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Abstract

Motivation: The correct localization of proteins in cell compartments is a key issue for their

function. Particularly, mitochondrial proteins are physiologically active in different compartments

and their aberrant localization contributes to the pathogenesis of human mitochondrial patholo-

gies. Many computational methods exist to assign protein sequences to subcellular compartments

such as nucleus, cytoplasm and organelles. However, a substantial lack of experimental evidence

in public sequence databases hampered so far a finer grain discrimination, including also intra-

organelle compartments.

Results: We describe DeepMito, a novel method for predicting protein sub-mitochondrial cellular

localization. Taking advantage of powerful deep-learning approaches, such as convolutional neural

networks, our method is able to achieve very high prediction performances when discriminating

among four different mitochondrial compartments (matrix, outer, inner and intermembrane

regions). The method is trained and tested in cross-validation on a newly generated, high-quality

dataset comprising 424 mitochondrial proteins with experimental evidence for sub-organelle local-

izations. We benchmark DeepMito towards the only one recent approach developed for the same

task. Results indicate that DeepMito performances are superior. Finally, genomic-scale prediction

on a highly-curated dataset of human mitochondrial proteins further confirms the effectiveness of

our approach and suggests that DeepMito is a good candidate for genome-scale annotation of

mitochondrial protein subcellular localization.

Availability and implementation: The DeepMito web server as well as all datasets used in this

study are available at http://busca.biocomp.unibo.it/deepmito. A standalone version of DeepMito is

available on DockerHub at https://hub.docker.com/r/bolognabiocomp/deepmito. DeepMito source

code is available on GitHub at https://github.com/BolognaBiocomp/deepmito
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1 Introduction

Mitochondria are double-membrane bound organelles present in all

Eukaryotic cells and performing very important biological functions,

which include energy production, calcium signaling, regulation of

cell metabolism and apoptosis (Poveda-Huertes et al., 2017).

Mitochondria are endowed with their own genome, coding for

only few proteins. The vast majority of proteins that are localized

into mitochondria are instead encoded by the nuclear genome, syn-

thesized in cytoplasmic ribosomes and subsequently translocated

into the organelle by means of different mechanisms, the most well-

characterized of which is based on the molecular recognition of spe-

cific targeting signals at the N-terminus of the nascent protein

(Dudek et al., 2013).

The mitochondrial outer membrane separates the interior of the

organelle from the rest of the cell, while the inner membrane enclo-

ses the mitochondrial matrix. In turn, the two membranes are sepa-

rated by the intermembrane space. The existence of such internal

compartmentalization suggests that proteins localized in the differ-

ent mitochondrial compartments are specialized to fulfill different

tasks or functions: hence, knowing the precise location of a protein

inside mitochondria is crucial for its accurate functional character-

ization (Martelli et al., 2015).

In the past years, many computational methods could discrimin-

ate mitochondrial from non-mitochondrial proteins, taking advan-

tage of machine-learning algorithms to detect highly specific

targeting signals localized at the N-terminal region of the protein se-

quence (Bannai et al., 2002; Emanuelsson et al., 2007; Savojardo

et al., 2014; Fukasawa et al., 2015; Savojardo et al., 2015).

A substantial lack of experimental information constrained the

discriminative capability of tools to a small number of compart-

ments. Recently, the increasing amount of sequence data and the

availability of richer experimental evidence, allowed the develop-

ment of computational methods suited to predict protein subcellular

localization at a finer grain. Currently, tools make it possible to dis-

criminate sub-nuclear (Kumar et al., 2014), sub-chloroplastic

(Savojardo et al., 2017; Wang et al., 2015; Shi et al., 2011) and sub-

mitochondrial (Du and Li, 2006; Shi et al., 2011; Du and Yu, 2013;

Fan and Li, 2012; Kumar et al., 2018; Lin et al., 2013; Mei, 2012;

Nanni and Lumini, 2008; Zeng et al., 2009) localizations. When

considering sub-mitochondrial compartments, only the method of

Kumar et al. (2018) allows discriminating up to four different pos-

sible localizations (matrix, outer, inner and intermembrane regions).

All the approaches rely on different types of global protein features

extracted from sequence, including sequence composition, pseudo-

amino acid composition, residue physicochemical attributes and/or

evolutionary information extracted from multiple sequence align-

ments (MSAs).

Here, we describe DeepMito, a novel method for predicting sub-

mitochondrial localization. DeepMito is based on artificial neural

networks and it adopts the convolutional neural network (CNN)

architecture to extract relevant patterns from primary features.

DeepMito discriminates four different sub-mitochondrial compart-

ments and our implementation outperforms the only method previ-

ously described (Kumar et al., 2018), addressing the same task.

We optimized the CNN architecture of DeepMito adopting a

non-redundant, rigorous cross-validation procedure performed on a

new dataset comprising 424 highly curated protein sequences

extracted from UniprotKB/SwissProt and endowed with experimen-

tal evidence for sub-mitochondrial localization. Cross-validation

results on this dataset highlighted good performances with

Matthews Correlation values ranging from 0.46 to 0.65, depending

on the compartment. These values well compare with the results of

Kumar et al. (2018), ranging from 0.42 to 0.51, when discriminating

the same compartments. In addition, we retrained our CNN archi-

tecture on the same dataset previously adopted (Kumar et al., 2018),

and further confirmed the effectiveness of DeepMito, with perform-

ances overpassing the previously reported ones.

Finally, we analyzed the ability of DeepMito in performing

genome-scale analysis. To this aim, we extracted a dataset of 1050

mitochondrial human proteins from the Cell Atlas section of the

Human Protein Atlas resource (Thul et al., 2017). Computed local-

izations were assessed towards the fraction of human mitochondrial

proteins endowed with experimentally annotated GO terms for one

of the sub-mitochondrial compartment. In this test, DeepMito

shows a very high level of agreement with available experimental

annotations (ranging from 93% to 100%, depending on the discri-

minated compartment).

2 Materials and methods

2.1 Datasets
2.1.1 The SM424-18 dataset

The main dataset used in this study was derived from UniprotKB/

SwissProt (release 2018_02). We first selected all non-fragment pro-

tein sequences with evidence at protein level and endowed with ex-

perimentally determined subcellular localization (evidence code

ECO: 0000269) in one of the four sub-mitochondrial compart-

ments: outer membrane (SL-0172), intermembrane space (SL-0169),

inner membrane (SL-0168) and matrix (SL-0170). For sake of select-

ing the best possible set of annotations, proteins that are also local-

ized in compartments other than mitochondria were excluded.

In order to obtain a non-redundant set of protein sequences, we

performed clustering using the CD-HIT program (Li and Godzik,

2006) with global alignment and sequence identity threshold set to

40%. For each cluster generated by CD-HIT, we retained only the

longest sequence.

After this filtering procedure, we ended-up with 424 mitochondrial

proteins sharing at most 40% sequence identity computed at a global

level. The dataset comprises 193 proteins from Metazoa, 166 from

fungi, 60 from plants, 4 from Euglenozoa and 1 from Amoebozoa.

Overall, the dataset comprises 74 outer membrane, 190 inner mem-

brane, 25 intermembrane and 135 matrix proteins (Table 1).

On our dataset (SM424-18) we adopted a 10-fold cross-

validation. In order to avoid any possible bias between training and

testing, we applied the following clustering procedure to generate

cross-validation sets. First, the 424 protein sequences were cross-

compared running all-against-all pairwise blastp with e-value

threshold set to 0.001. From blast output, we built a similarity graph

where nodes are protein sequences and edges among pairs of nodes

were added if at least one blast hit with more than 30% sequence

identity was found (no coverage threshold was set). On this graph,

single-linkage clustering was performed computing connected com-

ponents. Finally, all proteins falling in the same cluster were

assigned to the same cross-validation set. In this way, we eliminated

any possible sequence identity bias among training and testing, con-

fining any residual sequence redundancy (even occurring locally) in

the same cross-validation set. SM424-18 is available for download

at http://busca.biocomp.unibo.it/deepmito/datasets.

2.1.2 The SubMitoPred dataset

SubMitoPred is a dataset previously introduced to train and test the

most recent approach for sub-mitochondrial localization prediction,
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addressing a four-compartment discrimination (Table 1, SubMitoPred,

Kumar et al., 2018). According to the authors, SubMitoPred (available

at http://proteininformatics.org/mkumar/submitopred/download.html)

was derived from UniprotKB/SwissProt release 2014_10, selecting pro-

tein sequences with the following criteria:

• Full-length proteins (no fragments) with experimental existence

evidence.
• Protein length > 50 residues.
• Experimental sub-mitochondrial subcellular localization, retain-

ing only proteins localized into a single compartment.
• Dataset internal redundancy reduced at 40% sequence identity

using CD-HIT.

Overall, the dataset comprises 570 mitochondrial proteins dis-

tributed in the four different sub-compartments (Table 1).

SubMitoPred contains more proteins than our dataset. Our data-

set SM424-18 and the one generated by Kumar et al. (2018) share

238 common proteins. Of the remaining 332 included in the

SubMitoPred dataset but not in SM424-18, 326 are not present in

our dataset because they are not annotated with the experimental

evidence code ECO: 0000269; six proteins were excluded because

they are annotated as localized in multiple compartments.

For sake of comparison, when necessary and as previously

described (Kumar et al., 2018), we split the SubMitoPred set into

five cross-validation subsets. According to Kumar et al. (2018), they

performed cross-validation by randomly splitting the set of 570 pro-

teins into five subsets. In this study, we performed two different

cross-validation splits: (i) random split as described in Kumar et al.

(2018) and (ii) random split after sequence clustering using blastp

(applying the same procedure described in the previous section for

our SM424-18).

2.1.3 The Human Cell Atlas dataset

To assess the capability of DeepMito in performing genome-scale

analysis, we here adopted a dataset extracted from the Cell Atlas

section of the Human Protein Atlas project (Thul et al., 2017). This

resource provides a comprehensive catalog of subcellular localiza-

tion of proteins in human cells derived from transcriptomics experi-

ments or antibody-based image profiling techniques. By this, it

provides experimental evidence for subcellular localization of

12 073 human proteins.

Here, we focused on the subset of 1074 proteins that are found

to be localized into mitochondria (Cell Atlas does not provide for

these proteins sub-mitochondrial localization). The Cell Atlas data-

base assigns a label to each annotation, representing its quality.

Four different labels are defined (in decreasing order of quality):

Enhanced, Supported, Approved and Uncertain. For the 1074

mitochondrial proteins considered in this study, Enhanced and

Supported annotations cover about 50% of the dataset

(165þ347¼512), 506 annotations are Approved while only a

small fraction are Uncertain (56 annotations). In order to obtain a

sufficient number of sequences, here, we decided to retain all anno-

tations available for mitochondrial proteins.

ENSEMBL gene identifiers for the 1074 mitochondrial proteins

were mapped to UniprotKB entries: after this step we were able to

map 1050 ENSEMBL identifiers to UniprotKB entries. Twenty-four

ENSEMBL genes were excluded because of non-clear or multiple

mapping to UniprotKB.

On this set, we extracted available Gene Ontology term informa-

tion using the QuickGO website (https://www.ebi.ac.uk/QuickGO/

). We focused only on annotations of the GO Cellular Component,

endowed with experimental evidence (ECO: 0000269) and derived

from any source databank. As a result, 179 out of 1050 gene prod-

ucts were annotated with GO terms that are equal to or descendants

of any of the four mitochondrial compartments considered in this

study: 19 proteins in mitochondrial outer membrane (GO:

0005741), 67 in mitochondrial inner membrane (GO: 0005743), 12

in mitochondrial intermembrane space (GO: 0005758) and 81 in

mitochondrial matrix (GO: 0005759). Proteins that were annotated

with GO terms related to multiple mitochondrial compartments

were filtered-out form this set.

We refer to the full Cell Atlas dataset comprising 1050 protein

sequences as Mito-CA-Full and to the subset of 179 annotated as

Mito-CA-Annotated.

2.2 Feature descriptors
In this study, we considered three different feature types and eval-

uated their contribution (both individual and combined) to the pre-

diction of protein sub-mitochondrial localization, when provided in

input to the DeepMito convolutional network. In particular, the fol-

lowing features were considered:

• Residue one-hot encoding (SEQ), where each residue in a protein

sequence is encoded using a 20-dimensional vector with all zero

components except for the one representing the residue. Overall,

each protein sequence is represented by a matrix with L rows

and 20 columns, where L is the length of the sequence.
• Residue physical–chemical properties (PROP), where each

residue in a protein sequence is encoded using the 10 different

numerical values introduced by Kidera et al. (1985). These values

derive from a multivariate statistical analysis of a set of 188

different properties of naturally occurring amino acids and can

be used to compactly represent the physical–chemical nature of

each residue. Overall, each protein is encoded with a matrix with

L rows and 10 columns, where L is the length of the sequence.
• Evolutionary information, in the form of Position Specific

Scoring Matrices (PSSM) as computed, for each sequence in the

datasets, by running the PSI-BLAST (Altschul et al., 1997) pro-

gram against the Uniref90 dataset (release March 2018) for three

iterations and e-value threshold set to 0.001. Overall, PSSM for

a given protein is a matrix with L rows and 20 columns, where L

is the length of the sequence. Internally, the program computes

the matrix by considering the MSA obtained by (i) stacking all

pairwise alignments between query and similar sequences found

after each iteration and (ii) removing MSA columns correspond-

ing to gaps in the query sequence. In this way, the PSSMs have

always a number of rows that coincides with the length of

the query sequence. Raw PSSM values extracted from the

PSI-BLAST checkpoint file (generated by the program after each

Table 1. Summary statistics of the SM424-18 and the SubMitoPred

datasets

Compartment SM424-18a,b SubMitoPredb,c

Outer membrane 74 82

Inner membrane 190 282

Intermembrane space 25 32

Matrix 135 174

Total 424 570

aThis paper.
bNumber of sequences.
cFrom Kumar et al. (2018).
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iteration) were mapped in the range [0-1] using a sigmoid func-

tion, defined as:

f xð Þ ¼ 1

1þ e�x
(1)

Feature descriptors are combined protein-wise with simple con-

catenation along the sequence axis. For instance, combining PSSM

and PROP matrices of dimensions L� 20 and L� 10 leads to a L�
30 matrix.

2.3 CNNs
CNNs have their main application domain in the Computer Vision

area (LeCun et al., 2015). Nevertheless, they have been proven to be

very effective also for sequence analysis tasks in Genomics and

Computational Biology, as highlighted by the increasing number of

successful applications available in literature (Alipanahi et al., 2015;

Almagro Armenteros et al., 2017; Angermueller et al., 2016;

Savojardo et al., 2018).

In the context of bio-sequence analysis, inputs are routinely pro-

tein or a DNA sequences of variable length on which one wants to

detect some feature or attribute, both at the level of individual resi-

dues (i.e. sequence labeling) or at a global level (i.e. sequence

classification).

Each residue in a sequence is represented with low-level features,

e.g. residue properties, one-hot encoding or sequence profiles. The

number of features encoding for a given residues is referred to as

channels in the CNN context.

A typical CNN is a feed-forward architecture comprising two

different types of layers: convolutional and pooling layers. Formers

are used to extract salient features from the input by means of filters

or motif detectors, whose parameters are learnt during training and

are used to scan the input. Pooling layers are instead parameter-free,

and they are used for downsampling, namely to reduce the input

dimensionality by selecting/aggregating the most relevant features

extracted by convolutional layers according to some predefined

function (e.g. average, max or min functions).

More formally, let be X ¼ X1; . . . ;XLð Þ an input sequence of

length L where each Xi 2 R
d is a d-dimensional vector (i.e. d is the

number of input channels). We restrict our attention to CNN archi-

tectures suited to sequence classification, i.e. the task of classifying

the input sequence X into K different classes.

A convolutional layer is a collectionM¼ M1; . . . ;MF
� �

of F dif-

ferent motif detectors, each of which can be seen as a weight matrix

of dimension w� d:

Mi ¼
Mi

1;1 � � � Mi
1;d

..

. . .
. ..

.

Mi
w;1 � � � Mi

w;d

2
664

3
775

w�d

(2)

where w is the width of the motif and d is the number of input

channels.

Using a sliding-window approach, the i-th motif detector produ-

ces an output sequence Ci; 1; . . . ;Ci;Lð Þ having the same length L of

the input and where each Ci;j is computed as:

Ci;j ¼ g
Xw

k¼1

Xd

r¼1
Mi

k;rXjþk� w=2b c;r

� �
(3)

Sequence termini are handled by adding explicit zero-padding at

the beginning and end of the input sequence X. In Equation (3), g is

an activation function used to transform the raw motif score. Many

different activation functions exist; however, routinely Rectified

Linear Units (ReLUs) are adopted, defined as:

g xð Þ ¼ maxð0; xÞ (4)

Overall, a convolutional layer endowed with F independent

motif detectors compute an output matrix C with F rows and L

columns:

C ¼
C1;1 � � � C1;L

..

. . .
. ..

.

CF;1 � � � CF;L

2
664

3
775

F�L

(5)

Pooling layers following convolutions reduce the dimensionality

of the matrix C along the second dimension (i.e. L). Different types

of pooling are possible.

In local pooling with pool size p, an aggregating function t is

computed row-wise over a set of p non-overlapping neighboring col-

umns of C, transforming it into a new matrix Plocal of dimension

F � L=p:

Plocal ¼
t C1;1; . . . ;C1;p

� �
� � � t C1;L�p; . . . ;C1;L

� �
..
. . .

. ..
.

t CF;1; . . . ;CF;p

� �
� � � t CF;L�p; . . . ;CF;L

� �

2
664

3
775

F�L=p

(6)

In global pooling, the pool size p is equal to L and the input ma-

trix C is completely flattened into a column vector Pglobal of dimen-

sion F � 1, computing the pooling function t row-wise over the

entire set of L columns:

Pglobal ¼
t C1; 1; . . . ;C1;Lð Þ

..

.

t CF; 1; . . . ;CF;Lð Þ

2
664

3
775

F�1

(7)

Common pooling functions are average, sum, maximum and

minimum.

Overall, one or more successive applications of convolution-

pooling layers transform the input X into a feature map P corre-

sponding to the output of last pooling layer in the architecture. The

feature map is then flattened into a single vector v 2 R
m (being m

the total dimension of the feature map after the last pooling) and

provided in input to a standard fully-connected network that first

maps v into a hidden layer with H units h1; . . . ;hH such that:

hi ¼ a
Xm

j¼1
xh

j;ivj þ bh
i

� �
(8)

where xh
j;i and bh

i are the connection weights and bias of the i-th hid-

den unit, respectively, while the function a is an activation function

(e.g. ReLU).

Finally, the hidden layer is mapped to the output layer compris-

ing K units o1; . . . ; oK, one for each class, as follows:

oi ¼ u
XK

j¼1
xo

j;ihj þ bo
i

� �
(9)

where xo
j;i and bo

i are the connection weights and bias of the i-th out-

put unit, respectively, and u is the output activation function, typic-

ally softmax or sigmoid, depending on the type of output desired.

In summary, a CNN architecture for sequence classification can

be divided into two parts: the first part, where convolution-pooling

layers are applied, is devised to feature extraction and selection; the

second part, consisting in the final fully connected network, per-

forms the actual classification of the sequence into K different

classes.
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2.4 The DeepMito CNN architecture
Prediction of protein sub-mitochondrial localization can be natural-

ly defined as a multi-class sequence classification problem

where each input protein sequence is classified as belonging to one

of K ¼ 4 different mitochondrial sub-compartments. In this respect,

DeepMito is based on the CNN architecture depicted in Fig. 1.

The input protein sequence where each residue is encoded as a d-

dimensional vector (d varies according to the input feature consid-

ered) is scanned using a single convolutional layer comprising F detec-

tors of width w (we tested several different values for these two

variables, see next section for details). The convolutional layer output

is then processed by two parallel pooling layers computing global

average and maximum functions. The rationale behind this choice is

to compute both the average motif signal and its peak along the input

sequence, trying to capture different types of patterns.

The two pooling layers are then concatenated into a single vector

and provided to the final classification network with H hidden units

(also H has been optimized as detailed in the next section). Overall,

the network has four independent output units with sigmoid activa-

tion function representing scores that quantify the membership of

the input protein to each considered compartment: outer membrane,

inner membrane, intermembrane space and matrix. The protein is

predicted as localized into the highest-scoring compartment.

The DeepMito CNN was trained using a Stochastic Gradient

Descent optimizer by minimizing the cumulative binary cross-

entropy loss function. More formally, consider a training set

D ¼ XðiÞ;YðiÞ
� �� 	

i¼1;...;N, where XðiÞ is an input protein sequence

while YðiÞ is a 4-class target vector storing the membership of each

protein to one of the compartments.

The cumulative binary cross-entropy loss function is defined as:

E Dð Þ ¼
XK

j¼1

EjðDÞ (10)

where each EjðDÞ is the binary cross-entropy loss function for class j

and defined as:

Ej Dð Þ ¼ �
1

N

XN
i¼1

Y
ðiÞ
j log o

ðiÞ
j

� �
þ
�

1� Y ið Þ
j Þlogð1� o

ðiÞ
j Þ (11)

where o
ðiÞ
j is the output of the CNN for the j-th class when the se-

quence XðiÞ is provided in input.

2.5 Model selection and implementation
A CNN architecture like the one depicted in Fig. 1 has several hyper-

parameters that need to be optimized. In particular, to define a con-

volutional layer we need to specify the number F of motif detectors

as well as their width w. Analogously, for fully-connected layers, we

need to optimize the number H of units in the hidden layers.

In order to find optimal hyperparameters, we defined a set of pos-

sible values for each hyperparameter (see Supplementary Table S1 for

the complete list of tested values) and adopted the following grid-search

procedure to search for their optimal combination. In particular, using

the SM424-18 dataset, a complete 10-fold cross-validation was running

for all possible combination of hyperparameters, using one of the sub-

sets as testing set, eight subsets as training set and one as validation set

(different from testing). Each individual training was running for 100

epochs starting with random initialization for all adjustable network

weights. Early stopping on validation loss was used to prevent overfit-

ting. We then selected, among all possible combinations of parameters,

the one achieving the highest performance on validation data. We used

the Generalized Correlation Coefficient (GCC) (Baldi et al., 2000) index

to compare different architectures (see next section for the formal defin-

ition of the GCC). The optimal set of hyperparameters was then frozen

and used to score the CNN on testing data.

DeepMito was implemented in Python 2.7 and using the Keras v.

2.2.4 (https://keras.io) deep-learning library with Tensorflow v.

1.11 (https://www.tensorflow.org) as backend.

2.6 Scoring performance
Performances of our method were scored by computing the multi-

class confusion matrix M where Mi;j is the number of proteins

belonging to class i and predicted in class j.

Single-class predictions were scored using the Matthews’

Correlation Coefficient (MCC) for each class k, defined as:

MCC kð Þ ¼ Mk;knk � okukffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mk;k þ ok

� �
ðMk;k þ ukÞðnk þ okÞðnk þ ukÞ

q (12)

where ok ¼
P

i6¼k Mi;k is the number of over-predictions for the class

k, uk ¼
P

i 6¼k Mk;i is the number of under-predictions for the class k

and nk ¼
P

i 6¼k

P
j 6¼kMi;j is the number of proteins correctly pre-

dicted as not being in class k (i.e. correct negative predictions with

respect to class k).

Moreover, we adopted the GCC, described in Baldi et al. (2000),

and providing a single measure to score classifications involving

more than two classes. In particular, for each class k; we can com-

pute the number ak of proteins in class k as:

ak ¼
XK

i¼1

Mk;i (13)

and the number bk of proteins predicted in class k as:

bk ¼
XK

i¼1

Mi;k (14)

Then we define the following matrix e as:

ei;j ¼
aibj

N
(15)

where N ¼
PK

i¼1

PK
j¼1 Mi;j is the total number of proteins in a

dataset.

The GCC is then defined as:

GCC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
i¼1

PK
j¼1
ðMi;j�ei;jÞ2

ei;j

NðK� 1Þ

vuut
(16)

The GCC value ranges from �1 to 1 and a GCC equal to 0 corre-

sponds to predictions no better than random.

3 Results

3.1 Assessing the contribution of the different features
In order to build an optimal predictor for protein sub-mitochondrial

compartment prediction, we first assessed the predictive power of each

type of feature. In this study, as already detailed in Section 2.2, three

basic type of features were considered: protein primary sequence

(encoded using the standard residue one-hot encoding), protein physical–

chemical attributes and evolutionary information in the form of PSSMs.

These three basic feature types were then combined and provided

in the input to the DeepMito CNN architecture. In doing this, we

considered protein primary sequence and PSSMs as alternative

choices, scoring them individually or combined with protein physic-

al–chemical attributes. For each evaluated feature set, a different
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CNN has been trained in cross-validation on the SM424-18 dataset,

optimizing network architecture as explained in Section 2.5.

Performance scores are reported in Table 2.

Our results indicate that both primary sequence and protein

attributes, when taken alone, are not sufficiently informative and

both lead to limited prediction performances, with protein attributes

slightly outperforming primary sequence (GCCs are 0.19 and 0.15,

respectively).

As expected, evolutionary information plays a major role in

improving prediction performance. In fact, when considered alone,

the PSSM input significantly improves prediction performance, lead-

ing to a generalized improvement observable in all scoring indices

and, in particular in GCC, raising it up to 0.50. When PSSM is com-

bined with protein attributes, performances further improve reach-

ing 0.54 of GCC. We then adopted this feature set for DeepMito

and for all subsequence analyses.

The optimal CNN architecture comprises 256 convolutional

motif detectors of width 19 and 256 hidden units in the fully con-

nected hidden layer (see Section 2.4 for details on the DeepMito

CNN architecture).

3.2 Analyzing DeepMito predictions on the SM424-18

dataset
Having selected the best CNN architecture and features set, we ana-

lyzed in detail DeepMito predictions on the SM424-18 dataset. This

allowed to highlight strengths and limitations of our method.

Two aspects were taken into consideration: (i) how prediction

performance varies across different taxonomic kingdoms and (ii)

how DeepMito performs on different types of membrane proteins,

namely single-pass (SP), multi-pass (MP) and peripheral membrane

(PM) proteins.

Concerning the first issue, performance scores obtained on the

different subsets of animals, plants and fungi proteins are reported

in Table 3. It is worth noting that these results were not obtained by

retraining DeepMito on the individual subsets of proteins but simply

by isolating cross-validation predictions corresponding to each taxo-

nomic set.

Comparing results in Table 3 with overall performance scores

(Table 2, last row), we can observe a substantial robustness of the

method across the three different kingdoms. In particular, perform-

ances are stable on animals (GCC 0.54) and slightly lower on fungi

(GCC 0.50). Interestingly, on plant proteins prediction performan-

ces are significantly higher, reaching a GCC of 0.71, 17 percentage

points higher than the one obtained on the full dataset (0.54).

In Table 4, results focus on the prediction of the localization of

mitochondrial membrane proteins (i.e. experimentally localized into

inner and/or outer membranes). In particular, we analyzed predic-

tion results with respect to available experimental information on

membrane protein topology, more specifically separating SP pro-

teins (spanning the membrane with a single transmembrane seg-

ment), MP proteins (endowed with multiple transmembrane

segments) and PM proteins (physically associated to the membrane

but not spanning it). Out of 264 membrane proteins included in

SM424-18, we were able to retrieve from UniprotKB topological in-

formation for 227 proteins.

In Table 4, for each topology class, we report the total number

of proteins (NP), the number of outer and inner membrane proteins

(NO and NI, respectively), the fraction of proteins correctly pre-

dicted in either inner or outer membrane (Qmem
2 ) and the MCCs for

inner and outer membrane classes.

Results show that the stronger the transmembrane signal is along

the sequence the higher is the ability of DeepMito to properly recog-

nize these proteins and discriminate them from non-membrane ones:

98% and 92% of MP and SP proteins, respectively, are correctly

predicted as belonging to membrane compartments (either inner or

outer membrane). In contrast, only 22 out of 61 (36%), PM proteins

are correctly localized into membranes. This suggests that PM pro-

teins are endowed with features that are more similar to proteins of

matrix and/or intermembrane space. Thirty-nine PM proteins are in-

correctly classified into globular compartments: out of these, 32 are

annotated in UniprotKB as residing in the matrix side of the mem-

brane. Interestingly DeepMito correctly assigns 28 out of 32 PM

proteins to the matrix compartment.

3.3 Comparing DeepMito with other approaches
Performing a comparison among different approaches for sub-

mitochondrial localization prediction is a challenging task, mainly

because different methods are trained/tested using different datasets

and many of the methods presented so far are no more available via

respective web servers. For these reasons, we decided to carry out a

direct comparison between DeepMito and the most recent approach

described for the same four-compartment discriminative task

(SubMitoPred, Kumar et al., 2018). Furthermore, it is the only

method running (at the specified web URL reported in the reference

paper) and providing training/testing dataset for downloading.

For sake of comparison, we trained and tested DeepMito using a

5-fold cross-validation on the SubMitoPred dataset, comprising 570

proteins localized into the four different compartments (Table 1). In

particular, two different procedures were applied to perform cross-

validation. In a first experiment, we applied exactly the same pro-

cedure as described by the SubMitoPred authors, namely, random

splitting the set of 570 proteins into five subsets (results labeled as

RS in Table 5). In this comparative benchmark, our method signifi-

cantly outperforms its competitor in all MCC scores. Noticeably,

DeepMito performances are more stable across the four different

classes, suggesting that our method is able to better cope with class

imbalance. Proteins localized in the intermembrane space, despite

their low abundance (only 32 out of 570 proteins in the

SubMitoPred dataset) are recognized very well by DeepMito,

Fig. 1. Schematic view of the DeepMito CNN architecture.
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achieving an MCC score of 0.54 against the 0.19 reported by

SubMitoPred.

To further confirm the ability of DeepMito to capture inform-

ative patterns from data, we carried out an additional experiment

using a more stringent procedure to perform cross-validation

(marked as CL in Table 5). In this experiment, cross-validation split

was computed confining pairs of sequence sharing any residual local

similarity in the same cross-validation set (as done for our SM424-

18 dataset, see Sections 2.2.1 and 2.2.2 for details). As expected,

results obtained by DeepMito are slightly worse than those achieved

by random splitting (justifying the adoption of the more stringent

similarity reduction procedure) but still significantly higher than

those achieved by SubMitoPred in all MCC scores.

3.4 Scoring DeepMito on genomic-scale analysis
As a final test, we evaluated DeepMito on genomic-scale analysis

using the human mitochondrial dataset extracted from the Cell

Atlas database (see Section 2.1.3). In particular, DeepMito was

trained using the entire SM424-18 dataset and predictions generated

for all the 1050 proteins included in the Mito-CA-Full dataset.

First, we assessed DeepMito predictions with respect to available

experimental annotations: for this, we extracted predictions on the

Mito-CA-Annotated dataset comprising 179 sequences endowed

with experimental GO terms relative to sub-mitochondrial compart-

ments. Figure 2 summarizes distributions of annotations, DeepMito

predictions as well as the number of correct predictions for each

class. Evidently, DeepMito predictions correlate very well with

available experimental evidence: overall, our method achieves a

GCC of 0.97 on the Mito-CA-Annotated dataset.

In Fig. 3, we show the distribution of predicted classes for all the

1050 proteins in the Mito-CA-Full dataset. The relative abundances

of predicted compartments are comparable to the ones observed in

the Mito-CA-Annotated dataset. Complete results can be examined

in detail at http://busca.biocomp.unibo.it/deepmito/hpa.

3.5 Software availability
We released DeepMito as web server at http://busca.biocomp.unibo.

it/deepmito. The server supports the analysis of up to 200 sequences

per submission: for each input protein, the server provides the pre-

dicted sub-mitochondrial compartment (as Gene Ontology Cellular

Component term) along with a score associated with the prediction.

Even though the server is intended to be used with proteins already

known to be mitochondrial and for which the user is interested to

know the precise localization inside the organelle, there is the possi-

bility that users provide in input proteins that are not mitochondrial.

In order to cope with this issue, the server performs a scanning of in-

put proteins using two state-of-the-art predictors of mitochondrial

localization: TPpred3 (Savojardo et al., 2015), which predict mito-

chondrial localization by means of recognition of the targeting pre-

sequence, and BaCelLo (Pierleoni et al., 2006), which provide dis-

crimination of mitochondrial proteins from proteins directed to

other compartments. A protein is predicted as mitochondrial if at

least one of the above methods classifies it as such. This piece of in-

formation is provided as additional output for the user.

We also provide a standalone version of the program imple-

mented as a Docker container. The image is available on

DockerHub at https://hub.docker.com/r/bolognabiocomp/deepmito.

A tutorial on how to install and use the DeepMito docker container

can be found at http://busca.biocomp.unibo.it/deepmito/software.

DeepMito source code is also available on GitHub at https://github.

com/BolognaBiocomp/deepmito.

4 Conclusions

DeepMito is a novel method for predicting protein sub-

mitochondrial localization. Thanks to the power of a CNN architec-

ture specifically designed to solve this task, DeepMito scores with

Table 2. Cross-validation performance on the SM424-18 dataset

using different feature sets

Feature set MCC(O)a MCC(I)a MCC(T)a MCC(M)a GCCb

SEQc 0.17 0.15 0.13 0.07 0.15

PROPd 0.17 0.07 0.22 0.13 0.19

PSSMe 0.51 0.47 0.42 0.57 0.50

SEQþPROP 0.16 0.07 0.55 0.09 0.34

PSSMþPROP 0.46 0.47 0.53 0.65 0.54

aMCC (O, I, T, M): Matthews Correlation Coefficient of Outer, Inner,

Intermembrane and Matrix localization, respectively.
bGCC: Generalized Correlation Coefficient (Equation (16)).
cResidue one-hot encoding.
dResidue physicochemical attributes.
ePSSM: Position Specific Scoring Matrix.

Table 3. DeepMito prediction performance on proteins from differ-

ent taxonomic kingdoms

Kingdom MCC(O)a MCC(I)a MCC(T)a MCC(M)a GCCb

Metazoa (193c) 0.44 0.44 0.52 0.69 0.54

Viridiplantae (60c) 0.45 0.52 0.90 0.76 0.71

Fungi (166c) 0.49 0.52 0.37 0.59 0.50

aMCC (O, I, T, M): Matthews Correlation Coefficient of Outer, Inner,

Intermembrane and Matrix localization, respectively.
bGCC: Generalized Correlation Coefficient (Equation (16)).
cNumber of sequences.

Table 4. DeepMito prediction performance on mitochondrial mem-

brane proteins with respect to annotated membrane protein

topology

Topology NP (NOþNI)
a Qmem

2 (%)b MCC(O) MCC(I)

SP 71 (31þ40) 92 0.43 0.38

MP 94 (21þ73) 98 0.47 0.49

PM 61 (6þ55) 36 0.36 0.09

aNP (NOþNI): number of membrane protein (outer and inner).
bQmem

2 : the fraction of proteins correctly predicted in either inner or outer

membrane.

SP: single-pass membrane protein; MP: multiple-pass membrane protein;

PM: peripheral membrane protein.

Table 5. Performance comparison of different methods

Method Cross-validation MCC(O) MCC(I) MCC(T) MCC(M)

SubMitoPreda RS 0.42 0.34 0.19 0.51

DeepMito RS 0.45 0.68 0.54 0.79

DeepMito CL 0.42 0.60 0.46 0.76

aResults taken from Kumar et al. (2018).

RS¼cross-validation performed by random splitting the dataset.

CL¼cross-validation performed confining any local similarity into the same

cross-validation set (see Sections 2.2.1 and 2.2.2 for details).
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good performances in different experiments aiming at testing its val-

idity and applicability. In a four-compartment discrimination test,

DeepMito scores higher than SubMitoPred, a recent method per-

forming the same task. We tested DeepMito adopting a 10-fold

cross-validation procedure on a newly developed training/testing set

containing only mitochondrial proteins with location experimentally

annotated. Then we also retrained and tested our predictor adopting

the same set of proteins and the same cross-validation procedure of

SubMitoPred, and again our method overpasses the state-of-the-art.

SubMitoPred is based on a combination of transfer-by-similarity

and support vector machines. In contrast, DeepMito is based on

artificial neural networks and it adopts the CNN architecture to ex-

tract relevant patterns from primary features. One immediate result

is that our approach is robust with respect to class imbalance and

provides very accurate predictions even for those compartments that

are underrepresented in the training set (such as the intermembrane

space, accounting for only few proteins).

The adoption of more complex architectures like recurrent

layers may improve prediction performance in this task.

However, in our experiments (data not shown), recurrent

approaches lead to poor performance. This fact is maybe due to

the scarcity of data which hampers proper training of complex

architectures.

DeepMito well performs also on proteome-scale analysis, carried

out on high-quality human proteins from the Cell Atlas database

(Thul et al., 2017). A present limit of DeepMito, due to the paucity

of good quality available data is its present impossibility to predict

multiple localization for a single protein sequence.

We propose DeepMito as a powerful and reliable tool for inte-

gration in functional annotation platforms.
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