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Background: Mechanically ventilated patients in the intensive care unit (ICU) have

high mortality rates. There are multiple prediction scores, such as the Simplified Acute

Physiology Score II (SAPS II), Oxford Acute Severity of Illness Score (OASIS), and

Sequential Organ Failure Assessment (SOFA), widely used in the general ICU population.

We aimed to establish prediction scores on mechanically ventilated patients with the

combination of these disease severity scores and other features available on the first day

of admission.

Methods: A retrospective administrative database study from the Medical Information

Mart for Intensive Care (MIMIC-III) database was conducted. The exposures of interest

consisted of the demographics, pre-ICU comorbidity, ICU diagnosis, disease severity

scores, vital signs, and laboratory test results on the first day of ICU admission.

Hospital mortality was used as the outcome. We used the machine learning methods

of k-nearest neighbors (KNN), logistic regression, bagging, decision tree, random forest,

Extreme Gradient Boosting (XGBoost), and neural network for model establishment. A

sample of 70% of the cohort was used for the training set; the remaining 30% was

applied for testing. Areas under the receiver operating characteristic curves (AUCs) and

calibration plots would be constructed for the evaluation and comparison of the models’

performance. The significance of the risk factors was identified through models and the

top factors were reported.

Results: A total of 28,530 subjects were enrolled through the screening of the MIMIC-III

database. After data preprocessing, 25,659 adult patients with 66 predictors were

included in the model analyses. With the training set, the models of KNN, logistic

regression, decision tree, random forest, neural network, bagging, and XGBoost were
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established and the testing set obtained AUCs of 0.806, 0.818, 0.743, 0.819, 0.780,

0.803, and 0.821, respectively. The calibration curves of all the models, except for

the neural network, performed well. The XGBoost model performed best among the

seven models. The top five predictors were age, respiratory dysfunction, SAPS II score,

maximum hemoglobin, and minimum lactate.

Conclusion: The current study indicates that models with the risk of factors on the first

day could be successfully established for predicting mortality in ventilated patients. The

XGBoost model performs best among the seven machine learning models.

Keywords: prediction model, machine learning, mechanical ventilation, intensive care unit, death

INTRODUCTION

Mechanically ventilated patients account for more than a quarter
in the intensive care unit (ICU) (1). Invasive mechanical
ventilation is associated with multiple complications and high
mortality (2). The mechanical ventilation ratio has been
increasing in the ICU in recent years due to the aging
population, more survivors with cancers and comorbidities, and
the advancements in treatment (3, 4).

Prediction models are useful tools to unearth underlying
causes and provide assistance for clinical practice (5).
Establishing a death prediction model of mechanically ventilated
patients using their early-stage, easily obtained, and well-
generalized features might be helpful for ICU physicians for
early alerting and judgment.

With the development of machine learning algorithms,
modeling methods are more diversified (6, 7). Extreme Gradient
Boosting (XGBoost) has been widely recognized and highly
praised in a number of data mining challenges (8–10). With its
notable advantages, we hypothesized that the XGBoost model
would perform better than other models. We planned to develop
and validate multiple machine learning models using the data
available in the early stages to predict hospital mortality and
identify risk factors in mechanically ventilated ICU patients.

METHODS

Database and Study Design
The Medical Information Mart for Intensive Care (MIMIC-
III) database was used as the data resource (11). MIMIC-
III is a single-center database covering 38,597 distinct adult
patients admitted to the ICU in the Beth Israel Deaconess
Medical Center in Boston from 2001 to 2012. MIMIC-III
integrates comprehensive clinical data andmakes them accessible
to researchers worldwide under data use agreement. We

Abbreviations: AUCs, areas under the receiver operating characteristic curves;

DBP, diastolic blood pressure; HR, heart rate; ICU, intensive care unit;

KNN, k-nearest neighbors; MAP, mean arterial pressure; MIMIC-III, Medical

Information Mart for Intensive Care; OASIS, Oxford Acute Severity of Illness

Score; ROC, receiver operating characteristic; RRT, renal replacement therapy;

SAPS II, Simplified Acute Physiology Score II; SHAP, Shapley additive explanation;

SBP, systolic blood pressure; SGB, stochastic gradient boosting; SOFA, Sequential

Organ Failure Assessment; SQL, Structured Query Language; WBC, white blood

cell; XGBoost, Extreme Gradient Boosting.

have obtained permission after application and completion of
the course and test (record IDs: 32994435 and 32450965).
We established and validated the prediction models using
the retrospectively extracted data in MIMIC-III. This study
was performed based on the transparent reporting of a
multivariable prediction model for individual prognosis or
diagnosis (TRIPOD) guideline (12).

Subjects, Variables, and the Outcome
Extraction
Adult ICU patients treated with invasive mechanical ventilation
during ICU stay were included. Subjects aged younger than 18
years or older than 90 years or who lack information on the
outcome measure were excluded. Hospital mortality was used as
the outcome measure.

The subject IDs were used to identify distinct adult patients.
The predictors included: (a) demographic information: age
and gender; (b) medical history: uncomplicated hypertension
(defined as hypertension without complication), complicated
hypertension (defined as hypertension with complication),

FIGURE 1 | Flow diagram of the selection process of patients.
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TABLE 1 | Characteristics between survivors and non-survivors.

Survivors (N = 13,987) Non-survivors (N = 11,672) p-value

Demographic

Age (years) 61.0 (21.9) 70.3 (20.4) <0.0001

Gender (male) 8,681 (62.1) 6,728 (57.6) <0.0001

Medical history

Uncomplicated hypertension 6,888 (49.3) 4,346 (37.2) <0.0001

Complicated hypertension 1,098 (7.9) 1,655 (14.2) <0.0001

Uncomplicated diabetes 2,938 (21.0) 2,557 (21.9) 0.0815

Complicated diabetes 730 (5.2) 908 (7.8) <0.0001

Malignancy 894 (6.4) 2,167 (18.6) <0.0001

Hematologic disease 1,296 (9.3) 1,884 (16.1) <0.0001

Metastasis 1,142 (8.2) 1,762 (15.1) <0.0001

Peripheral vascular disease 1,225 (8.8) 1,142 (9.8) 0.0049

Hypothyroidism 1,217 (8.7) 1,172 (10.0) 0.0002

Chronic heart failure 744 (5.3) 780 (6.7) <0.0001

Stroke 731 (5.2) 725 (6.2) 0.0007

Liver disease 616 (4.4) 919 (7.9) <0.0001

Disease severity

SAPS II 32.0 (16.0) 43.0 (19.0) <0.0001

SOFA 4.0 (4.0) 5.0 (5.0) <0.0001

OASIS 33.0 (10.0) 37.0 (12.0) <0.0001

Diagnosis

Sepsis 1,617 (11.6) 3,375 (28.9) <0.0001

Any organ failure 8,150 (58.3) 9,920 (85.0) <0.0001

Severe respiratory failure 659 (5.7) 966 (10.9) <0.0001

Severe coagulation failure 27 (0.2) 149 (1.3) <0.0001

Severe liver failure 101 (2.0) 323 (5.2) <0.0001

Severe cardiovascular failure 1,070 (7.7) 2,116 (18.3) <0.0001

Severe central nervous system failure 711 (5.1) 608 (5.3) <0.0001

Severe renal failure 398 (2.9) 1,178 (10.1) <0.0001

Respiratory dysfunction 6,172 (44.1) 8,478 (72.6) <0.0001

Cardiovascular dysfunction 1,388 (9.9) 2,687 (23.0) <0.0001

Renal dysfunction 2,934 (21.0) 5,103 (43.7) <0.0001

Hematologic dysfunction 1,296 (9.3) 1,884 (16.1) <0.0001

Metabolic dysfunction 1,142 (8.2) 1,764 (15.1) <0.0001

Neurologic dysfunction 1,245 (8.9) 1,371 (11.8) <0.0001

Vital signs

Mean HR (bpm) 85.7 (17.9) 86.8 (22.1) <0.0001

Minimum HR (bpm) 71.0 (18.0) 71.0 (21.0) <0.0001

Maximum HR (bpm) 103.0 (25.0) 106.0 (29.0) <0.0001

Mean MAP (mmHg) 76.7 (11.9) 75.1 (13.9) <0.0001

Minimum MAP (mmHg) 59.0 (12.0) 55.7 (15.0) <0.0001

Maximum MAP (mmHg) 101.7 (22.0) 102.0 (25.0) <0.0001

Mean systolic pressure (mmHg) 115.0 (17.9) 113.9 (22.5) <0.0001

Minimum systolic pressure (mmHg) 89.0 (18.0) 86.0 (22.0) <0.0001

Maximum systolic pressure (mmHg) 148.0 (28.0) 149.0 (33.0) <0.0001

Mean diastolic pressure (mmHg) 59.9 (11.6) 57.5 (13.2) <0.0001

Minimum diastolic pressure (mmHg) 45.0 (12.0) 41.0 (15.0) <0.0001

Maximum diastolic pressure (mmHg) 80.0 (19.0) 80.0 (22.0) 0.0636

Mean temperature (◦C) 37.0 (0.8) 36.8 (0.9) <0.0001

Minimum temperature (◦C) 36.1 (1.0) 36.1 (1.0) <0.0001

Maximum temperature (◦C) 37.7 (1.0) 37.6 (1.1) <0.0001

(Continued)
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TABLE 1 | Continued

Survivors (N = 13,987) Non-survivors (N = 11,672) p-value

Laboratory results

Mean lactate (mmol/L) 1.9 (1.2) 2.0 (1.9) <0.0001

Minimum lactate (mmol/L) 1.3 (0.8) 1.5 (1.2) <0.0001

Maximum lactate (mmol/L) 2.4 (2.0) 2.4 (2.8) <0.0001

Mean pH 7.4 (0.1) 7.4 (0.1) <0.0001

Minimum pH 7.3 (0.1) 7.3 (0.2) <0.0001

Maximum pH 7.4 (0.1) 7.4 (0.1) <0.0001

Mean glucose (mg/dL) 128.6 (32.1) 136.7 (50.2) <0.0001

Minimum glucose (mg/dL) 96.0 (35.0) 104.0 (44.0) <0.0001

Maximum glucose (mg/dL) 169.0 (60.0) 174.0 (86.0) <0.0001

Mean WBC (×109/L) 11.7 (5.9) 11.8 (7.6) <0.0001

Minimum WBC (×109/L) 9.8 (5.5) 10.1 (6.9) <0.0001

Maximum WBC (×109/L) 13.4 (7.3) 13.4 (8.9) <0.0001

Mean BUN (mg/dl) 15.5 (10.3) 24.5 (24.0) <0.0001

Minimum BUN (mg/dl) 14.0 (9.0) 23.0 (22.0) <0.0001

Maximum BUN (mg/dl) 17.0 (11.0) 26.0 (25.0) <0.0001

Mean creatinine (mg/dl) 0.9 (0.4) 1.1 (1.0) <0.0001

Minimum creatinine (mg/dl) 0.8 (0.4) 1.0 (0.9) <0.0001

Maximum creatinine (mg/dl) 0.9 (0.5) 1.2 (1.2) <0.0001

Mean hemoglobin (g/dl) 10.6 (2.5) 10.3 (2.3) <0.0001

Minimum hemoglobin (g/dl) 9.5 (3.0) 9.4 (2.6) <0.0001

Maximum hemoglobin (g/dl) 12.4 (2.6) 11.3 (2.6) <0.0001

Treatment

Ventilation duration (h) 15.0 (45.9) 46.0 (122.6) <0.0001

RRT 654 (4.7) 1,628 (14.0) <0.0001

Continuous variables are presented as the median and interquartile range (IQR). Counting data are presented as numbers and percentages.

Complicated or uncomplicated hypertension refers to hypertension with or without complication. Complicated or uncomplicated diabetes refers to diabetes with or without complication.

Severe respiratory failure, severe coagulation failure, severe liver failure, severe cardiovascular failure, severe central nervous failure, and severe renal failure refer to the scores of the

specific organ or system that reaches 4 in the SOFA score. The definition of the medical condition was referred to the ICD-9 code. A mean, minimum, or maximum parameter refers to

the mean, the highest, or the lowest level of the parameter on the first day of ICU admission.

HR, heart rate; MAP, mean arterial pressure; OASIS, Oxford Acute Severity of Illness Score; RRT, renal replacement therapy; SAPS II, Simplified Acute Physiology Score II; SOFA,

Sequential Organ Failure Assessment; WBC, white blood cell.

uncomplicated diabetes (defined as diabetes without
complication), complicated diabetes (defined as diabetes
with complication), malignancy, hematologic disease, metastasis,
peripheral vascular disease, hypothyroidism, chronic heart
failure, stroke, and liver disease; (c) disease severity score:
Simplified Acute Physiology Score II (SAPS II), Sequential Organ
Failure Assessment (SOFA), and Oxford Acute Severity of Illness
Score (OASIS); (d) diagnosis: sepsis, any organ failure, severity
of respiratory failure, severity of coagulation failure, severity of
liver failure, severity of cardiovascular failure, severity of central
nervous system failure, severity of renal failure, respiratory
dysfunction, cardiovascular dysfunction, renal dysfunction,
hematologic dysfunction, metabolic dysfunction, and neurologic
dysfunction; (e) vital signs on the first day of ICU admission: the
highest, lowest, and mean levels of heart rate (HR), mean arterial
pressure (MAP), systolic blood pressure (SBP), diastolic blood
pressure (DBP), and temperature; and (f) laboratory results of
the first day of ICU admission: the highest, lowest, and mean
levels of lactate, pH, glucose, white blood cell (WBC), blood
urea nitrogen (BUN), creatinine, and hemoglobin. Treatment

information on renal replacement therapy (RRT) and the
duration of mechanical ventilation were extracted to present the
characteristics of the included subjects; they were not analyzed
as predictors since we included only early-stage predictors,
which can be obtained on the first day of ICU admission in this
prediction model. The lengths of stay in hospital of survivors and
non-survivors were reported. The target subjects together with
all the predefined predictors, subject ID, characteristic variables,
and the outcome measure were extracted using a Structured
Query Language (SQL) script. The definition of the medical
condition was referred to the ICD-9 code (13) and derived
from the GitHub (https://github.com/MIT-LCP/mimic-code).
The severity of respiratory, coagulation, liver, cardiovascular,
central nervous system, or renal failure referred to the SOFA
score of the specific organ (scores 0–4). The first day indicates
the first 24 h of ICU admission. The SOFA, SAPS II, and OASIS
scores refer to the first scores after ICU admission. After the
extraction of the data, subjects who met the exclusion criteria
were excluded. Then, the extreme and error values failing the
logic check were censored. We excluded variables with missing
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values accounting for more than 30% of the sample size (14).
Otherwise, we used the mean imputation method to deal
with missing values. Thus, the subset was established for the
final analyses.

Statistical Analysis
The characteristics of the included patients were compared
between survivors and non-survivors. The continuous variables
are presented as the median and interquartile range (IQR) and
compared using the t-test. The counting data are presented
as numbers and percentages and compared using the chi-
square test.

We employed seven machine learning methods—k-nearest
neighbors (KNN), logistic regression, bagging, decision tree,
random forest, XGBoost, and neural network—for model
establishment. A sample of 70% of the cohort generated
randomly using a seed was applied for the training set; the
remaining 30% was used for testing. Areas under the receiver
operating characteristic curves (AUCs) were used to evaluate
the performance of the models. Calibration plots were drawn
to visualize the prediction abilities of the models. For the best-
performing model, the significance of the model parameters
was identified and reported; the Shapley additive explanation
(SHAP) plot was drawn. SAS software (version 9.4), R software
(version 3.6.1), and Python software (version 3.4.3) were used for
statistical analyses.

RESULTS

Participants
Among the 38,597 adult patients in the MIMIC-III database,
28,530 subjects met our selection criteria. After the logic check,
25,659 patients were included in the final analyses (Figure 1).
Sixty-seven predictors were extracted from the database. After
data cleaning, the predictor severe liver failure was excluded
because of more than 30% of missing data; 66 predictors were
included in the model. The mortality rate of the cohort was
45.5% (13,987 survivors and 11,672 non-survivors). The median
length of stay in hospital of survivors was 9.2 days (IQR =

11.1) and that of non-survivors was 11.1 days (IQR = 15.3,
p < 0.0001). The comparison of characteristics between the
survivors and the non-survivors is reported in Table 1. Non-
survivors were older and had higher SAPS II, SOFA, and OASIS
scores; more medical history of hypertension with complication,
diabetes with complication, malignancy, hematologic disease,
peripheral vascular disease, hypothyroidism, chronic heart
failure, stroke, and liver disease; more diagnosis of sepsis,
any organ failure, severe respiratory failure, severe coagulation
failure, severe liver failure, severe cardiovascular failure, severe
central nervous system failure, severe renal failure, respiratory
dysfunction, cardiovascular dysfunction, renal dysfunction,
hematologic dysfunction, metabolic dysfunction, and neurologic
dysfunction; had higher mean HR, maximum HR, maximum
MAP, maximum SBP, mean lactate, minimum lactate, mean

FIGURE 2 | Receiver operating characteristic (ROC) curves of the seven models. KNN, k-nearest neighbors; XGBoost, Extreme Gradient Boosting.
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glucose, minimum glucose, maximum glucose, mean WBC,
minimum WBC, maximum WBC, mean creatinine, minimum
creatinine, and maximum creatinine; and had longer duration
of mechanical ventilation and more RRTs (p < 0.05), while
they had a lower male ratio, hypertension without complication,
mean MAP, minimum MAP, mean SBP, minimum SBP, mean
DBP, minimumDBP, mean temperature, maximum temperature,
mean hemoglobin, minimum hemoglobin, and maximum
hemoglobin (p < 0.05). There were no significant differences in
diabetes without complication (p = 0.0815) and maximum DBP
(p= 0.0636) between the two groups.

Models
With the training set, the KNN, logistic regression, decision tree,
random forest, neural network, bagging, and XGBoost models
were established and the testing set obtained AUCs of 0.806,
0.818, 0.743, 0.819, 0.780, 0.803, and 0.821, respectively.

The KNN, logistic regression, decision tree, random forest,
neural network, bagging, and XGBoost models were established
with the training set; the AUCs of the testing set were 0.806, 0.818,
0.743, 0.819, 0.780, 0.803, and 0.821, respectively (Figure 2). The
calibration plots of the seven models are presented in Figure 3.
The calibration curves of all the models, except that of the neural
network, performed well. Among the seven models, XGBoost
performed best, with the highest receiver operating characteristic
(ROC) and the best calibration curve. The hyperparameters

applied in the final XGBoost model were as follows: learning rates
= 0.008, number of estimators= 800,maximumdepth of a tree=
6, α = 0, λ= 0. The significance of the predictors in the XGBoost
model is presented in Figure 4. In the SHAP methodology,
the top five predictors were age, respiratory dysfunction, SAPS
II score, maximum hemoglobin, and minimum lactate (the
importance values were 0.410, 0.309, 0.302, 0.209, and 0.194,
respectively). The confusion matrix of the XGBoost model is
presented in Table 2. The SHAP plot and a decision tree of the
XGBoost model are in the Supplementary Material.

DISCUSSION

This study identified various clinical features associated with
increased hospital mortality among mechanically ventilated
ICU patients. Through sophisticated machine learning methods,
we determined that age, respiratory dysfunction, SAPS II
score, maximum hemoglobin, and minimum lactate were most
associated with hospital death. Among the seven models,
XGBoost revealed the best performance in discrimination.

Our results showed that more than half of the ICU
patients were under mechanical ventilation; the mortality of
the mechanically ventilated patients was high (45.5%). The
requirement for mechanical ventilation has increased in recent

FIGURE 3 | Calibration plots of the seven models. KNN, k-nearest neighbors; XGBoost, Extreme Gradient Boosting.
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FIGURE 4 | Significance of the predictors in the XGBoost model. CHF, chronic heart failure; Diabetes_complicated, diabetes with complication;

Diabetes_uncomplicated, diabetes without complication; Diasbp, diastolic blood pressure; Hypertension_complicated, hypertension with complication;

Hypertension_uncomplicated, hypertension without complication; OASIS, Oxford Acute Severity of Illness Score; Organ_failure, any organ failure; Perivasc,

perivascular disease; SAPS II, Simplified Acute Physiology Score II; sCardiovascular, severe cardiovascular failure; sCNS, severe central nervous system failure;

sCoagulation, severe coagulation failure; SOFA, Sequential Organ Failure Assessment; sRenal, severe renal failure; sRespiration, severe respiratory failure; Sysbp,

systolic blood pressure; Tempc, temperature; WBC, white blood cell.

TABLE 2 | Confusion matrix of the XGBoost model.

Precision Recall F1 score

Survival 0.87 0.81 0.84

Death 0.66 0.74 0.70

years (1). Therefore, it is of great importance to recognize
early the patients at high risk of death with early-stage,
well-generalized, and easily obtained features (15). With the
development of machine learning algorithms, the magnitude
of predictors that can be processed has mainly been largely
enriched. Thus, advanced machine learning techniques allow
researchers to establish more optimal models in comparison with
conventional models (16). With such models, ICU physicians
could be alerted early when patients become complicated and
have deteriorated with mechanical ventilation.

A previous study conducted by Yao et al. (16) explored
the death prediction model in postoperative septic patients
using the MIMIC-III database. Similar to our results, they also
found that the XGBoost model performed better in predicting
hospital mortality than the other models. However, due to
the different patient types and the various features included,
the feature importance rankings were quite different (their top
five predictors: fluid–electrolyte disturbance, coagulopathy, RRT,

urine output, and cardiovascular surgery). Another study (5)
used information from the first 24 h after admission to the ICU
to build a 1-year death prediction model in septic patients based
on the stochastic gradient boosting (SGB) methodology. The
AUC of the SGB model was 0.8039, similar to the performance
of XGBoost in our study. Both the SGB and XGBoost models
belong to gradient boosting algorithms. Similar to our results,
age ranked first in the feature importance (their top five
predictors: age, urine output, maximum BUN, metastatic cancer,
and maximum temperature).

There are strengths of our study. Firstly, this is the first
study that established several advanced machine learning death
prediction models focused on mechanically ventilated ICU
patients. Secondly, we used MIMI-III, a high-quality database
with a large sample size and comprehensive clinical information.
Thirdly, we utilized advanced statistical methods, including seven
machine learning models, with the 30% subset used for internal
validation and the ROCs and calibration plots to evaluate the
models (17).

There are limitations to our study. Firstly, our models were
retrospectively established based on a single-center database.
Thus, further prospective studies are needed to evaluate the
generalization of our models and predictors. Secondly, there
were missing data in our research. There was also a potential
confounding variable that we were unable to assess because its
missing data exceeded the predesigned limit. Thirdly, external
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validation has not been employed in this study; hence, the
significance and evidence level were decreased. Fourthly, our
study only focused on hospital mortality, while other important
outcomemeasures such as ventilator-free days within 28 days and
long-termmortalities still needed further investigation. Lastly, we
did not exclude patients who were withdrawn from care, which
may also provide bias.

CONCLUSION

Our results suggest that age, respiratory dysfunction, SAPS
II score, maximum hemoglobin, and minimum lactate might
be closely associated with hospital mortality in mechanically
ventilated ICU patients. The XGBoost model performs better
than the KNN, logistic regression, bagging, decision tree, random
forest, and neural network models in our study. Further external
validations are needed to test the generalization of our models
and predictors.
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