripo-
tency due to DNA methylation and losing GC [56]. Dis-
tinct region specificity may have distinct cell identity.
Although these specific neural stem cells are not purified,
they still maintain their region identity ability [55]. The
neurons with the same specific region identity easily con-
nected with each other [58]. After they are engrafted to the
specific region in vivo, they might easily establish neural net-
work with local neurons. By contrast, neurons without an
additional common factor have to take time to reconstitute
their neural network. Compared with purified stem cell pop-
ulation transplantation, this population-enriched organoids
may have a high-survival rate and efficiency to form mature
synapse connections.

However, the organoids lost the potentiality to form mul-
tiple germ layer structure because stepwise differentiation
induction steers the series of transcriptional regulators and
DNA methylation to specific germ layer structure. Although
stepwise strategy can induce initial neural cystic formation,
this method might not construct sophisticated morphology
efficiently [48]. Majority of these organoids can only form
simple structures.

2.2. Assemble and Direct Distinct Organ-Specific Progenitor
Cells or Stem Cells to Form Specific Morphogenesis Organ.
This approach has been extensively applied to generate orga-
noids with complex morphology, such as the pituitary [7, 8],
optic cup [17], feather buds [59], salivary gland [60], hair
follicle [61, 62], gingival tissues [63], and tooth [64]. These
tissues usually locate in the transition region among distinct
structure layers, and their organoid formation requires com-
munication among the distinct region tissues. However, one
induction condition only steers specific region identity. In
order to acquire these organoids with complex architecture,
they assemble two or more distinct populations of progeni-
tors or stem cells in the 3D matrix and coculture under a spe-
cific differentiation induction condition [7, 8, 13, 17, 26, 48].
This approach is defined as a term of “self-assembly” by Sasai
[65]. Briefly, it refers to the spontaneous formation of a
patterned organ with multistructure and multicellular by
selective aggregation of cells or by rearrangement of the rela-
tive positions of cells within the structure [65]. Through
assembling two or more cell types in a 3D culture, this
method is sought to recapitulate an interactive microenvi-
ronment and mimic multicellular or multistructure level in
the vivo organogenesis. For example, pituitary gland consists
of neurohypophysis and adenohypophysis (Figure 2(b)).
Adenohypophysis (anterior and intermediate lobes of the
pituitary gland) contains several types of endocrine cells
while neurohypophysis (posterior pituitary) consists of the
axons and secretory termini of hypothalamic vasopressin
and oxytocin neurons. In order to resemble structure of the
pituitary gland, Suga et al. [8] detached outer component of
epithelium cells of day 6 aggregates and cocultured them with
inner neuroepithelial cells treating with hedgehog signaling.
They found that this synthetic approach could successfully
generate pituitary endocrine cells. At the interface of these
two epithelia, Rathke’s-pouch-like three-dimensional struc-
tures generated earlier. Functional organ bud was con-
structed in vitro, which was proved by the evidence that
various endocrine cells efficiently secreted hormone in
response to corticotrophin-releasing hormone after grafted
in vivo. Based on the same approach, Eiraku’s team achieved
another success by reconstructing functional optic cup
in vitro [17] and mimicking the multistructures of the optic
cup consisting of the outer (pigmented) and inner (neurosen-
sory) layers of the retina.

In addition to the pituitary gland and optic cup, the cor-
tex in the central nervous system (CNS) also illustrates a
prime example of an organ with extreme neuronal diversity
and multilayer structures. Cell types of the cortex are broadly
classified into excitatory projection neurons (PNs) and
inhibitory interneurons (INs). This approaches might be
applied to assemble PNs and INs in ratio, mimicking the
vivo structures so as to allow enhanced cortical plasticity
in the corticogenesis. Moreover, the process of spontaneous
formation of ordered patterns and structures from a popula-
tion of elements promotes functional connection with each
other. Through bridging connections among neurons, glial
cells and the vasculature, astrocytes provide with microenvi-
ronment and homeostatic processes for neuronal regenera-
tion. Coculture astrocyte progenitors and neural stem cell



might promote neurogenesis and synaptic connections
[66-68]. Pouchelon et al. [69] found that functional differ-
entiation of postsynaptic L4 neurons and cognate intracor-
tical circuits were associated with TC-input-type-specific
control. In addition, the finding also instructs the develop-
ment of modality-specific neuronal and circuit properties
during corticogenesis and shows another example of inter-
active communications among cellular levels. Due to these
evidences, assembling multiprogenitors or differentiated
PSCs or ESCs facilitates neurogenesis and functional con-
nections. The approach appears more suitable for the
organogenesis, requiring multicellular or multistructure
interactive communications.

Assembling neural subtypes in the neural organoids
also plays an important role because also it is important
to reprogram the subtype diversity so as to promote the
generation of functional neural circuit in the self-
organization tissues. Distinct projecting neurons choose
highly selective synaptic connectivity, both pre- and post-
synaptic, within the same local circuits [70]. Both postsyn-
aptic target of inhibitory interneurons and the properties
of their synaptic connections depend on the identity of
their projection partners [70]. Emerging data demonstrate
that projection neurons and interneurons might “chemical
match” for the development of excitatory and inhibitory
cell assemblies [20]. Meanwhile, synaptic input also has
the capability to affect specific neuron subtype differentia-
tion during cortical circuit assembly [69]. Astrocytes com-
prise up to 40% of all CNS cells, which not only provide
support to neurons but also actively regulate synapse for-
mation and maturation [71]. Consequently, it appears a
critical role of the assembling way of specific neural sub-
types in establishing the neural circuit in the organoid.

2.3. Assemble Embryoid Bodies for Induction of Multilayer
Organoids. Figure 2(c) illustrates procedures of this
approach. After 4-day suspension culture, ESCs or PSCs
aggregate and form embryoid/embryoid-like bodies. The
procedure in vitro culture recapitulates the key events of
embryogenesis in vivo to obtain the three developmental
germ layers from which all cell types arise [4, 17, 50, 72].
The cell pellets are entrapped in a droplet of matrigel or
collagen to coculture for and differentiate to develop a
specific organ in a specifying differentiation strategy.
Through manipulating extrinsic signal modulation, scien-
tists can germ layer specification and cell differentiation
[73]. In addition, embryoid bodies with three germ layers
could also differentiate into functional tissue-specific cells
with three germ layers. Takashi Tsuji’s team designed a
clustering-dependent embryoid body transplantation plan
to develop a 3D integumentary organ system. In the sys-
tem, formation involves three germ layers of cell types,
respectively, dermis, hair follicles and sebaceous glands.
After transplantation, hair follicles successfully generated
with fine connections with the surrounding tissues such
as the epidermis, arrector pili muscles, and nerve fibers,
without tumorigenesis. Takagi et al’s work provides not
only a good example for assembling embryoid body
approach but also an example for future application
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orientation that it appears to be suitable for the organo-
genesis involving more than one germ layer.

Different from other organoid induction approaches,
this approach resorts to acquire specific organoid with full
layer structure. Researchers adopt this approach to investi-
gate natural organ development procedures or mechanisms
involving diseases [4, 17, 50, 72]. Unlike EB-like aggrega-
tion in SFEBq procedure, this approach prolongs the cul-
turing time of EB-like population. Additionally, they
assemble and coculture EB-like populations in 3D matrix
in order to induce self-organization and morphogenesis.

At present, only a few neurological scientists focus on
neural organogenesis or cerebral organoid with multiple
germ layers [50] because the overwhelming majority of them
hold the theory that neural organ induction starts in neuroec-
todermal stage. Lancaster et al. developed a cerebral organoid
in vitro based on this method. Cerebral organoids showed
recapitulate features of human cortical development, namely,
characteristic progenitor zone organization with abundant
outer radial glial stem cells. Most brain tissues derived
from neuroectodermal layer whereas mesoderm and endo-
derm germ layers involve neural organogenesis. Formation
of three germ layers cannot be isolated from each other.
The germ layers are defined by their position at the stage
of late gastrula. At the late stage of embryogenesis, their
regional divisions are no longer distinct [74]. Cardiovascu-
lar and cerebrovascular derived from mesoderm germ
layer stretch throughout the body including the brain
and transport blood and energy. Nervous system origi-
nated from neuroectoderm forms parasympathetic and
sympathetic nervous systems and governs the function of
the cardiovascular system [75]. Therefore, they are sup-
ported by each other and connected with each other.
Mesenchymal stem cells derived from mesoderm germ
layer could also be applied in the degenerative neurological
diseases [76-78]. It was found that human mesenchymal
stem cells (hMSCs) in culture could provide humoral sig-
nals that selectively promote the genesis of neurons and
oligodendrocytes from NSCs [68]. In addition, MSC could
differentiate into neuron-like cells as well as by a compe-
tence to generate a “neuroprotective” environment [79].
This approach may facilitate local reconstitution of vascu-
lar networks. Considering the above discussion, we can
make a speculation that the assembling embryoid body
approach might be applied to generate a cerebral organoid
with multiple germ layers. The organoid is more probably
suitable for treating patients with multilayer brain tissue
loss including traumatic brain injury, stroke [80], hemi-
spherectomy, or lobotomy because of tumor, epilepsy,
and intracranial hematoma.

3. Similarities and Differences

3.1. Similarities. Neural organogenesis is regulated by a
series of epigenetic regulators. In order to develop to an
organoid, a single cell in all approaches has to undergo
spatiotemporal steering process. Neurons differentiate and
migrate to specific regions and layers along anterior-
posterior (AP) and dorsal-ventral (DV) axis [5] and are
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regulated by various regulator factors. Wnt, FGF, and reti-
noic acid (RA) are responsible for their caudalizing activity
in the embryological context; Shh signaling for ventraliza-
tion of embryonic neural tissue; BMP and Wnt signaling
for dorsalization [5]. Besides, time order also determines
the locations of neurons. Pioneer neurons are the
earliest-born neurons in the cortex and then followed by
deep cortical layers VI and V, then by upper layers IV,
and lastly layers II/III [81]. Late-born neurons tend to
localize more basally to early-born neurons [11]. All the
three approaches possess the common epigenetic regulat-
ing factors. Even though neural organoids in the three
approaches are different from each other in composition
and structure in the organoids, they have a common neu-
roectodermal induction process.

In addition, all approaches adopt 3D culture to mimic
in vivo microenvironment to provide a scaffold and niche
for stem cells to aggregate, attach, and form organoids.
Biochemical and biophysical signals are also involved to
steer organogenesis in all three approaches. These signals
determine organogenesis microenvironments consisting of
a complex array of signaling mechanisms from niche sup-
port cells, the ECM, and mechanical forces, as well as sys-
temic and physiochemical conditions such as oxygen and
pH levels [82]. For example, the identity of PSCs is asso-
ciated with local oxygen concentration and hypoxia induc-
ible factor-la (HIF-a) plays a distinct and stage-specific
roles in reprogramming human cells to PSCs [83] and
involves in angiogenesis and stem cell maintenance. NSCs
within the SVZ maintain the integrity of their vascular
niche through HIF-1-mediated signaling mechanisms
[84]. Relief of hypoxia in developing the cerebral cortex
by growth of blood vessels temporospatially coincided with
NSC differentiation [85]. Considerable biophysical factors
such as adhesion and viscoelastic and stress relaxation of
extracellular matrices take impact not only on cell spread-
ing and proliferation but also on the differentiation to spe-
cific cell types [86-89]. Biophysical cues also generate a
change in protein conformation in response to tension or
compression and thus to take effect on the cell formation
[87]. All of these signals could be manipulated for lineage
of specific organ. Currently, a three-dimensional culture is
widely applied in organogenesis. In 3D organoid culture
system, it allows the formation of brain tissues through
either self-assembly or active induction. Some scientists
attempt to display several subtype stem cells in ratio or
in multilayer in order to mimic the ratio or structures
in vivo and finally acquired full functional organ [4, 61].
With the support of 3D organoid culture, scientists have
the possibility and opportunity to rewrite the structure or
composition of organogenesis program in vitro.

3.2. Differences. Neural organoids via the first approach are
specific region orientated. ESCs or IPSCs can be stepwise,
induced to differentiate into an organoid with high number
of neural populations. These populations of neural stem cells
are not purified cells. Instead, the organoids consist of several
region-specific neural populations with special cell surface
marker. These cells can form specific morphology and

structure [18, 39, 40]. Additionally, they can organize local
neural connections among distinct populations [13, 40]. By
treating with specific markers, neural organoids could be dis-
sociated to collect purified stem cells or progenitor cells.
Therefore, we can efficiently acquire purified neural cell pop-
ulations with region identity via the first approach induction.
Via the second approach, neural organoids are specific
morphology orientated. The organoids usually consist of
several anatomic parts. Anatomically, the morphogenetic
self-organization locates in the cross-connection area among
distinct regions and requires coculture of distinct popula-
tions of neural cell populations. Coculture can steer these
parts to generate functional and morphologic connections.
In order to promote the morphogenesis, distinct populations
with different region identity were assembled in 3D droplets.
As a result, the ratios among distinct populations, the matrix
composition, biophysical, and biomechanical parameters
need to be designed precisely mimicking in vivo process. This
approach has made higher requirements for assembling pro-
tocol. However, this neural organoids have specific indica-
tions for diseases. The organoids could be engrafted into
the brain as an integral preorgan. However, size and mor-
phology of these artificial organoids have to match with host
tissue. Otherwise, they are being potential occupying lesion.
Neural organoids via the third approach are full-germ
layer orientated. They have more complex and full structure
and morphology. At present, researches focus on the devel-
opment of brain structure [14, 49, 50] and few of them have
successfully mimicked the brain structure generation in vivo
although Li et al. reported a folded cerebral organoid with
simple structure [49]. This approach aims to acquire not only
full function but also both integral structure and morphol-
ogy. Cell populations in the neural organoids involve not
only neural populations but also cell populations derived
from other germ layers such as vessels and the immune sys-
tem. However, how to reconstruct the cerebrovascular and
immune system in the organoids still remains to be solved.

4. Clinical Treatment Consideration

4.1. Region-Specific or Population-Enriched Organoids. Stem
cell therapy is a promising approach to replace damaged cells
in the brain or replenish losing cells in the nucleus [90-92].
In a variety of neuronal degenerative diseases, patients have
specific neural population loss or damaged. In Parkinson’s
disease (PD), midbrain dopamine (DA) neurons, especially
innervating motor neurons, are degenerated at least at an
early stage. However, Huntington’s patients gradually lose
their medium spiny GABA (y-aminobutyric acid) neurons
in the striatum. Motor neuron loss could also be observed
in spinal muscular atrophy (SMA) and amyotrophic lateral
sclerosis (ALS) patients [19]. The specific neural subtypes
are preferentially affected and degenerated, so few pharmacy
drugs could curb the pathological insult progress. Neural
stem cell therapy improves these diseases not only in animal
models but also in clinical trials [77, 93-98]. Traditional
purified cell therapy has low clinical efficiency. However,
these neural populations generated by the first neural
organoid induction approach could improve its treatment
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efficiency. These populations in the neural organoids have
specific region identity. After engrafting in to the host
brain, they could connect with local neurons in an efficient
way. Thus, neural organoids via the first approaches are
more suitable for these diseases with specific neural type
loss or damage.

4.2. Assembled Specific Morphogenesis Organoids. These
neural organoids are specific morphology orientated and
theoretically suitable for treating these diseases with spe-
cific neural structure damaged or atrophy. For example,
Sheehan’s syndrome always follows after pituitary atrophy
which results from postpartum bleeding and pituitary tumor
or surgery [99, 100]. Traditional treatment with pharmaceu-
tical drug has several adverse effects. These patients might
have another alternative treatment by transplantation of arti-
ficial pituitary induced by assembling and coculturing hypo-
thalamic as well as oral ectoderm stem cells [7]. Other similar
diseases can be optic atrophy [17], retinal diseases [18], and
so on. In addition, peripheral nerves are other potential indi-
cations for the second neural organoids. Schwann cell in the
peripheral nervous system is derived from the neural crest.
Maturity of Schwann cell requires interaction among the
Schwann cell and peripheral tissues [101]. Skin-derived pre-
cursor cells facilitate the regeneration process of peripheral
nerve [102]. In addition, coculture of progenitor cells of
peripheral tissues and neural stem cells might promote the
generation of peripheral nerves.

4.3. Assembled Multilayer Organoids. Actually, these neural
organoids are a preorgan with integral structure and function
and can treat these diseases with structure loss or damage.
These patients might have an integral structure loss of brain
region because of traumatic brain injury, stroke, hemispher-
ectomy, or lobotomy caused by tumor, epilepsy, and intra-
cranial hematoma. There are no niches for stem cells to
attach. Therefore, organoids have to support by themselves.
Before engrafted to the host brain, the neural organoids must
generate a preorgan with full structure.

5. Conclusion

To conclude, 3D organoid system transplantation renders
obvious advantage over traditional approaches which proba-
bly focus on pure populations of particular stem cell-derived
cell types. Instead, 3D organoid system resembles natural
self-formation process of specific organ through assembling
cell subtypes, layers, cell subtype proportion, and manipu-
lating biophysical signals. These strategies promote correct
connections among multilayer and multicellular synapses
and establishment of local neural circuits. In comparison
with conventional therapy, 3D organoid system transplan-
tation promotes stem cell survival and functional connec-
tion after grafting in vivo [4, 8, 17, 61, 64]. Although 3D
organoid system transplantation was reported to treat
CNS diseases only in a few papers [4, 8, 17, 61, 63, 64],
it still appears to be promising in the future treatment.
There are three approaches in neural organoid which
could be applied, choices of which can be determined
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depending upon due diseases. The first organogenesis
approach is the region-specific or population-enriched
organoids which refer to the fundamental method. We
could acquire specific neural subtypes or specific organ,
which could be applied to treat neuronal degenerative dis-
eases, such as Parkinson’s disease, Huntington disease,
ALS, and SMA. The second synthetic approach designed
in the multicellular level or multiculture level can generate
functional self-formation tissue to treat neural organ-
associating functional disorders such as pituitary gland
atrophy and optic cup loss. Peripheral nerve damage could
also be treated by this organoids. The organogenesis
approach by assembling embryoid bodies for specific
organ is theoretically more suitable for patients with total
layer tissue loss, such as traumatic brain injury, stroke
[80, 103], hemispherectomy, and lobotomy because of
tumor, epilepsy, and intracranial hematoma. In order to
promote local functional connections, scientists should
design the neural subtype diversity in the process of
in vitro organoid induction, matching the ratio between
excitatory and inhibitory neurons, neurons and astrocyte,
and input synapses and output synapses.
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