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Unlocking stress and forecasting its consequences with digital
technology
Sarah M. Goodday 1,2 and Stephen Friend1,2

Chronic stress is a major underlying origin of the top leading causes of death, globally. Yet, the mechanistic explanation of the
association between stress and disease is poorly understood. This stems from the inability to adequately measure stress in its
naturally occurring state and the extreme heterogeneity by inter and intraindividual characteristics. The growth and availability of
digital technologies involving wearable devices and mobile phone apps afford the opportunity to dramatically improve
measurement of the biological stress response in real time. In parallel, the advancement and capabilities of artificial intelligence (AI)
and machine learning could discern heterogeneous, multidimensional information from individual signs of stress, and possibly
inform how these signs forecast the downstream consequences of stress in the form of end-organ damage. The marriage of these
tools could dramatically enhance the field of stress research contributing to impactful and empowering interventions for individuals
bridging knowledge to practice, and intervention to real-world use. Here we discuss this potential, anticipated challenges, and
emerging opportunities.
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INTRODUCTION
The significant contribution of stress to the development of
disease is unequivocal. Often labeled as the silent or proxy killer,
chronic stress is a major underlying origin of the top leading
causes of death, globally.1 The magnitude and ways that stress
affects individuals and populations is far reaching with impacts
that can be seen as early as during the embryonic stage spanning
into adulthood.2 Despite the concerted effort from cross-
disciplinary research to understand the stress-related under-
pinnings of disease, explanatory mechanisms to inform individua-
lized intervention targets remain an enigma. While it is clear a link
between a wide range of psychological to objective biological
measures of stress and chronic disease exists, the mechanistic
explanation of how stress over time leads to end-organ damage is
unclear. This stems from several roadblocks rooted in: (1)
ambiguous definitions of stress; (2) the inability to adequately
measure stress in its naturally occurring state; (3) the inability to
discern measures of the stress response given the extreme
heterogeneity by inter and intraindividual characteristics; and (4)
lack of knowledge on the interplay between subjective and
objective measures of stress. Further, the emphasis on aggregate
versus individual level information, and binning of symptoms into
rigid diagnostic categories has undoubtedly hampered progress in
understanding individual trajectories towards end-organ damage.
The growth and availability of digital technologies involving

wearable devices and mobile phone apps afford the opportunity
to dramatically improve measurement of the biological stress
response in real time. In parallel, the advancement and capabilities
of artificial intelligence (AI) and machine learning could discern
heterogeneous, multidimensional information from individual
signs of stress, and possibly inform how these signs forecast the
downstream consequences of stress. The marriage of these tools
could dramatically enhance the field of stress research

contributing to impactful and empowering interventions for
individuals-bridging knowledge to practice, and intervention to
real-world use.

DEFINING STRESS
There is no single agreed upon definition of stress, although the
term tends to be associated with emotional, mental, and
physiological strain in response to a real or perceived demand
or threat. Linking causes of stress to disease has been challenging
given the dramatically different effects on individual biological
stress responses and the many different ways that individuals
cope with stress resulting from genetics, personality, and
environment.3 Further, it is unclear whether perceived subjective
experiences (e.g., feeling stressed) of stress map on to the body’s
biological short- or long-term reaction to stress that infers risk of
disease. Hans Selye’s original definition of stress (and among one
of the first conceptualizations of stress in relation to health) was
rooted in the biological reaction to a stressful exposure arguing
that “stress is not what happens to you, but how you react to it”.4

While it is appreciated that there is no single “correct” definition
for stress, a deserving question is what component of the stress
process (e.g., perceiving as feeling stressed vs. the body’s reaction
to stress, or combinations of both) is important in terms of
disease-modifying pathways and where along the pathway should
we target interventions and tools to maximize reduction of the
deleterious effects of stress?
The needed data to inform such a question would be

continuous longitudinal information from subjective experiences
of stress, mapped on to continuous objective measures of stress,
and spanning enough time for consequences of stress to accrue,
which could be months to years for some conditions. Simply put,
without the aid of remote capture digital monitoring we cannot

Received: 1 April 2019 Accepted: 8 July 2019

14YouandMe, Seattle, WA, USA and 2Department of Psychiatry, University of Oxford, Oxford, UK
Correspondence: Sarah M. Goodday (sarah@4youandme.org)

www.nature.com/npjdigitalmed

Scripps Research Translational Institute

http://orcid.org/0000-0003-2159-1754
http://orcid.org/0000-0003-2159-1754
http://orcid.org/0000-0003-2159-1754
http://orcid.org/0000-0003-2159-1754
http://orcid.org/0000-0003-2159-1754
https://doi.org/10.1038/s41746-019-0151-8
mailto:sarah@4youandme.org
www.nature.com/npjdigitalmed


achieve this scale of data collection. In fact, most attributes of the
human stress response cannot be accurately captured through
traditional methodologies. The biological stress response is
analogous to an orchestrated symphony5—complex and involving
several interconnected players including neuroendocrine, cardio-
vascular, metabolic, and immune systems that adaptively follow a
harmony in response to demands or threats under healthy brain
conditions. Conscious and subconscious momentary responses to
stress repeated over time can cause dysregulation in normal
adaptive hormonal and physiological responses to stress con-
tributing to risky symptoms (high blood pressure, inflammation
depression, cognitive decline, and sleep problems) called by some
as allostatic load,6,7 which in turn contribute to downstream
consequences (chronic disease). It is often presumed that the
acute stress response spans milliseconds to seconds, however,
such exposures can produce delayed molecular changes days
after the initial stress exposure,8 further compounding the need
for continuous longitudinal information of these biological
responses. These processes culminate over time, although may
also accelerate during high-stress activation periods throughout
the lifespan such as pregnancy9 reflecting useful periods to
understand stress-related processes underlying disease. Indivi-
duals reactions to both subjective and objective stress are likely
modified by internal (e.g., personality and epigenetics) or external
(social support and empathetic relationships) coping factors and
vary with great complexity given these inter and intraindividual
differences. Until recently, we have had little means to measure,
and discern the complexity associated with individual stress
responses, and how these responses forecast disease.

THE POTENTIAL POWER OF INTEGRATED DIGITAL TOOLS
Digital data from connected wearable devices and smartphone
apps offer an exciting avenue to explore the complex and
dynamic biological stress response in its natural form (Fig. 1). It is
projecting that by the year 2020, 50 billion individuals globally will
own connected smartphones and will own over six connected
devices.10 Smartwatches, rings, body scales, and vests have the
capability of producing rich volumes of longitudinal information

on physiological proxies of the autonomic nervous system stress
response, such as resting heart rate, heart rate variability, body
temperature, electrodermal activity, and relative blood pres-
sure,11–13 while body patches that measure cortisol14 and
inflammatory cytokines15 and eye-tracking glasses and wireless
EEG caps are getting closer to measuring additional objectives
measures of stress in real-world settings.16 Information from
smartphone apps and sensors, both passive (phone use, social
communication patterns, sleep, and location) and active (cognitive
tasks) could reflect digital proxies of objective measures of
stress.13 Realizing this potential, smartwatches that detect
physiological signals of stress and inform users when these
signals occur have recently been developed. These approaches to
measuring the biological stress response make a giant leap in
overcoming the feasibility and adherence limitations of past
approaches traditionally confined to intrusive specimen collection
at infrequent times at home or to aperiodic clinic visits.
There is a growing body of evidence supporting the potential

capabilities of connected digital devices in detecting signs of
stress via a wide array of digital biomarkers. For example, sensors
with global-positioning systems are able to detect changes in
movement patterns, activity, and time spent in different locations,
while smartphone apps are able to collect passive data in the form
of change in device or app usage and number of calls or texts
among many other features. These digital biomarkers have been
linked to perceived stress and changes in mood in university
populations,12,13,17 several psychiatric populations18–20 and Par-
kinson’s disease.21 Audio recordings from smartphones are able to
detect rate of speaking, changes in pitch, pauses, potentially
reflecting vocal markers of stress22 and these features have been
shown to be associated with objective measures of stress
captured through smartwatches during stressful scenarios in real
life.23 Further, through video data, smartphones have the
capabilities of facial emotion recognition that are able to detect
shifts in subjective reported mood states.24 Participation in online
social networking may influence signs of stress and well-being.
Proxies of social support have been suggested in the form of
number of online interactions and views, “likes” etc. although
these general forms of online interaction have not been found to

Fig. 1 Engineering signals from wearable devices to signs of stress to end-organ damage
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be associated with health outcomes and some forms may pose
harm, following theories of social comparison.25 However,
interaction with individuals with strong ties has been linked to
improvement in self-reported well-being.26

The collection of these digital objective measures of stress in
parallel to smartphone apps that repeatedly collect subjective
experiences of stress could offer an opportunity to delineate the
concordance or discordance between feeling stressed and the
body’s biological acute and long-term response to stress. This
capability also opens doors to novel inquiries about new models
of stress and disease centered on the potential importance of
momentary feelings of control or uncertainty27 during exposure to
stress and how this feeling maps on to objective stress and
downstream deleterious consequences.
Innovative statistical approaches are needed to translate this

knowledge in a way that is useful for both individuals and
healthcare providers. Modern machine learning and AI techniques
are powerful means to work with complex relationships
(unknowns, unknowns as described in the Cynefin framework28)
in high-dimensional data and learn from them.29 In turn, the hope
is to shift towards complicated relationships, where cause and
effect might be elucidated with the “expert” help of AI. The big
data emanating from wearable devices and smartphone apps
produces a challenge for machine learning and AI specialists to
produce methodologies capable of estimating individual level
trajectories of disease that are interpretable. While supervised
methods such as recurrent neural networks are able to forecast
future disease from prior history, the interpretability of these
methods is sacrificed, leaving the mechanistic processes of disease
progression unknown and findings relevant to a population level
interpretation. Fortunately, machine learning and AI approaches
are rapidly developing that attempt to address these methodo-
logical limitations capable of accommodating complex data
structures involving high-frequency longitudinal individual level
data with high inter and intra variation,30–32 and that could make
individual predictions for impending disease.34–36 Discoveries
from machine learning and AI in this context could lead to new
insights of trajectories of disease that could meaningfully inform
revisions to the current categorical nosology, lending insight into
new endotypes defined as subtypes of disease reflecting the
underlying pathophysiology rather than phenotypic observable
characteristics, initially applied in the context of asthma.33

EMERGING OPPORTUNITIES
The number of wearable devices available on the market has
exploded in recent years10 and several systematic reviews outline
the promise of these technologies for a wide variety of chronic
conditions, such as diabetes,37 parkinsons,38 and cancer.39

Although, many of these applications surround detection of
end-organ symptoms to be used in clinic, or are used for chronic
disease management, such as continuous glucose-monitoring
sensors for diabetes management.37 The clinimetric properties of
most wearable technologies is unknown as well as their
capabilities for detecting early symptoms and stress that might
help not only clinicians, but also individuals to monitor early
warning signs for prevention.
Still, these complimentary approaches could benefit a wide

variety of chronic health conditions targeting a diverse array of
end-organ damage. The acute impact of stress may have proximal
effects on chronic disease symptoms from weakened stress-
mediating symptoms and by direct effects on key triggers of
disease activity, such as brain lesions in multiple sclerosis (MS),40

and inflammatory markers in irritable bowel disorders.41 Promising
findings from a randomized controlled trial of MS patients found
that stress management therapy reduces gadolinium-enhancing
brain lesions associated with MS flare ups.42 Stress management
has also been shown to improve glycemic control in patients with

Type 2 diabetes mellitus.43 The use of connected digital
technology coupled with machine learning and AI could make
huge strides in informing the underlying stress-related origins of
disease activity in these chronic conditions and others, such as
cancer, migraines, and arthritis. Using this new information could
provide researchers with the tools to enable individuals and
healthcare providers to detect, act, and intervene when acute
stressors occur in real time.
Other exciting opportunities lie in disease prevention in high-

risk populations or those entered periods of biological or social
change. Adolescence and emerging adulthood is the peak onset
time for psychiatric conditions and suicide-related behavior, and is
a particularly risky time among adolescents with a positive
psychiatric family history.44 The ability to monitor acute stressors
in real time and learn individual reactions to them could unlock
huge opportunity for prevention of disease during high-stress
periods in life, such as the transition into university or
physiological transitions such as pregnancy or even menopause.
Imagine the scientific utility of a multidimensional map of
interconnected biological signs of stress during pregnancy in
understanding the early signs of impending obstetric complica-
tions such as preeclampsia and the potential tools this could offer
women and their clinicians to monitor and detect early warning
signs of these complications. Periods of reproductive transitions
such as pregnancy or menopause reflect optimal-learning settings
to explore the feasibility of detecting multidimensional stress
responses given the natural adjustments in physiological
responses during this time and the direct effect that stress exerts
on these normally occurring processes. Other examples include
high-stress work environments. Nurses or midwives are in need for
support in an increasingly demanding workforce landscape with
high rates of burnout.45 This high-stress environment provides
another unique opportunity to test feasibility of these approaches,
while simultaneously testing potential digital interventions to
support stress management. Although, the potential for employ-
ers to take advantage of this information to monitor employee
performance must be considered and addressed through rigorous
data protection and privacy guidelines.

CHALLENGES
The promise of applying digital devices to health and wellness is
recognized, although in parallel to several cautions of their
use.46,47 Online surveys suggest those more likely to engage with
wearable devices for health-monitoring purposes are younger and
from higher socioeconomic backgrounds,48 although character-
istics of digital tool users versus non-users are largely unknown.
This poses challenges from a feasibility and ethical standpoint in
terms of equitable access and reaching vulnerable populations
that will benefit most from these tools.49 The information
produced from integrated smartphone apps and wearable devices
is at the heart of big data, involving high volume, variety, velocity,
and variability of data across different venues coinciding with
further feasibility and ethical challenges. The scale of data
produced from integrated digital tools will require rigorous
approaches towards data privacy, security, and sophisticated ETL
pipelines.
The opportunity connected digital technology could offer for

the return of human agency is promising but not without risks.
The potential for negative or harmful reactions towards the
returning of symptoms, particularly objective symptoms, or the
monitoring of symptoms by clinicians is largely unknown. Further,
connected digital devices aimed at detecting, tracking, and
reducing stress may inadvertently induce stress through disrup-
tions in daily life, sleep, and in real-world social interactions and
relationships, through social comparisons, fear of missing out and
by increasing daily hassles surrounding connectivity, battery life,
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and device malfunction. In parallel to pilot testing of these
approaches, these potential risks should be explored.
Finally, stress is a normal and necessary human response.

Defining the line where stress is adaptive versus harmful via
connected digital devices will require careful thought and
consideration so as to avoid another means to de-stress
individuals from everything conflictual or disruptive, that might
in actuality be necessary for resilience. It will be particularly
important to consider this potential devaluing of stress for
downstream implications of digital devices targeting young or
vulnerable populations.

CONCLUSIONS
The advancement of digital technologies involving wearable
devices, smartphone phone apps, and machine learning and AI
affords a unique opportunity to accelerate the field of stress
research and leverage this technology for evidence-based care.
These complementary approaches could provide the tools to
identify a multidimensional longitudinal measure of the stress
response in a naturalistic setting and unlock complex unknown
patterns of the stress response in forecasting downstream
consequences. In the short term, this potential of identifying
digital biomarkers of impending chronic conditions could be a
huge utility to the scientific and medical community for under-
standing the stress-related origins of disease through individual
trajectories and developing and testing interventions from this
knowledge. In the long-term, these innovative approaches could
have the ability to bridge the gap between symptom change and
healthcare visit by enabling and empowering individuals to
monitor their stress outside a hospital setting and facilitate early
detection by providing healthcare workers with continuous
information to identify early warning signs. The implications this
has for the return of agency and individualized care is extensive
reflecting an exciting period with far-reaching opportunities.
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