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Abstract

Microbes are critical components of ecosystems and provide vital services

(e.g., photosynthesis, decomposition, nutrient recycling). From the diverse

roles microbes play in natural ecosystems, high levels of functional diversity

result. Quantifying this diversity is challenging, because it is weakly associ-

ated with morphological differentiation. In addition, the small size of

microbes hinders morphological and behavioral measurements at the indi-

vidual level, as well as interactions between individuals. Advances in micro-

bial community genetics and genomics, flow cytometry and digital analysis

of still images are promising approaches. They miss out, however, on a

very important aspect of populations and communities: the behavior of

individuals. Video analysis complements these methods by providing in

addition to abundance and trait measurements, detailed behavioral infor-

mation, capturing dynamic processes such as movement, and hence has the

potential to describe the interactions between individuals. We introduce

BEMOVI, a package using the R and ImageJ software, to extract abun-

dance, morphology, and movement data for tens to thousands of individu-

als in a video. Through a set of functions BEMOVI identifies individuals

present in a video, reconstructs their movement trajectories through space

and time, and merges this information into a single database. BEMOVI is

a modular set of functions, which can be customized to allow for peculiar-

ities of the videos to be analyzed, in terms of organisms features (e.g.,

morphology or movement) and how they can be distinguished from the

background. We illustrate the validity and accuracy of the method with an

example on experimental multispecies communities of aquatic protists. We

show high correspondence between manual and automatic counts and illus-

trate how simultaneous time series of abundance, morphology, and behav-

ior are obtained from BEMOVI. We further demonstrate how the trait

data can be used with machine learning to automatically classify individu-

als into species and that information on movement behavior improves the

predictive ability.

Introduction

Microbes are crucial components of all ecosystems, pro-

viding important services such as organic matter decom-

position, production of biomass and oxygen, or carbon

storage (Kirchman 2012). Whereas tremendous progress

has been made in describing the phenotype of microbes

such as their physiology, other aspects of the phenotype

such as behavior have progressed at a slower pace

(Finlay 2004). Until recently, this was mainly due to

methodological limitations which constrain descriptions

of microbes to the population or community level (Kreft
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et al. 2013). While these approaches provided important

insights into the functional diversity of microbes, limita-

tions in describing microbes at the individual level would

preclude understanding of ecological and evolutionary

processes dependent on individual level characteristics,

and intraspecific variability in such characteristics (Bolnick

et al. 2003; DeAngelis and Mooij 2005). The same limita-

tions apply to the use of microbial model systems such as

protists, which have a long and successful tradition in

testing ecological and evolutionary theory (Gause 1934;

Elena and Lenski 2003; Holyoak and Lawler 2005; Kawecki

et al. 2012; Altermatt et al. 2015).

Advances in microbiology have been driven by techno-

logical developments ever since Antonie van Leeuwenhoek

invented the compound microscope (Kreft et al. 2013).

New technologies such as metagenomic studies (Albertsen

et al. 2013), flow cytometry (M€uller and Nebe-von Caron

2010), digital analysis of still images (Schillinger et al.

2012), and single-cell microbiology (Brehm-Stecher and

Johnson 2004) provide insights about the structure and

composition of microbial communities, as well as the

morphology, function and ecology of microbes at the

individual level (Kreft et al. 2013). Whereas these new

technologies are powerful in showing differences among

individuals in physiology or morphology, they miss out

on an important component of the individual phenotype:

behavior. Behavior is important because it mediates the

interaction strength in communities, for instance, between

predators and prey (McGill and Mittelbach 2006) with

effects on community properties such as stability (Fryxell

and Lundberg 1998). Digital video analysis can comple-

ment these approaches by providing quantitative descrip-

tions of behavior via automated tracking (Dell et al.

2014), which is collected at the individual level in addi-

tion to abundance and morphological data. Such methods

apply to all types of empirical systems where individuals

in the community are characterized by continuous move-

ment, for example, they should work on samples taken in

the field and also for micro- and mesocosm systems in

laboratory conditions. Whereas a variety of commercial

and open-source software exists to perform tracking (see

supplementary material of Dell et al. 2014 for an over-

view), or to extract morphology and abundance data

(e.g., DAIME, Schillinger et al. 2012), the combination of

these capabilities is to our knowledge rare. Some software

lacks efficient ways of dealing with large numbers of video

files and may be difficult to customize and automate. Dell

et al. (2014) give an extensive overview of tracking soft-

ware and their strengths and weaknesses. While previous

demonstrations relying on digital image analysis tested

and validated work flows aimed at single-species

microcosms (e.g., Mallard et al. 2013; Pennekamp and

Schtickzelle 2013), extending the capability of such sys-

tems to more complex communities is required (Gaston

and O’Neill 2004). Some success with automatic classifi-

cation of species was achieved with protists in activated

wastewater sludge (Amaral et al. 2008) and with auto-

mated systems to analyze abundance and quantify trait

distributions during large-scale marine monitoring

schemes (e.g., Zoo/PhytoImage: http://www.sciviews.org/

zooimage/, Bell and Hopcroft 2008). These show that

such efforts are worthwhile even with challenging field-

collected samples. To our knowledge, no studies so far

used automated video analysis in the context of auto-

mated species identification, although Branson et al.

(2009) showed that it was possible to predict the gender

and genotype of Drosophila flies from their dynamic

movement behavior.

Automated video analysis usually consists of three

steps: video acquisition, video processing/analysis, and

data interpretation (Dell et al. 2014). To fulfill the latter

two steps, we introduce a new R package, BEMOVI, and

show its validity and scope of application. For guidance

on the image acquisition step, refer to Dell et al. (2014)

or Pennekamp and Schtickzelle (2013). BEMOVI is an

automated digital video processing and analysis work flow

to extract abundance, morphological, and movement data

for tens to thousands of individuals in a video, hence

characterizing a microbial population or community by

multiple traits. We illustrate how this trait data can be

used to predict species identity in a multispecies commu-

nity, and how the characteristics of the movement

improve the predictive ability of the classification model

compared to morphological data only. We then derive

population abundance by counting the individuals of each

species and validate these against manual counts of a

trained human observer taken simultaneously for both

single and multispecies communities.

Description of the BEMOVI Package
and its Functions

The BEMOVI work flow relies on two freely available,

open source, and cross-platform software widely used in

the scientific community: R – the statistical computing

environment (R Development Core Team 2012) and Ima-

geJ, a powerful image processing and analysis software

(Schneider et al. 2012). ImageJ shows considerably better

performance than a native R solution for the video pro-

cessing steps (Pennekamp and Schtickzelle 2013). We

therefore built BEMOVI as a set of modular R functions

(Table S1) calling ImageJ and reading its output, creating

a seamless work flow that deals efficiently with large

numbers of video files and merges results into databases

for easy analysis. Additional helper functions are provided

to help in setting up and validating the use of BEMOVI

ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 2585

F. Pennekamp et al. BEMOVI, Software for Automated Video Analysis

http://www.sciviews.org/zooimage/
http://www.sciviews.org/zooimage/


for a specific experimental system. BEMOVI is readily

available from github (https://github.com/pennekampster/

bemovi), a solution allowing for easy package upgrading,

and has been thoroughly tested on Macintosh OS X,

Windows 7 & 8, and Ubuntu Linux 14.04 LTS. Additional

documentation and a full demonstration of the package

can be found at www.bemovi.info.

BEMOVI is built to process a directory containing a set

of video files shot with identical settings, with three main

steps (Table 1): (1) locate, measure, and reconstruct the

movement trajectories of individuals in a video; (2) merge

measurements from all treated videos into a single data-

base to which information on experimental conditions is

added; and (3) perform basic analyses and validating

results.

Identify, locate, and measure individuals

BEMOVI includes two functions: locate_and_
measure_particles and link_particl
es. In the first, each single video is split into a stack of

images (=frames) ordered in time (Dell et al. 2014), and

each of these frames is treated sequentially to locate and

measure individuals (function: locate_and_mea-
sure_particles). To discriminate individuals from a

background, BEMOVI uses the dynamic difference image

segmentation which is a variant of background subtrac-

tion (Pennekamp and Schtickzelle 2013). The difference

in intensity (gray value) between the frame to be analyzed

and a reference frame at a constant time offset (e.g., 25

frames or 1 second later) is calculated by subtracting the

two frames from each other. The resulting difference

image, which contains only the particles that moved (i.e.,

pixels that changed intensity), is then binarized (i.e., con-

verted to black and white) using a user defined threshold.

Both the time offset and the threshold must be carefully

adjusted and validated by the user to minimize segmenta-

tion errors (e.g., immobile individuals are considered

background and do not appear in the difference image,

or the size and shape of individuals are biased due to par-

tial overlap between the frames used for creating the dif-

ference image). Other segmentation approaches such as

intensity thresholding or edge detection, which do not

suffer from this problem, are compromised by the hetero-

geneous backgrounds and light conditions common in

our experimental system (microbial microcosm commu-

nities) (Pennekamp and Schtickzelle 2013).

A helper function assists with finding the appropriate

threshold (function: check_threshold_values). Bi-
narized images are then analyzed by the ParticleAnalyzer

tool of ImageJ (this is run automatically from R, within

the function locate_and_measure_particles),
which extracts for each particle, X- and Y-position and

morphology (area, mean, minimum and maximum of the

gray value, perimeter, width, length, and angle with the

dominant axis of a fitted ellipse, circularity, aspect ratio,

roundness, and solidity) (Schneider et al. 2012).

Reconstruct movement trajectories

Reconstructing movement trajectories (with function

link_particles) involves linking the position of each

particle through the stack of images. The link_parti-
cles function in R uses the MOSAIC ParticleTracker

Table 1. Overview of functions provided with the BEMOVI package. Functions are ordered according to the analysis flow.

Step Function name Short description

Setup check_video_file_names Checks whether video files are either of *.avi or *.cxd format

check_threshold_values Assists finding manually an appropriate threshold for image segmentation

Locate, measure, and

reconstruct

trajectories

locate_and_measure_particles Segments and thresholds video by difference image segmentation, then runs

particle analysis to locate and measure the morphological properties of each

particle on all frames

link_particles Reconstructs the movement trajectory of a given particle by linking its

coordinates through time and calculates movement metrics such as turning

angles and step lengths

Merge data merge_data Creates a database merging morphology and trajectory information with a

description of the experimental design

Process data summarize_trajectories Summarizes the mean morphology and movement and its variability on the

trajectory level

filter_data Filters the data, excluding very short, almost non-moving and low detection

trajectories

Validation create_overlays Creates an overlay of the original video and the trajectories identified in the

segmentation and tracking steps; two different visualization options are

possible; if the species was predicted, trajectories can be colored according

to the species they were predicted to belong to
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plug-in for ImageJ (Sbalzarini and Koumoutsakos 2005),

which performs both segmentation and tracking in its

native form. However, the ParticleTracker also allows the

input of X- and Y-coordinates themselves, having two

advantages: (1) users can use whatever approach they

want for segmentation and feed X- and Y-positions
directly to the link_particle function, and (2) linking on

X- and Y-positions only is more efficient as large varia-

tion in size and shape of the individual can hamper the

detection in tracking applications (Dell et al. 2014).

Another useful feature of the ParticleTracker is its abil-

ity to track simultaneously hundreds of particles in an

unrestricted viewing field (e.g., particles can move in and

out), even when some of them miss out on certain

frames due to detection problems. The algorithm deals

with occlusions (i.e., when a particle collides with another

particle, either individual or debris) conservatively by

interrupting the current trajectory and starting a new one

(Sbalzarini and Koumoutsakos 2005). So far, no attempts

are made to recombine partial trajectories due to occlu-

sions. Recombining tracks after occlusion often implies

some assumptions on movements (e.g., it is more likely

that individuals go straight so recombination is carried

out such as minimizing turns at occlusion), but such

assumptions might afterwards bias the analysis of move-

ment.

Two arguments are required to parameterize the track-

ing function: The maximum possible displacement of par-

ticles between two successive frames and the number of

frames over which a particle can be linked if missing on

some intervening frame(s). They must be carefully vali-

dated to avoid errors (e.g., creating an erroneous link

between different particles if displacement and/or link

range are too large, or broken links if they are too small).

After trajectories are reconstructed, movement metrics are

computed for each pair of coordinates (between two

frames) that form an individual trajectory: step length,

absolute angle, turning angle, net squared displacement,

and gross displacement. For a detailed description on the

calculation and interpretation of these metrics, refer to

textbooks on the quantitative analysis of trajectories such

as Turchin (1998).

Merge measurements from all treated
videos into a single database

The second step (i.e., data merging) combines the mor-

phology and movement metrics acquired on each video

into a single database and links this information with a

video description file containing any relevant information

on experimental conditions for each video (e.g., treatment

level, video capture settings), using the video file name

for merging (function: merge_data).

Perform basic analyses and validate results

In the third step (i.e., data processing), aggregation of the

morphology and movement metrics (median, mean, and

variability; see Table S1) is performed on the trajectory

level (each trajectory is given a unique ID, that is, a com-

bination of file name and trajectory number). This aver-

aging over the trajectory will to a certain degree account

for errors on cell morphology originating from imperfect

segmentation such as described above (e.g., individuals

partially overlap among the frames used to build the dif-

ference image). In case such problems occur more then

only occasionally, this means that the processing has not

been parametrized correctly and/or there is some intrinsic

flaw in applying BEMOVI to that set of videos (e.g.,

because no reliable segmentation can be obtained). To

validate the output of BEMOVI, we suggest using the

create_overlays helper function for visualizing the

extracted trajectories. This function overlays the original

video data with the extracted trajectories, labelled with

ID, and thus helps troubleshooting erroneous and incom-

plete tracking results. Videos in which individuals are not

labelled with an ID (i.e., were not tracked), or whose label

frequently changes, are indicators that the morphology

extraction or the tracking parameters require fine-tuning.

To distinguish individuals from remaining artefacts (e.g.,

moving debris), we provide another function to exclude

particles that do not comply with certain minimum

requirements, that is, minimum net displacement, trajec-

tory duration, detection rate, and median step length

(function: filter_data).

Materials and Methods

Species and experimental conditions

Microcosms of protists are widely used model systems in

ecology and evolution (Altermatt et al. 2015). For the fol-

lowing experiments illustrating the use of the BEMOVI

package, a set of nine small, single-celled ciliates was used:

Paramecium caudatum, Paramecium aurelia, Blepharisma

japonicum, Colpidium striatum, Colpidium campylum, Cyc-

lidium glaucoma, Tetrahymena thermophila, Didinium

nasutum, and Loxocephalus sp., which show variation in

morphology (Giometto et al. 2013) as well as in move-

ment behavior (Carrara et al. 2012).

The aquatic microcosms used followed a similar setup

as Petchey (2000), and for detailed and comprehensive

methods, please see Altermatt et al. (2015). For each

experiment, ciliates were cultured in jars of 240 mL vol-

ume covered by an aluminum cap to allow air exchange

but prevent contamination. Each jar contained 100 mL

of bacterized medium before ciliates were added. The
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medium consisted of protist pellet medium (Carolina

Biological Supplies, Burlington, NC) at a concentration

of 0.55 g per liter of Chalkley’s medium, as well as two

wheat seeds for slow nutrient release. The medium was

then inoculated with three species of bacteria (Serratia

fonticola, Brevibacillus brevis and Bacillus subtilis). Bacte-

ria were cultured for a day at 37�C. Ciliates were then

added to the jars and kept in temperature-controlled

incubators at 20�C for the remainder of the experi-

ments.

Three experiments were run to test and illustrate the

performance and scope of the BEMOVI package:

1. Monocultures of eight ciliate species (previous list

except for Didinium nasutum) were assembled, and

videos taken to characterize the variation among spe-

cies in terms of morphology and movement behav-

ior.

2. Mono- and mixed cultures of Colpidium striatum,

Didinium nasutum, Paramecium caudatum, and

Tetrahymena thermophila were assembled and ten

independent samples assessed by automatic and man-

ual counts, in order to compare the abundances per

experimental unit (the individual microcosm).

3. Colpidium striatum, Paramecium caudatum, and

Tetrahymena thermophila were followed over 28 days

in monocultures and mixed cultures by automatic

and manual counts (nine sampling days), again to

compare these two methods of observation.

Microscope and video setup

All videos were taken using a stereomicroscope (Leica

M205 C) with a 259 magnification mounted with a dig-

ital CMOS camera (Hamamatsu Orca C11440, Hamama-

tsu Photonics, Japan). Dark field illumination (LED ring

light stage controlled by a Schott VisiLED MC 1500) was

used such that the ciliates, usually transparent in bright

field microscopy, appear white on black background; this

greatly facilitates segmentation. For details how to setup

the hardware for best segmentation results, please refer

to Pennekamp and Schtickzelle (2013) or Dell et al.

(2014).

To sample a culture, we transferred 1 mL of culture

into a Sedgewick Rafter cell (S52, SPI supplies, Westches-

ter, PA), which was placed under the microscope objec-

tive. We took videos at a frame rate of 25 frames per

second in the proprietary .cxd format. The BEMOVI

package is limited in the video formats and it can cur-

rently read (.avi and .cxd, via the BIO-formats plug-in),

but could easily be extended to accommodate any of the

many other video formats readable by ImageJ and the

BIO-formats plugin (Linkert et al. 2010). As tracking

parameters, we specified a link range of five frames for all

three experiments and a displacement of 20 pixels for

experiments 1 and 3. In experiment 2, a higher displace-

ment of 25 pixels was required to account for the fast

moving Didinium nasutum.

Trajectories were filtered by the filter_data function

to get rid of artefacts such as spurious trajectories due to

moving debris. Trajectories for analysis were required to

show a minimum net displacement of at least 50 lm, a

duration of 0.2 sec, and a detection rate of 80% (for a

trajectory with a duration of 10 frames, the individual has

to be detected on at least eight frames) and a median step

length of >2 lm. In open systems where the viewing field

is not restricted (i.e., individuals can swim in and out of

the viewing field), automatic counts by BEMOVI are

required on a by-frame basis and then averaged across

the whole video. This avoids that occlusions resulting in

multiple trajectories recorded for a single individual

inflate the counts.

For manual counting, a sample was taken from the

culture and manually counted under a dissecting micro-

scope by an experienced experimenter (as described in

Altermatt et al. 2015). Such manual observations, albeit

very time-consuming and limited to abundance measure-

ments, are still the most widely used method in experi-

mental micro- and mesocosm studies (Pennekamp and

Schtickzelle 2013). Therefore, we chose them as the stan-

dard against which to compare the automatic measure-

ments by BEMOVI. However, as an alternative

methodology, manually counting individuals on the

recorded video would have the advantage of disentan-

gling different sources of error (e.g., intersample variabil-

ity, compensation between false positives and false

negatives in the automatic segmentation procedure of

BEMOVI). It was not chosen here for the following rea-

sons: first, we consider the microcosm, not the sample,

as the relevant experimental unit; second, a specific

example may not be particularly informative because dif-

ferent sources of error are likely to vary widely among

case studies as they are highly dependent on the video

settings, the environment (amount of debris present) or

the movement behavior of the target species; third, man-

ual observation of videos, required for quantifying fre-

quencies of different types of error, would be very

cumbersome, and also prone to error.

As we considered the microcosm as the relevant exper-

imental unit for all experiments, we took independent

samples for manual and automatic counts; this has the

drawback that samples were not paired, and thus, inters-

ample variability may be confounded with tracking

errors. However, the intersample variability also affects

manual counting and should be overall comparable

between methods as sampling is performed in a similar

fashion.
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Machine learning for automated species
identification

We used supervised machine learning to train and classify

individuals in mixed cultures. The random forest (RF)

classifier is a widely used classification algorithm based

on ensembles of decision trees (Breiman 2001). By con-

straining the number of observations and variables

included when constructing individual decision trees,

trees within an ensemble are decorrelated and the identity

assigned to an individual is usually based on the majority

vote of the ensemble (Cutler et al. 2007). We trained the

RF on the properties of individuals from monocultures

and consequently used the model to predict species iden-

tity in mixed cultures using the same traits but on

unidentified individuals. We report the classification

success (1 - out-of-bag error rate; reported as percent-

age), which states how well the model performs on

observations not included in training the model (i.e., a

cross-validation).

Results

Information on traits exhibited by individuals in a mixed

community is usually used to predict their species identity

as long as sufficient differences in trait space exist (Gorsky

et al. 2010). Figure 1 shows the differences in two mor-

phological traits (cell perimeter and aspect ratio) among

eight species grown separately in monocultures in experi-

ment 1. Some species, such as Paramecium caudatum and

Paramecium aurelia, show considerable morphological

overlap, whereas many species occupy quite distinct areas

of the morphological trait space, aiding in their automatic

classification. Comparing manual cell length measure-

ments collected from the literature and online sources

with those measured by BEMOVI, we found a strong

positive correlation (R2 = 0.85, P < 0.01, see Fig. S1),

illustrating the correspondence between manual and

automatic trait measurements. On average, we reached a

classification success of 84% in our study; however, spe-

cies overlapping strongly in trait space were impossible to

distinguish, resulting in a complete failure to predict the

identity correctly (see P. caudatum and P. aurelia).

Figure 2 shows species classification based on morpholog-

ical traits, with higher misclassification of morphologically

similar species, that is, 37% of known Colpidium campy-

lum got identified as Tetrahymena thermophila, whereas

19% of known T. thermophila were misclassified as

C. campylum. When the movement characteristics were

considered in addition to morphology, classification suc-

cess increased about 5% to an average of 89%, with a

decrease in classification error by 18% in Tetrahymena

and by 8% in Colpidium (Fig. 2). Highly similar species

such as P. caudatum and P. aurelia, however, remain

indistinguishable even after adding movement traits.

In the second experiment, four ciliate species

(T. thermophila, P. caudatum, Colpidium striatum, and

Didinium nasutum) were grown in mono- and mixed

cultures, with the aim to compare automatic (using

BEMOVI) and manual counts. Because the four species

used in this experiment are well separated in trait space,

the out-of-bag classification error of the training model

was <2%. We separately took 10 samples from each cul-

ture to assess the total amount of variability associated

with sampling abundances. Automatic and manual counts

showed high correspondence, regardless whether mono-

and mixed cultures (containing all three ciliate species in

the same microcosm) were considered (Fig. 3, R2: 0.94

and 0.94, mono- and mixed cultures, respectively). The

among-sample variability was overall similar between the

two counting methods.

In experiment 3, we followed mono- and mixed cul-

tures (containing all three species) for a period of 28 days

and obtained species identification and estimation of

abundance both automatically and manually. Both meth-

ods captured very well the monoculture growth dynamics

of P. caudatum, C. striatum, and T. thermophila (Fig. 4).

Although T. thermophila showed some discrepancy

between the methods, overall both were closely correlated

(R2: 0.86). Importantly, BEMOVI succeeded in automati-

cally identifying the abundance of the three species when

cultured together in a mixed culture, closely matching the

counts of a trained human observer. Furthermore, cell

size dynamics (Fig. 5) illustrate the ability of BEMOVI to

capture trait dynamics. Over the first twenty days, C. stri-

atum and T. thermophila decreased in size, whereas

P. caudatum remained rather stable. After a resource
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Figure 1. Morphological characteristics of eight ciliate species: cell

perimeter and aspect ratio (major axis/minor axis of a fitted ellipse).
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pulse (replacement of 50% of the medium) on day 20,

cell sizes increased. Figure 6 shows how a dynamic trait

such as movement speed changes during the 28 day

experiment. The species show stronger overlap in move-

ment speed than in size, but the distribution of speed

seems more stable through time and unaffected by the

resource pulse on day 20. Such patterns demonstrate the

potential of BEMOVI in trait-based community ecology,

although deep analysis of the patterns illustrated here is

beyond the scope of this article.

Discussion

Microbes are important for all the ecosystems on the

planet, but are still mostly studied at the population or

community level. This contrasts with the notion that eco-

logical processes can be influenced by variation among

individuals and that descriptions on the population or

community level require incorporation of such differences

(Bolnick et al. 2003; DeAngelis and Mooij 2005). Recent

technological advances allow study of microbes at the

individual level and discovery of whether variation among

individuals is as important for microbes as for larger ani-

mals and plants (Kreft et al. 2013). The video analysis

work flow we presented here complements techniques

such as flow cytometry and metagenetic approaches,

because it allows to study the behavior of microbes within

populations and communities in situ. Characterizing

behavior may thus reveal unrecognised functional diver-

sity, previously masked by low morphological and poten-

tially genetic differentiation.

BEMOVI shares the advantages of other automated

image analysis systems: (1) results (videos) can be stored

for later analysis or re-analysis, (2) use of a computer

reduces observer bias, (3) video acquisition is usually

faster than manual counts and the effort is constant

regardless of community complexity, whereas manually

counting complex communities can be very time-con-
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Figure 2. Confusion matrices between eight ciliate species to illustrate the improved classification success when both morphology and movement

features are considered (>89%), compared to morphology only (84%). The lower panel shows the differences in classification success between

the two models. Along the diagonal, increases in the proportion of correctly classified species are positive, indicating higher rates of successful

classification, whereas off the diagonal, negative differences indicate decreasing classification error (fewer individuals are misclassified into an

incorrect species).
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suming (Pennekamp and Schtickzelle 2013). For illustra-

tion, an experiment including all pairwise combinations

of six species required nine person-hours to count a total

of 108 microcosms. In comparison, video acquisition was

achieved in about 2.5 h and subsequent video processing

by BEMOVI taking an additional 2 h. It is important to

note, however, that setup and validation of such a system

require initial time investment. Moreover, very complex

videos, with many individuals (>1000), may also take

considerable time to process (e.g., several hours for a

single video). Still, given that nearly no intervention by

humans is needed, the gains in real working time are con-

siderable. In addition, the work flow presented here

extracts far more information than manual observation

because multiple traits are collected simultaneously with

no extra effort.

In contrast to manual observations, automatic classifi-

cation of species by random forest classification based on

the output of BEMOVI allows users to quantify classifica-

tion uncertainty. Classifications of individuals below a

certain threshold could be flagged as "uncertain" or mea-

sures of classification error integrated in the statistical

inference framework. A prerequisite for robust results of

BEMOVI requires to compare its output against standard

methods to quantify abundance or traits in a particular
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Figure 3. Comparison of manual and automatic estimates of

population abundance in single (dashed bars) and mixed species

cultures (solid bars). The �1 STD error bars are calculated for the 10

repeated samples from each species and cultures (monocultures and

mixed cultures) for manual and automatic counts. The dashed line

indicates the 1:1 line. A barplot is used instead of showing the data

point-by-point because the 10 samples for each treatment were not

paired, that is, counting was not made on the same sample but

rather on the same experimental unit (the microcosm).

Colpidium striatum Paramecium caudatum Tetrahymena thermophila

10

1000

10

1000

M
onoculture

M
ixed culture

0 10 20 0 10 20 0 10 20
Days since start

D
en

si
ty

 (c
el

ls
/m

L)

Method Automatic counts Manual counts

Figure 4. Population dynamics of three species of ciliates given by manual and automatic counting (fitted lines are local polynomial regressions)

to illustrate the general growth dynamics. The mixed culture contains a combination of the three species used in the monocultures (Colpidium

striatum, Paramecium caudatum, Tetrahymena thermophila).
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study system. Whereas we quantified the correspondence

of manual and automatic counts, one could also have

manually counted individuals on the videos recorded.

This would allow to specifically disentangle the different

sources of variability in automatic counts. Whereas we

chose to compare results on the level of the microcosm,

BEMOVI does not prevent users to choose different stan-

dards, especially if one is interested in integrating the

sampling process in a state-space model; this is likely part

of the necessary validation when applying BEMOVI (as

any automated analysis approach) to a particular experi-

mental system, that only the individual experimenter can

perform on his/her data in the appropriate way given the

system peculiarities.

Whereas the random forest algorithm provided low

classification error in the smaller communities (three

species), in the more complicated case of eight species

with strong imbalance in the availability of individuals

for training the algorithm, classification success was

variable among classes. In particular, the complete

misclassification of P. aurelia, although not unexpected

due to the working of the random forest, warrants

future improvements. Indeed, in random forest classifi-

cation, under-represented classes may get lumped into

the majority class if they are not easily distinguished, as

is the case of P. aurelia and P. caudatum. However, note

that this is not the case for Blepharisma for which only

few individuals are available as well, but which gets clas-

sified very reliably. This behavior is due to the way the

random forest classification works, which tries to mini-

mize the impurities in the nodes (Cutler et al. 2007).

Minority classes may overall cause negligible impurities

(especially if imbalance is strong), although every case is

misclassified. Random forest classification is only one

among multiple classification methods with specific

advantages and disadvantages. However, the automatic

classification of species is not a feature of BEMOVI (i.e.,

there are no dedicated functions to perform this task),

but rather a proof-of-concept that BEMOVI can provide

the data allowing for species recognition, using random

forest as an example of statistical analysis for such a

goal. We suggest users dealing with these problems may

use classification techniques better able to deal with large

imbalances, for instance, Naive Bayes or support vector

Figure 5. Body size changes through time (from first row to last row) in the mono- and mixed cultures during the experiment. At day 20, the

medium was partly replaced by fresh medium perturbing the mono- and mixed cultures. Both axes are on log10 scaling.
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machines that take information about the relative abun-

dance of classes into account.

Some limitations need to be considered when using

BEMOVI. First, the tracking of individuals is performed

in two dimensions, although the environment may be

often three dimensional. Whereas this may be largely rep-

resentative for organisms living on a plane (such as

ground-dwelling insects for instance), for others such as

aquatic organisms this simplification may be problematic

for extrapolating the measured movement in the 3D envi-

ronment. Several studies show, however, that 2D tracking

successfully predicts spread rates even in higher dimen-

sional systems (Giometto et al. 2014; Pennekamp 2014).

Complex environments with many physical obstacles

(e.g., debris particles in our medium) prevent reliable

tracking in three dimensions, because individuals may

be frequently invisible to one of the three required

cameras. Nevertheless, rapid development of software and

hardware will ultimately lead to systems performing 3D

tracking (Dell et al. 2014).

Another limitation, which applies to video tracking in

general, is the occurrence of occlusions, that is, when a

particle collides with another particle (individual or deb-

ris) (Dell et al. 2014). This can result in errors and their

propagation when identifying individuals (e.g., in studies

of collective movement and social interactions in a swarm

of animals). Some recently developed tracking algorithms

such as the idTracker (P�erez-Escudero et al. 2014) or the

Ctrax software (Branson et al. 2009) can deal with such

situations using powerful "fingerprinting" techniques to

keep track of individuals or including probabilistic mod-

els, which predict the position after the occlusion, and

therefore may be able to maintain the individual identity.

Due to the large numbers of individuals tracked simulta-

neously, the use of computationally intensive "fingerprint-

ing" or manual verification are currently not suited to the

goals of BEMOVI. However, given that the work flow is

highly modular, another tracking software could easily

replace the plug-in used and therefore extend for 3D

tracking or having more power in maintaining individual

identities. The same applies for the segmentation

approach which is currently the dynamic difference

image. BEMOVI will read and process data regardless of

the segmentation method, as long it is provided in the

Figure 6. Changes in movement speed through time (from first row to last row) in the mono- and mixed cultures during the experiment. At day

20, the medium was partly replaced by fresh medium perturbing the mono- and mixed cultures. Both axes are on log10 scaling.
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format used by the package. So far, BEMOVI has no

functionality to deal with clustering individuals (e.g., col-

onies). If these move as a cluster, they will be counted as

one individual. Because BEMOVI was designed for com-

munities of multiple species, splitting clusters automati-

cally is a much harder problem than the single-species

case, where size-based rules can be used (e.g., Pennekamp

and Schtickzelle 2013). The watershed algorithm may

have potential for improvement (Roerdink and Meijster

2000); however, if light conditions are heterogeneous and

shapes of species differ considerably, the danger of over-

splitting and splitting of non-clusters needs to be carefully

evaluated. Extending and improving the functionality of

BEMOVI is a long-term goal facilitated by the availability

of the source code on the community coding platform

Github. Finally, BEMOVI is not intended as a tool for

microbiologists to screen for new species but rather to

work either on communities in which species are known

to differ in morphology and movement, or in natural

communities where researchers want to gain information

on size distributions and movement related traits (regard-

less of taxonomy).

Dell et al. (2014) conclude their review on automated

video analysis in ecology with a call to developers. They

ask for video analysis systems that are easy to use, do not

require marking of individuals, are flexible to work with

in a variety of experimental settings and with different

organisms, allow tracking of a large number of individu-

als simultaneously, overcome significant data management

issues, and are mostly automated. We believe BEMOVI is

a promising step in this direction and will allow biologists

to follow new and exciting research lines such as the

effects of intraspecific and interindividual variation for

ecological and evolutionary dynamics. Furthermore,

although we tested utility for microbes, it is likely that

BEMOVI will be useful for analyzing any objects moving

against a relatively stationary background. For example,

insects or birds on a surface could be tracked and ana-

lyzed, and it might even be possible to track and count

birds flying in the sky or fish in the sea (although move-

ment data would need to be treated with caution, given

the 2D constraint of BEMOVI).
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Video S1. Video footage of microcosm sample in count-

ing chamber.

Video S2. Overlay video showing the individuals identi-

fied by BEMOVI and their respective trajectory labels.

Video S3. Overlay video showing the individuals of two

ciliate species with different colour codes and their

respective trajectory labels.

Table S1. Overview of traits/measures used in the auto-

matic classification of species.

Figure S1. Positive correlation between ciliate cell length

measurements (collected from literature and online

resources) and cell length measured by BEMOVI.
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