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a b s t r a c t 

Arterial Spin Labeling (ASL) is a non-invasive, non-contrast, perfusion imaging technique which is inherently 

SNR limited. It is, therefore, important to carefully design scan protocols to ensure accurate measurements. Many 

pseudo-continuous ASL (PCASL) protocol designs have been proposed for measuring cerebral blood flow (CBF), 

but it has not yet been demonstrated which design offers the most accurate and repeatable CBF measurements. 

In this study, a wide range of literature PCASL protocols were first optimized for CBF accuracy and then com- 

pared using Monte Carlo simulations and in vivo experiments. The protocols included single-delay, sequential and 

time-encoded multi-timepoint protocols, and several novel protocol designs, which are hybrids of time-encoded 

and sequential multi-timepoint protocols. It was found that several multi-timepoint protocols produced more 

confident, accurate, and repeatable CBF estimates than the single-delay protocol, while also generating maps 

of arterial transit time. Of the literature protocols, the time-encoded protocol with T 1 -adjusted label durations 

gave the most confident and accurate CBF estimates in vivo (16% and 40% better than single-delay), while the 

sequential multi-timepoint protocol was the most repeatable (20% more repeatable than single-delay). One of 

the novel hybrid protocols, Hybrid T1 -adj , was found to produce the most confident, accurate and repeatable CBF 

estimates out of all the protocols tested in both simulations and in vivo (24%, 47%, and 28% more confident, 

accurate, and repeatable than single-delay in vivo ). The Hybrid T1 -adj protocol makes use of the best aspects of both 

time-encoded and sequential multi-timepoint protocols and should be a useful tool for accurately and efficiently 

measuring CBF. 
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. Introduction 

Arterial spin labeling (ASL) MRI employs magnetically labeled arte-

ial blood as an endogenous tracer which can be used to map cerebral

lood flow (CBF) ( Detre et al., 1992 ; Williams et al., 1992 ). The longi-

udinal magnetization of upstream arterial blood is typically labeled by

nversion and, after a delay for tracer inflow ( Alsop and Detre, 1996 ),

s imaged. Images are acquired with either a single delay or multiple

elays and, with the use of a control image and an appropriate signal

odel ( Buxton et al., 1998 ), the local CBF can be estimated. 

A consensus paper from the ISMRM Perfusion Study Group and the

uropean ASL in Dementia consortium recommended using pseudo-

ontinuous ASL (PCASL) labeling with a single-PLD (post labeling de-

ay) protocol for clinical applications, due to the superior SNR of

CASL labeling and the robustness and simplicity of using a single-PLD
✩ Data/code availability: The MATLAB-based optimization code used 

omparisonPCASLProtocolOptimisation and an open-source python-based GUI and co

xasl _ optpcasl . The simulation data, preprocessed in vivo data, and analysis code used
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 Alsop et al., 2015 ). The PLD must be set long enough to ensure com-

lete arrival of the labeled blood across the whole brain, while being

ept short enough to preserve SNR. This leads to brain regions with short

rterial transit times (ATTs) having a sub-optimally long PLD, while any

egions with unexpectedly long ATTs incorrectly appear hypoperfused. 

Multi-timepoint protocols can be used to sample the dynamics of the

racer signal, providing greater robustness of CBF estimates to variations

n ATT across brain regions and subjects as well as generating potentially

seful ATT maps ( MacIntosh et al., 2012 ). These are typically performed

y sequentially changing the PLD across different measurements (multi-

LD) ( Alsop and Detre, 1996 ) or by changing both the label duration

LD) and PLD together ( Borogovac et al., 2010 ; Johnston et al., 2015 ;

hao et al., 2015 ). It is often assumed that the reduction in data averag-

ng when using multi-timepoint protocols (required when acquiring the

ata in a matched scan time with a single-PLD protocol) leads to a reduc-
for this study is available at https://github.com/JosephGWoods/ 

mmand line optimization tool, is available at https://github.com/ibme-qubic/ 

 in this study are available at http://doi.org/10.5281/zenodo.3986788 . 
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Fig. 1. Example timing schematics of the PCASL label/control protocols used in this work. The label duration, post labeling delays, number of label/control pairs, 

and the size of the time-encoding matrices were optimized for the multi-timepoint protocols; see Section 3.1 for details. 
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ion in the precision of the CBF estimates ( Alsop et al., 2015 ; Dai et al.,

017 ; Günther, 2007 ; Teeuwisse et al., 2014 ), which could outweigh

he benefits of correcting for ATT effects. However, this neglects that

he multi-timepoint data are combined during the model fitting process

hich could help compensate for the reduced number of averages at

ach timepoint. 

Time-encoding of the PCASL preparation using a Hadamard en-

oding scheme has been proposed as a more efficient method for ac-

uiring multi-timepoint ASL data, due to the noise averaging that oc-

urs during the decoding process ( Dai et al., 2013 ; Günther, 2007 ;

ells et al., 2010 ). However, this reduced noise may be counteracted by

educed ASL signal due to the shorter LDs of each sub-bolus ( Guo et al.,

018 ). Multiple variations of the time-encoded technique have been

roposed in order to improve the SNR across the different time points

 Teeuwisse et al., 2014 ), but so far the CBF accuracy of only fixed-

D time-encoded protocols have been compared with single-PLD and

equential multi-timepoint protocols and these protocols were not ex-

licitly optimized for CBF accuracy ( Dai et al., 2013 ; Guo et al., 2018 ;

ohnston et al., 2015 ). Therefore, the results of these comparisons may

imply reflect the chosen protocol timings rather than the ultimate ac-

uracy of each technique. 

We recently demonstrated that a sequential multi-PLD PCASL proto-

ol can be objectively optimized to maintain higher CBF accuracy across

 wider range of ATTs than a single-PLD or evenly spaced multi-PLD

rotocol ( Woods et al., 2019 ). This was due to an improved balance be-

ween early sampling of the tracer kinetics (which has higher SNR and

enefits short ATT brain territories) with late sampling (which has lower

NR and benefits long ATT territories). So far, this optimization frame-

ork has only been applied to sequential multi-PLD PCASL protocols

ith a fixed and unoptimized label duration. 

In this study, we aimed to establish which PCASL approach can

chieve the most accurate CBF measurements. We did this by com-

aring the CBF accuracy of a single-PLD protocol, a wide range of

ulti-timepoint PCASL protocol designs from the literature, and sev-

ral novel hybrid protocol designs which are introduced in this study

 Fig. 1 ). We first applied a previously developed optimization frame-

ork ( Woods et al., 2019 ) to the multi-timepoint protocol timings to

nsure each would optimally estimate CBF across an expected range of

TTs for healthy gray matter (GM) given the design constraints of each

rotocol. The CBF accuracy of these optimized protocols were then com-
 a  
ared using Monte Carlo (MC) simulations, with a subset of protocols

eing compared in vivo . This study builds on work previously presented

n abstract form ( Woods et al., 2018a , 2018b ). 

. Theory 

.1. Literature protocol designs 

The range of protocol designs investigated in this work are shown

n Fig. 1 . The single-PLD and sequential multi-PLD, with a fixed LD,

Seq single-LD ) protocol designs have been widely used in the literature to

stimate CBF only or both CBF and ATT, respectively ( Alsop et al., 2015 ;

lsop and Detre, 1996 ; Buxton et al., 1998 ; Dai et al., 2017 ; Gonzalez-

t et al., 2000 ; Okell et al., 2013 ). Borogovac et al. (2010) suggested the

se of multiple sequential LDs with a fixed PLD as a more SNR-efficient

ethod for estimating CBF and ATT than fixed-LD multi-PLD meth-

ds, though this hypothesis was not tested. Johnston et al. (2015) later

emonstrated the use of both varying LDs and PLDs (referred to here

s Seq multi-LD ) to estimate CBF and ATT, but this implementation did

ot use inversion pulses for background suppression (BGS), instead re-

ying only on pre-saturation to facilitate T 1 estimation from the ASL

ata, which may have affected the resulting CBF accuracy. In this study,

e investigated both Seq single-LD (a single fixed LD with N PLDs) and

eq multi-LD ( N LDs paired with N PLDs) protocols. 

Günther (2007) introduced time-encoded PCASL as an efficient

ethod for generating multi-timepoint ASL data. The PCASL pulse train

s split into M sub-boluses which vary between label and control con-

itions within each TR according to a predesigned encoding matrix (a

adamard matrix being the most efficient encoding). The acquired data

s then decoded, generating M perfusion weighted images which reflect

he effective LD and PLD of each sub-bolus. For a Hadamard encoding

f size ( 𝑀 + 1 ) ×𝑀 , the averaging effect of decoding results in a factor

f 
√
( 𝑀 + 1 )∕2 decrease in noise standard deviation (SD) (assuming ad-

itive white Gaussian noise) and a reduction in scan time by a factor of

2 ⋅𝑀)∕( 𝑀 + 1 ) compared to a matched timing sequential control - tag

xperiment ( Dai et al., 2013 ). 

The original time-encoded protocol used a fixed LD for all

ub-boluses (Had fixed ). Several variations were introduced by

 Teeuwisse et al., 2014 ), including the free-lunch (Had free-lunch )

nd T 1 -adjusted (Had T1 -adj ) protocols. In the T 1 -adjusted protocol, the
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ncoded LDs are set such that the total ASL signal originating from

ach sub-bolus is equal at the time of acquisition, thus accounting

or the increased T 1 decay experienced by earlier sub-boluses and so

aintaining an approximately constant level of SNR after complete

olus arrival. The free-lunch protocol uses the same long LD and PLD

or the first encoded sub-bolus as a typical single-PLD protocol, with

he remaining sub-boluses filling this long PLD. After decoding, similar

ata to the single-PLD experiment is generated from the first sub-bolus,

ith the remaining sub-boluses generating extra temporal data without

n increase in scan time. Fig. 1 shows Had free-lunch with the remaining

ub-boluses having T 1 -adjusted LDs, but any scheme may be used. 

.2. Hybrid protocol designs 

Here, we introduce a novel protocol design which is a hybrid of the

ime-encoded and sequential protocols. Rather than using a fixed final

LD after the time-encoded preparation and acquiring multiple aver-

ges, there are N final PLDs which sequentially vary for each repeat of

he same encoding matrix, allowing increased flexibility of the decoded

imepoints. This results in N · M decoded timepoints ( N final PLDs, M

ime-encoded sub-boluses). This design can trade-off the superior noise

veraging of the time-encoding methods (larger encoding matrices re-

ult in more signal averaging) and the increased signal accumulation

rom longer LDs (typically achievable with smaller encoding matrices),

hilst maintaining flexible sampling of timepoints (achieved by varying

he final PLD). We investigated the use of both fixed (Hybrid fixed ) and

 1 -adjusted (Hybrid T1 -adj ) time-encoded LDs with this protocol design. 

.3. Time-encoded and hybrid designs with variable-LDs 

The time-encoded and hybrid protocols do not have to be restricted

o the designs discussed above, i.e. fixed and T 1 -adjusted LDs. It is pos-

ible for the individual encoded LDs and final PLDs to be chosen ar-

itrarily. As an extension to the comparison of the protocols detailed

bove, we tested whether there is a more optimal time-encoded LD pat-

ern than the existing literature designs by optimizing a time-encoded

rotocol and a hybrid protocol where each LD in the encoding matrix

ould be adjusted separately, rather than according to a predefined pat-

ern. To increase the flexibility of the hybrid protocol even further, each

f the N final PLDs was associated with a separate encoding matrix of

 LDs, rather than repeating the same encoding matrix timings for each

f the PLDs, leading to N · M decoded timepoints with N · M separate

D and PLD pairs. These protocols are referred to as Had variable and

ybrid variable . 

. Material and methods 

All optimizations, simulations and analysis, except CBF and ATT esti-

ation, were performed using MATLAB (The MathWorks, Natick, MA).

.1. Protocol optimization 

The multi-timepoint protocols described above were optimized for

BF accuracy, while treating ATT as a potentially confounding parame-

er. This was achieved using a recently developed framework using the

 -optimal cost function with non-zero weighting on CBF accuracy and

ero weighting on ATT accuracy ( Woods et al., 2019 ). The original im-

lementation of the optimization algorithm iterated through each of the

 PLDs of a multi-PLD protocol, and for each, performed a grid search

or the PLD value which minimized the mean Cramér-Rao Lower Bound

CRLB) variance across ATTs, taking into account the number of aver-

ges realizable in a given scan time. The principal of the optimization for

ach protocol considered in this work was the same, with the addition

f also optimizing the LDs, but due to the different sizes of the timing

arameter spaces, the implementation was adapted in each case, as de-

cribed in Supporting information text 1. For each protocol, the number
f effective PLDs, N T , was optimized by running the optimization for a

ange of N T and selecting the protocol with the minimum cost. N T was

onstrained to ≤ 15 to ensure that either multiple averages at each time-

oint can be performed or a segmented readout can be used with these

rotocols. The single-PLD protocol was not optimized with this frame-

ork; instead, the LD and PLD were set to 1.8 s and 2 s, respectively,

hich are recommended for clinical populations ( Alsop et al., 2015 ). 

The optimization used a uniform ATT prior probability distribution

ith a representative GM range of 0.5 - 2 s for healthy volunteers

 Alsop et al., 2015 ; Dai et al., 2017 ; Guo et al., 2018 ; Woods et al.,

019 ), sampled at 1 ms increments, with a 0.3 s linearly decreas-

ng weighting beyond either end of the range to reduce edge effects.

ince the optimization does not depend on CBF ( Woods et al., 2019 ),

 CBF point prior of 50 mL/100 g/min was used. The LD update grid

earches were restricted to 0.1 s ≤ LD ≤ 1.8 s with 25 ms increments,

nsuring the minimum LD was greater than 100 ms, as suggested by

eeuwisse et al. (2014) , with the longest LD matching the recommended

ingle-PLD LD of 1.8 s ( Alsop et al., 2015 ). In the case of the time-

ncoded protocols, these LD restrictions were placed on the sub-bolus

urations, with there being no constraint placed on the total duration of

he time-encoded preparation. The PLD update grid was 0.075 s ≤ PLD ≤

.3 s with 25 ms increments, since PLDs longer than the longest ATT are

ot selected by the optimization algorithm ( Woods et al., 2019 ). Other

ettings included: single-shot readout with 638 ms of non-ASL time per

R (presaturation and readout); variable minimum TR ( Wang et al.,

013 ) (where the TR is minimized for each timepoint); 5 min scan du-

ation. The CRLB was calculated using the standard CASL kinetic model

rom ( Buxton et al., 1998 ), using the parameters in Table 1 , and assumed

dditive white Gaussian noise, as described in ( Woods et al., 2019 ). The

oise magnitude was calculated from preliminary in vivo data (noise SD

f label and control data = 1 . 3 × 10 −3 relative to M 0 ). 

The MATLAB-based optimization code used for this

tudy is available at https://github.com/JosephGWoods/

omparisonPCASLProtocolOptimisation and an open-source

ython-based GUI and command line tool is available at

ttps://github.com/ibme-qubic/oxasl _ optpcasl . 

.2. Monte Carlo simulations 

Monte Carlo simulations were performed to evaluate the optimized

rotocols under ideal conditions where the ground truth CBF and ATT

re known. Simulated data were generated for each protocol using the

tandard CASL kinetic model ( Buxton et al., 1998 ) with the parame-

ers in Table 1 for ATTs between 0.5 - 2 s at 0.01 s increments. White

aussian noise was added to 2000 replicas of the label and control (or

ncoded) data at each ATT sample, using the same noise magnitude

s the protocol optimizations above. The noisy data at each timepoint

as then subtracted or decoded according to the encoding scheme for

ach protocol. The data were then fit, and the estimates compared, as

escribed below. 

.3. In vivo experiments 

.3.1. Acquisition 

To investigate the relative performance of the protocols given in

able 2 in vivo , 10 healthy volunteers (5 female, mean age 30.7, range 24

 40) were recruited and scanned with written informed consent under

 technical development protocol, agreed with local ethics and institu-

ional committees, on a 3T Prisma system (Siemens Healthcare, Erlan-

en, Germany) with a 32-channel receive-only head coil. The Had variable 

nd Hybrid variable protocols were not compared in vivo since they only

ed to marginal improvements in CBF accuracy during simulation (see

esults, Section 4.9 ). All scanning occurred during a single session for

ach subject (total scan duration ~50 min). Volunteers were asked to

ie still and stay awake throughout the scan. A nature documentary was

hown to help maintain alertness. 

https://github.com/JosephGWoods/ComparisonPCASLProtocolOptimisation
https://github.com/ibme-qubic/oxasl_optpcasl
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Table 1 

Model and sequence parameters used in the optimizations, Monte Carlo simulations and in 

vivo experiments. 

Parameter Value 

Model 

T 1 of blood ( T 1b ) 1.65 s ( Lu et al., 2004 ) 

T 1 of tissue ( T 1t ) 1.445 s ( Lin et al., 2001 ) 

Labeling efficiency ( 𝛼) 0.85 ( Dai et al., 2008 ) 

Brain/blood water partition coefficient ( 𝜆) 0.9 mL/g ( Herscovitch and Raichle, 1985 ) 

Sequence 

RF labeling pulse duration 500 μs duration (Gaussian) 

RF labeling pulse interval 1 ms 

RF labeling flip angle 20°

Mean labeling gradient 0.8 mT/m 

Gradient during labeling pulses 6 mT/m 

Analysis 

CBF prior 0 ± 10 6 mL/100 g/min 

ATT prior 1.3 ± 10 6 s 

Table 2 

The optimized protocol timings for the protocols compared in vivo and in simulation. For the time-encoded (Had) and hybrid protocols, the LDs are 

given in chronological order and the number of LDs defines the size of the Hadamard encoding matrix used. For the Hybrid variable protocol, each PLD is 

associated with the LDs on the same row, the number of columns defining the size of the Hadamard encoding matrix. N T is the number of effective PLDs, 

N Ave is the number of averages, and N Acq is the number of acquired volumes for each scan. 

Protocol Label durations (ms) Post label delays (ms) N T N Ave N Acq Scan duration (min) 

Simulation and in vivo comparison 

Single-PLD 1800 2000 1 34 68 5:02 

Seq single-LD 1800 175, 1050, 1425, 1725, 2075, 2200, 2300, 2300, 2300 7 4 72 5:00 

Had fixed 550, 550, 550, 550, 550, 550, 550 100 7 8 64 4:54 

Had T1-adj 1150, 675, 475, 375, 300, 250, 225 75 7 9 72 5:00 

Had free-lunch 1800, 625, 450, 350, 300, 250, 225 125 7 8 64 5:05 

Hybrid fixed 1275, 1275, 1275 75, 150, 600, 850, 1000 15 3 60 5:00 

Hybrid T1-adj 1800, 850, 550 200, 650, 900, 900 12 4 64 4:48 

Simulation comparison only 

Had variable 1725, 750 650, 375, 150, 150, 125 100 7 8 64 4:58 

Hybrid variable 1800, 1050, 775 100 12 4 64 4:55 

1800, 1225, 550 525 

1800, 850, 750 575 

1800, 800, 800 700 
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The scan protocol included a 3-plane localizer and a 3D single-slab

OF angiography sequence used to position the PCASL labeling plane. A

D T 1 -weighted MPRAGE sequence (1.5 × 1.5 × 1.5 mm 

3 ) was acquired

or generating the brain and gray matter (GM) masks. Four calibration

mages were acquired with the same readout module as the PCASL data

see below) but with alternating in-plane phase encode direction to cor-

ect off-resonance distortions. Finally, the ASL scans were acquired in a

seudo-randomly permuted order for each subject to reduce the impact

f physiological drift. 

ASL imaging parameters were: single-shot 3D gradient and spin-echo

GRASE) readout ( Feinberg and Oshio, 1991 ; Günther et al., 2005 ),

E 28.5 ms, variable minimum TR, excitation flip-angle 90°, refocus-

ng flip-angle 120° ( He et al., 2018 ; von Samson-Himmelstjerna et al.,

016 ), FOV 230 × 168 × 100 mm 

3 , matrix 64 × 46 × 20, 20 acquired

artitions, no parallel imaging acceleration, no slice-oversampling, cen-

ric partition ordering, bandwidth 2298 Hz/px, total readout duration

83 ms, spectrally-selective fat saturation. The imaging slab was placed

n the transverse plane with the superior edge flush with the top of the

rain. The excitation and refocusing pulse widths were 110 mm and

50 mm, respectively, to maximize the signal level within the nominal

lab. Outer-volume suppression (OVS), using a cosine-modulated water

uppression enhanced through T 1 effects (WET) module ( Golay et al.,

005 ; Ogg et al., 1994 ), was used to improve the slab profile, similar

o ( Günther et al., 2005 ). Readout, phase-encode, and 3D encode direc-

ions were anterior-posterior, right-left, and feet-head, respectively. 

PCASL labeling was achieved using the parameters in Table 1 with

he labeling plane positioned in the transverse plane bisecting the V3
ection of the vertebral arteries ( Okell et al., 2013 ). Background sup-

ression was performed with a slab-selective WET presaturation mod-

le ( Golay et al., 2005 ; Ogg et al., 1994 ) immediately before the start

f labeling and two optimally timed slab-selective C-shaped FOCI pulses

μ = 1.5, 𝛽 = 1349 s − 1 , A max = 20, duration 10.24 ms) ( Ordidge et al.,

996 ; Payne and Leach, 1997 ). The presaturation and inversion slabs

ere parallel to the labeling plane and covered the entire brain, with

he inferior edge at the center of the labeling plane. For each proto-

ol, the inversion pulses were timed to null two T 1 values (700 ms and

400 ms) 100 ms before excitation using the formula in ( Günther et al.,

005 ). The inversion pulses were interleaved with the PCASL labeling

hen the optimal inversion times occurred during the labeling period,

s in ( Dai et al., 2012 , 2010 ), leading to more uniform BGS across a

ange of timings (Supporting Information Figure S1). 

The calibration images were acquired using presaturation followed

y a 10 s delay to allow controlled and near-complete magnetization

ecovery before the 3D-GRASE readout. 

.3.2. Preprocessing 

Preprocessing of the in vivo data was performed using tools from

he FSL toolbox ( Jenkinson et al., 2012 ). The ASL data were motion-

orrected and registered to the mean calibration data with rigid-body

egistration using FLIRT ( Jenkinson, 2002 ; Jenkinson and Smith, 2001 ),

efore correcting for susceptibility induced off-resonance geometric dis-

ortions using the calibration images with TOPUP ( Andersson et al.,

003 ). Brain and GM masks were generated from the structural data us-

ng BET ( Smith, 2002 ) and FAST ( Zhang et al., 2001 ). These were trans-
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ormed to ASL space after image registration ( Greve and Fischl, 2009 )

nd had thresholds applied (brain mask 90%, GM mask 50% tissue par-

ial volume). 

The edges of the brain-masked calibration image were eroded before

eing expanded using a mean filter and brain masked again to remove

ow-intensity voxels at the edge of the brain which can lead to erro-

eously high CBF values during the voxelwise calibration step. It was

hen smoothed (Gaussian kernel, 𝜎 = 2.5 mm) to improve SNR, as rec-

mmended ( Alsop et al., 2015 ). 

The perfusion-weighted images were generated by pairwise subtract-

ng or decoding the preprocessed ASL images. They were then calibrated

rior to fitting to account for scaling factors by voxelwise dividing by the

moothed calibration image and the labeling efficiency and multiplying

y the blood–brain partition coefficient ( Table 1 ). 

.3.3. Model fitting 

CBF and ATT were estimated identically for the simulated data and

n vivo data using the variational Bayesian inference algorithm, BASIL

 Chappell et al., 2009 ). In each voxel, this approach not only provides es-

imates of CBF and ATT but also uncertainty estimates in the form of the

tandard deviation of the marginal posterior distributions. The standard

ASL kinetic model ( Buxton et al., 1998 ) was used with the parameters

n Table 1 . Fitting was initialized with a coarse grid search for robustness

bounded by 0 ≤ CBF ≤ 200 mL/100 g/min and 0 ≤ ATT ≤ 2.5 s, sam-

led every 1 mL/100 g/min and 0.01 s). The BASIL fitting priors were

oninformative to minimize bias in the resulting parameter estimates.

either spatial regularization nor partial volume correction were used.

egative CBF and ATT estimates were set equal to zero. The single-PLD

ata was only fit for CBF with the ATT fixed at 1.3 s; this value was

ound to minimize the theoretical CBF bias across the ATT range 0.5–

 s. The data were not averaged before fitting to allow the algorithm to

stimate the noise in the data. 

.3.4. Ground truth estimates for accuracy comparison 

In vivo ground truth CBF and ATT estimates were generated by fit-

ing the combined data from all protocols (~35 min of data), similar to

 Woods et al., 2019 ). To account for the different noise levels between

rotocols, BASIL was given 3 noise magnitudes to estimate in an ap-

roach similar to weighted NLLS fitting ( Chappell et al., 2009 ). Three

oise magnitudes were used because there were 3 categories of data

ith similar noise magnitudes after decoding: the non-time-encoded

ata (single-PLD and sequential protocols), the 8 × 7 Hadamard en-

oded protocols, and the 4 × 3 Hadamard encoded hybrid protocols

see Results, Section 4.1 ). To investigate whether these ground truth es-

imates were biased towards certain protocols and whether modelling

he 3 noise magnitudes is beneficial, ground truth estimates for the MC

imulation data were identically generated with either 1 or 3 noise mag-

itudes. 

.3.5. Comparison metrics 

The CBF estimates of each protocol were compared in three differ-

nt ways for both simulation and in vivo data: (1) the marginal posterior

robability distribution standard deviations (SDs) output by BASIL were

sed as a measure of uncertainty in the CBF estimates ( Chappell et al.,

009 ), and are sensitive to how well the kinetic model fits the data; (2)

he root-mean-squared-error (RMSE) relative to the ground truth esti-

ates were used as a measure of accuracy, incorporating both system-

tic bias and noise contributions, similar to ( Woods et al., 2019 ); and

3) the test-retest RMSE for each protocol was calculated by splitting the

ata into two 2.5 min data sets and separately fitting each half, giving

 measure of within-session repeatability, which is independent of any

round truth estimates or uncertainties derived from the fitting process.

ote, for (3) the Had T1 -adj data were split into the first 4 and last 5 aver-

ges while the Hybrid fixed errors could not be calculated because there

ere only 3 averages (see Table 2). 
.3.6. In vivo data exclusion and standard errors 

Only voxels within the GM masks were used in the analysis. To elim-

nate poorly fit ground truth data from the analysis, voxels with ground

ruth posterior SDs more than 3 times the inter-quartile range above the

5th percentile for either CBF or ATT were excluded ( Tukey, 1977 ).

his resulted in upper bounds on the ground truth posterior SDs of

.9 mL/100 g/min and 0.061 s for CBF and ATT, respectively. Voxels

ere also excluded if the posterior SDs for any individual protocol were

 500 mL/100 g/min or > 50 s, which would suggest an extremely poor

t, perhaps arising from motion or other artefacts, and could bias the

esulting comparison. This extremely poor fit criteria were also used in

he MC simulation analysis. 

The comparison metrics were calculated on a voxelwise and subject-

ise basis. Standard errors for the voxelwise metrics were calculated

y bootstrap sampling ( Efron, 1979 ) across the 10 subjects using 1000

amples, where the relevant statistical measure (mean SD, RMSE, or test-

etest RMSE) was performed on each bootstrap sample. Each sample is

 selection of 10 randomly chosen subjects, selected with replacement,

eaning a given sample could contain multiple copies of the same sub-

ect’s data. The SDs generated from these bootstrap distributions reflect

he variability in the voxelwise metrics due to the sampled subjects. This

pproach gives a more conservative standard error than would be cal-

ulated from the combined voxelwise data across all subjects due to the

arge number of voxels. 

. Results 

.1. Optimized protocols 

The optimized timings for each protocol are shown in Table 2. The

ncreasing density of samples at later timepoints is characteristic of pro-

ocols optimized for CBF accuracy ( Woods et al., 2019 ). When the label

uration was allowed to vary between measurements in the sequential

esign (Seq multi-LD ), the optimal protocol (Supporting Information Ta-

le S1) was very similar to that of the fixed label duration protocol

Seq single-LD , Table 2), giving only a marginal improvement in predicted

BF errors. Seq multi-LD was therefore not used in further comparisons. 

For the time-encoded protocols, a 4 × 3 encoding came out as opti-

al when each sub-bolus had a fixed duration (Had fixed , see Supporting

nformation Table S1 and Supporting Information Figure S2). However,

ue to the more common use of the 8 × 7 encoding, only the 8 × 7

rotocol was used in further comparisons. For the free-lunch approach

Had free-lunch ), the optimized protocol used an 8 × 7 encoding with the

emaining sub-boluses having T 1 -adjusted durations. The novel hybrid

rotocols made use of fewer, but longer sub-boluses with a 4 × 3 encod-

ng matrix combined with multiple final PLDs to allow the sampling of

any timepoints. 

When complete freedom in the sub-bolus durations was allowed for

he time-encoded and hybrid protocols (Had variable and Hybrid variable ),

nly marginal improvements in predicted CBF accuracy were achieved.

hese approaches were therefore only used in simulation and their re-

ults reported separately in Section 4.9 . 

.2. In vivo CBF and ATT maps 

Fig. 2 shows the spatial maps of the CBF and ATT estimates, their un-

ertainties (expressed as the SD of the posterior distributions), and the

rrors relative to the ground truth estimates for each tested protocol for

 single representative subject. The CBF and ATT maps are shown for all

ubjects in Supporting Information Figure S3 and Supporting Informa-

ion Figure S4. There is good agreement in the broad spatial variations

f both CBF and ATT between the protocols, demonstrating the overall

onsistency of the estimates. However, the error maps highlight the vari-

tion between protocols in over/under-estimating CBF and ATT. Partic-

larly evident, is the effect that the assumed single-PLD ATT had on the
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Fig. 2. The CBF (A, C, E) and ATT (B, D, F) mean estimates (A, B), uncertainties (C, D), and errors relative to the ground truth estimates (E, F). The uncertainties are ex- 

pressed as the standard deviation of the marginal posterior probability distribution output by BASIL. The error maps are shown as 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑠 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑠 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ . 
Two slices from a representative subject are shown. The color maps are designed for perceptually uniformity, developed by ( Kovesi, 2015 ). 
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ingle-PLD CBF errors: regions where the assumed ATT was an overesti-

ate led to the CBF being underestimated, relative to the ground truth

stimates. It is also apparent that there was a greater CBF uncertainty as-

ociated with the single-PLD protocol than many of the multi-timepoint

rotocols across most of the brain. 

High uncertainties in the lower slice of the CBF and ATT SD maps can

e seen in regions consistent with the known location of large arteries

n all of the protocols. Due to the presence of these elevated SDs in

he single-PLD data, which has a long PLD of 2 s, it was assumed to

e largely caused by signal dephasing due to pulsatile flow during the

RASE readout, rather than macrovascular ASL signal. However, these

arge arteries may contain residual ASL signal for the protocols with

hort PLDs. High uncertainties can also be seen in the sagittal sinus and

rom eye motion. These voxels were not included in the quantitative

omparisons (see Section 4.3 ). 

.3. In vivo data selection 

There were a total of 79,211 voxels in the GM masks across all 10

ubjects. Of these, 6.2% were excluded due to poor ground truth CBF

nd ATT fits (posterior SDs > 2.9 mL/100 g/min or > 0.061 s) and a

urther 4.1% were excluded because there were extremely poor fits in

ne or more of the individual scans (posterior SDs > 500 mL/100 g/min

r > 50 s). Supporting Information Figure S5 shows, for a single subject,

hat the excluded voxels are mostly located where one would expect

arge arteries to be. 

For the included voxels, the mean gray matter CBF estimates were

ot significantly different across protocols on the subject level (Wilcoxon

igned rank test, Bonferroni correction for 21 comparisons, p ≥ 0.05),

veraging at 57.16 ± 0.52 mL/100 g/min (mean ± SD across protocols).

f the included voxels, 90% of the ground truth ATTs lay between 0.5

 1.51 s (5th–95th percentiles, median = 0.97 s). 

.4. Variation in CBF uncertainty with ATT 

The predicted CBF uncertainties (the CRLB SDs) for the literature

rotocols and novel hybrid protocols are shown in Fig. 3 (A, D) as a

unction of ATT for a fixed CBF of 50 mL/100 g/min. The single-PLD

BF uncertainties were flat across the ATT range because they depend
n the assumed fixed ATT (1.3 s), not the true ATT, and the noise mag-

itude, which is assumed constant across all true ATTs (see Discussion

ection 5.3.2 ). The sharp changes in uncertainties across ATTs for the

ulti-timepoint protocols are where ATT = PLD or ATT = LD + PLD for one

r more of the LD/PLD pairs. As the ATT increases, these discontinuities

epresent the transition of a data point to either no longer sampling

he inflow section of the kinetic model (LD + PLD < ATT) or moving from

he tracer decay portion of the model (ATT < PLD) to the inflow portion

ATT < LD + PLD < LD + ATT). Both cases result in an increase in the CBF

ncertainty due the sharp increase in sensitivity to ATT in the model at

hese points ( Woods et al., 2019 ). 

Of the literature protocols, the time-encoded free-lunch protocol

Had free-lunch ) maintained the lowest uncertainties across most of the

TT range. The time-encoded protocol with T 1 -adjusted sub-bolus du-

ations (Had T1 -adj ) performed similarly to the free-lunch approach at

hort ATTs, reflecting the similarity in the timings of their last 6 time-

ncoded sub-boluses, but had much larger uncertainties at ATT > 1.7.

he sequential multi-PLD protocol (Seq single-LD ) maintained similar un-

ertainties across the ATT range to the best time-encoded protocols.

owever, time-encoding with a fixed sub-bolus duration (Had fixed ) per-

ormed much worse than the other protocols across most of the ATT

ange. The multi-timepoint protocols all had reduced uncertainties at

hort ATTs compared to the single-PLD protocol but were worse at

onger ATTs. 

Both hybrid protocols achieved lower predicted CBF uncertainties at

lmost all ATTs relative to their non-hybrid analogues. The hybrid ap-

roach with T 1 -adjusted sub-bolus durations (Hybrid T1 -adj ) also main-

ained lower uncertainties than all other multi-timepoint protocols at

lmost all ATTs and had lower uncertainties than the single-PLD proto-

ol for most of the ATT distribution. 

The median CBF uncertainties from the Monte Carlo simulations (the

arginal posterior probability distribution SDs from the Bayesian fit-

ing) are shown in Fig. 3 (B, E) and follow the trends of the predicted

ncertainties extremely closely, validating the expected performance of

ach protocol under ideal conditions. The CBF uncertainty discontinu-

ties are visible but are more gradual due to the blurring effect of noise

n ATT estimation. 

The in vivo median CBF posterior uncertainties ( Fig. 3 (C, F)) exhibit

imilar relative performance for each protocol, but there is a general de-
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Fig. 3. The uncertainty in CBF estimates predicted by theory (Cramér–Rao lower bound SDs) (A,D), derived from simulations (posterior SDs) (B,E), and from in vivo 

data (posterior SDs) (C,F) shown as a function of ATT. Literature protocols are compared in the top row. The proposed hybrid protocols are overlaid on faded plots 

of the literature curves on the bottom row to aid visualisation. For the simulation and in vivo results, the median SD at each ATT is plotted. A sliding window was 

used to plot the in vivo data with window size 0.1 s and step size 0.01 s. 

Fig. 4. The uncertainty in CBF estimates (mean posterior SDs) derived from MC simulations (A, B) and in vivo data (C) across all voxels. (A) shows the simulation 

results for the uniform ATT distribution, while (B) shows the simulation results weighted by the measured in vivo ground truth ATT distribution. In vivo , the means 

and standard errors of the bootstrap distributions are shown (see Methods section 3.7). All differences were significant except for Had T1-adj vs Hybrid fixed in vivo 

(two-sided paired Wilcoxon signed-rank test, Bonferroni correction for 21 comparisons, p < 0.05). 
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rease in the uncertainties at longer ATTs for all protocols compared to

he predicted and simulation CBF uncertainties. This is thought to be due

o the correlation between ATT and the temporal SNR (see Discussion,

ection 5.6 ). Similar jumps in the uncertainties can be seen, especially

or the Had fixed protocol, however, these are somewhat smoother than in

he simulations, possibly due to differences in the noise (see Section 5.6 )

nd dispersion of the bolus in vivo ( Chappell et al., 2013 ). 

.5. Comparison of protocols: uncertainty 

The mean MC simulation and in vivo voxelwise CBF posterior SDs

cross all ATTs, which represent the average uncertainties in the CBF

stimates, are shown in Fig. 4 . The simulation results are shown with
oth the uniform ATT distribution and weighted by the measured in vivo

round truth ATT distribution. 

Of the literature protocols, the time-encoded free-lunch approach

Had free-lunch ) had the lowest average simulation CBF uncertainty across

oth ATT distributions, including lower than single-PLD and Seq single-LD 

4% and 8% lower for the uniform ATT distribution, respectively).

cross all the protocols, the novel hybrid approach with T 1 -adjusted

ub-boluses (Hybrid T1 -adj ) had the lowest simulation CBF uncertainty

13% and 9% lower than single-PLD and Had free-lunch , respectively, for

he uniform ATT distribution). 

The in vivo results match the simulations well, particularly when the

n vivo ATT distribution is used to weight the simulation results. The

pweighting of shorter ATTs found in vivo led to several differences,
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Fig. 5. The accuracy of CBF estimates (RMSE relative to ground truth) derived from MC simulations (A, B) and in vivo data (C) across all voxels. (A) Shows the 

simulation results for the uniform ATT distribution, while (B) shows the simulation results weighted by the measured in vivo ground truth ATT distribution. In vivo , 

the means and standard errors of the bootstrap distributions are shown (see Methods Section 3.7). All differences were significant except for Had free-lunch vs Hybrid fixed 

in vivo (two-sided paired Wilcoxon signed-rank test, Bonferroni correction for 21 comparisons, p < 0.05). 
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ncluding single-PLD having worse CBF uncertainty than all the multi-

imepoint protocols except Had fixed and the performance of Had T1 -adj 

eing improved relative to Had free-lunch and Seq single-LD . In vivo , Had T1 -adj 

ad the lowest average CBF uncertainty of the literature protocols (16%

nd 4% lower mean posterior SD than single-PLD and Had free-lunch , re-

pectively), while Hybrid T1 -adj maintained the lowest average CBF un-

ertainty of all the protocols in all cases (24% and 14% lower than

ingle-PLD and Had free-lunch , respectively, in vivo ). 

The subjectwise data for all three comparison metrics are shown in

upporting Information Figure S6 and demonstrate similar trends to the

oxelwise comparisons, though with fewer significant differences be-

ween protocols due to the lower statistical power of these comparisons.

.6. Comparison of protocols: accuracy 

Fig. 5 shows the simulation and in vivo voxelwise RMSEs, which rep-

esents a measure of accuracy in the CBF estimates, including both sys-

ematic bias and precision, with a lower RMSE meaning a protocol was

ore accurate. The relative performance of each protocol was similar to

hat seen with the uncertainty metric used above, with Had free-lunch hav-

ng the best simulation CBF accuracy of the literature protocols (18%

nd 9% lower RMSE than single-PLD and Seq single-LD for the uniform

TT distribution, respectively), although Had T1 -adj had the best accu-

acy in vivo (40% and 5% lower RMSE than single-PLD and Had free-lunch ,

espectively). Over all the protocols, Hybrid T1 -adj had the best CBF ac-

uracy in both simulation (24% and 7% lower RMSE than single-PLD

nd Had free-lunch for the uniform ATT distribution, respectively) and in

ivo (47% and 15% lower RMSE than single-PLD and Had free-lunch , re-

pectively). The accuracy of single-PLD is poorer relative to the multi-

imepoint protocols than in the uncertainty comparison due to the bias

aused by assuming a fixed ATT, whereas ATT is estimated in the ground

ruth data and multi-timepoint protocols. 

.6.1. Validation of in vivo ground truth estimates 

Of course, these in vivo results assume that the ground truth CBF

stimates, which are generated from all the acquired data fitted simul-

aneously, are accurate and are not biased towards any particular proto-

ol. The ground truth posterior CBF and ATT SDs were (median ± IQR)

.14 ± 0.41 mL/100 g/min and 0.017 ± 0.010 s, respectively, suggest-

ng the ground truth estimates were accurate. Supporting Information

igure S7 demonstrates through simulations that, if 3 noise magnitudes

re used to estimate the ground truth CBF, as we have done here, there

s minimal bias towards any particular protocol in this comparison. 
.7. Comparison of protocols: repeatability 

The mean MC simulation and in vivo test-retest voxelwise CBF RMSEs

re shown in Fig. 6 . A lower test-retest RMSE means a protocol was more

epeatable. Note, a further 2.4% of the in vivo GM voxels were excluded

rom this comparison because one or more of the 2.5 min scans had CBF

r ATT posterior SDs > 500 mL/100 g/min or > 50 s, suggesting very

oor fits. 

The simulation results again reflect those of the uncertainty metric,

ith Had free-lunch having the best repeatability of the literature proto-

ols (3% lower test-retest RMSE than single-PLD for the uniform ATT

istribution) while Hybrid T1 -adj had the best repeatability overall (7%

nd 4% lower test-retest RMSE than single-PLD and Had free-lunch , respec-

ively, for the uniform ATT distribution). This again demonstrates that

ore robust CBF estimates can be obtained with certain multi-timepoint

rotocols than a single-PLD protocol, in this case using a metric which is

ot reliant on uncertainty estimates from the fitting algorithm nor any

stimated ground truth. 

As before, there were differences due to the shorter average ATTs

een in vivo than were simulated for the uniform ATT distribution,

ausing the in vivo single-PLD CBF repeatability to be worse rela-

ive to the multi-timepoint protocols. Another result also only seen

n vivo was that Seq single-LD had the best repeatability of all the pro-

ocols (RMSE = 7.00 ± 0.24 mL/100 g/min), better than Hybrid T1 -adj 

RMSE = 7.13 ± 0.82 mL/100 g/min). However, the subjectwise analy-

is, shown in Supporting Information Figure S6(C), demonstrates that

here was one subject with much higher CBF test-retest RMSE for

ybrid T1 -adj than the other subjects. There was an average GM CBF in-

rease of 10 mL/100 g/min between the two halves of the Hybrid T1 -adj 

can for this subject, possibly due to a change in subject alertness

 Clement et al., 2018 ). After removing this subject from the compar-

son, Hybrid T1 -adj had the best CBF repeatability across all protocols

test-retest RMSE = 6.33 ± 0.41 ml/100 g/min: 28% and 15% lower than

ingle-PLD and Had free-lunch , respectively) while the Seq single-LD repeata-

ility was relatively unaffected (7.01 ± 0.27 mL/100 g/min) (see Sup-

orting Information Figure S8). 

.8. Comparison of protocols: arterial transit time 

Although the protocols were not optimized for ATT accuracy, the

esults of the ATT comparisons are briefly described here. The in vivo

oxelwise measures of ATT uncertainty, accuracy, and repeatability are

hown in Supporting Information Figure S9 and demonstrate that the

ime-encoded and hybrid protocols all have more confident, accurate,

nd repeatable ATT estimates than Seq single-LD . Had T1 -adj had the lowest



J.G. Woods, M.A. Chappell and T.W. Okell NeuroImage 223 (2020) 117246 

Fig. 6. The repeatability of CBF estimates (test-retest RMSEs) derived from MC simulations (A, B) and in vivo data (C) across all voxels. (A) Shows the simulation 

results for the uniform ATT distribution, while (B) shows the simulation results weighted by the measured in vivo ground truth ATT distribution. In vivo , the means 

and standard errors of the bootstrap distributions are shown (see Methods Section 3.7). All differences were significant in vivo (two-sided paired Wilcoxon signed-rank 

test, Bonferroni correction for 15 comparisons, p < 0.05). 
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ncertainty and best repeatability, while Had T1 -adj and Hybrid T1 -adj both

ad the highest accuracy. 

.9. Had variable and Hybrid variable protocols 

The optimal Had variable and Hybrid variable protocol timings are given

n Table 2 and the MC simulation uncertainties are shown in Support-

ng Information Figure S10. The Had variable timings and uncertainties

re similar to those of the Had free-lunch protocol, though the average

ncertainty is slightly lower for Had variable . Similarly, the optimized

ybrid variable protocol only provided a small reduction in uncertainty

elative to Hybrid T1 -adj . These results suggest that the constraints of the

ad free-lunch (with T 1 -adjusted LDs) and Hybrid T1 -adj protocols are near

ptimal within their respective class of protocols, making them attrac-

ive protocol designs due to the reduced optimization complexity re-

ulting from their timing constraints. For these reasons, Had variable and

ybrid variable were not included during the in vivo comparison. 

. Discussion 

.1. Summary of findings 

In this study, we optimized a wide range of PCASL protocol de-

igns for CBF accuracy, using a previously developed Cramér-Rao Lower

ound based optimization algorithm, and compared their CBF estimates

sing Monte Carlo simulations and in vivo experiments, which were in

ood agreement. The CBF estimates were compared with: (1) the stan-

ard deviation of the marginal posterior probability distributions from

he fitting algorithm as a measure of uncertainty; (2) the RMSEs of the

stimates relative to the ground truth estimates as a measure of accu-

acy, which includes both random variability and systematic biases; and

3) the RMSEs of the test-retest estimates as a measure of repeatability.

We demonstrated that the novel hybrid protocol with T 1 -adjusted

ub-bolus durations (Hybrid T1 -adj ) had the most confident, most accu-

ate and most repeatable CBF estimates of all the tested protocols, in-

luding the single-PLD protocol and the literature sequential and time-

ncoded multi-timepoint protocols. This highlights the benefit of gener-

ting multi-timepoint ASL data from both time-encoded sub-boluses and

equential PLDs. This hybrid method benefitted from the longer LDs pos-

ible with a smaller encoding matrix, but still achieved a time-decoding

oise reduction factor of 2 and maintained a sufficiently well sampled

ange of unique PLDs due to the use of multiple sequential PLDs. 

These results also highlight that, even though the multi-timepoint

rotocols have lower SNR at each timepoint compared to the single-

LD protocol, some can achieve more accurate CBF estimates on aver-
ge across a range of ATTs. This is because the noise in multi-timepoint

ata is essentially averaged across the data during the fitting process,

esulting in similar noise averaging to the single-PLD protocol, but with

ata that more effectively samples the signal curve across the range of

TTs. Multi-timepoint protocols also have the added benefit of gener-

ting ATT maps, which is an interesting physiological parameter in its

wn right. 

Of the protocol designs from the literature, the free-lunch time-

ncoded protocol (Had free-lunch ) with T 1 -adjusted sub-bolus durations

as found to have CBF estimates that were more confident, accurate,

nd repeatable than the other literature designs, including the single-

LD protocol, for the uniform ATT distribution used in the simula-

ions. Due to the shorter average ATTs witnessed in vivo , however, the

ad T1 -adj protocol outperformed Had free-lunch . It was seen in simula-

ion that the sequential multi-PLD protocol (Seq single-LD ) produced sim-

larly confident, accurate, and repeatable CBF estimates on average to

ad T1 -adj . This suggests that the averaging benefit from time-decoding

or Had T1 -adj is similar to the benefit of longer LDs and more flexible

LDs for Seq single-LD . It is also apparent that the use of fixed-LDs in time-

ncoded PCASL is a sub-optimal design for CBF estimation. 

.2. Comparison of protocols: using long label durations 

The longest LD used in this work was 1.8 s, which is currently rec-

mmended for clinical use with a single-PLD ( Alsop et al., 2015 ). It has

een suggested that it is more SNR efficient to use long LDs of 3–4 s (re-

ulting in fewer averages) for single-PLD PCASL ( Zun et al., 2014 ) with

dditional benefits of reduced temporal signal variation and reduced

ensitivity to delayed ATTs ( Dai et al., 2012 ; Lebel et al., 2015 ). To in-

estigate the extent to which the CBF accuracy of the protocols in this

ork may benefit from longer LDs, we repeated the protocol optimiza-

ions with a maximum LD of 5 s and conducted further MC simulations

s before. The LD of the single-PLD protocols was optimized similar to

 Zun et al., 2014 ) but for a 5 min scan, a PLD of 2 s, and an ATT range

.5 - 2 s. 

The optimized protocol timings are given in Supporting Information

able S2 and the MC simulation fitting posterior distribution SDs are

hown in Fig. 7 . All the protocols used much longer LDs than when the

aximum LD was 1.8 s, except Had T1 -adj which had the same timings

s before. The increase in the protocols’ LDs led to an average reduction

n the CBF posterior SDs of 0.17 ± 0.07 mL/100 g/min (5.1% ± 1.9%).

s before, the Hybrid T1 -adj and Hybrid variable protocols had similar pos-

erior SDs, which were the lowest of all the protocols, including single-

LD. It is possible that the in vivo benefits of using longer LDs extend
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Fig. 7. The MC simulation CBF posterior SDs for a selection of the protocols 

optimised with a maximum LD of 5 s. (A) the median posterior SDs for each 

protocol across ATTs, (B) the mean posterior SDs for each protocol across the 

ATT range. In (B), the mean posterior SDs for the short LD cases (maximum LD 

1.8 s) are shown as faded bar graphs to demonstrate the achieved reductions in 

uncertainties. 
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eyond the theoretical benefits found here ( Dai et al., 2012 ; Lebel et al.,

015 ) and should be investigated further. 

.3. Protocol optimization 

.3.1. Optimizing for CBF accuracy 

This study was restricted to protocols optimized solely for CBF ac-

uracy. It is also possible to simultaneously optimize for CBF and ATT

ccuracy ( Owen et al., 2016 ; Sanches et al., 2010 ; Santos et al., 2010 ;

oods et al., 2019 ; Xie et al., 2008 ) but we chose to focus on CBF esti-

ation for two reasons: 1) CBF is often the main parameter of interest,

ith knowledge of ATT predominantly being used to correct ATT related

iases in the CBF estimates, and 2) optimizing for only one parameter

akes interpretation of the final protocols and their relative parameter

stimation accuracy simpler. However, there is nothing to prevent the

ptimization framework being used to also, or solely, optimize for ATT

ccuracy ( Woods et al., 2019 ). 

.3.2. Single-PLD 

The single-PLD protocol used in this study was not optimized us-

ng the CRLB framework, as used for the multi-timepoint protocols. The

ingle-PLD protocol is used to estimate one model parameter, CBF, with

he ATT fixed at an assumed value (1.3 s in this work). In this case,

he CBF uncertainty is proportional to the noise SD, scaled to units of

L/100 g/min by experimentally imposed or fixed literature parameters

see Supporting information text 2 for the single-PLD CBF uncertainty

ormula). This is in contrast to the multi-timepoint protocols where both

BF and ATT are estimated, meaning the CBF uncertainty also depends

n the covariance between CBF and ATT and the estimated ATT, lead-

ng to variation across ATTs. Use of this optimization framework with

he single-PLD protocol would minimize the protocol’s CBF variance

cross the ATT distribution, but the resultant shorter PLD would result

n potentially large CBF underestimation in regions where ATT > PLD

 Guo et al., 2018 ). However, future work could investigate the tradeoff

etween the accuracy and precision of the single-PLD protocol with a

horter PLD in comparison to the best performing multi-timepoint pro-

ocols presented in this study. 

.3.3. Sequential protocols 

The optimized Seq multi-LD protocol included only one LD shorter than

.8 s, suggesting that it is not optimal to use short LDs with short PLDs

or CBF estimation for the investigated ATT range, a technique previ-

usly used in the literature ( Johnston et al., 2015 ; Zhao et al., 2015 ).

t also does not appear optimal to perform multi-timepoint acquisitions

y only varying the LD ( Borogovac et al., 2010 ). 
.3.4. Time-encoded protocols 

Although a 4 × 3 encoding for the Had fixed protocol was optimal

or CBF estimation, we did not include it in the in vivo comparison due

o the more common use of 8 × 7, or larger, encodings in the literature

 Dai et al., 2013 ; Günther, 2007 ; Guo et al., 2018 ; Teeuwisse et al., 2014 ;

on Samson-Himmelstjerna et al., 2016 ; Wells et al., 2010 ). Supporting

nformation Figure S2 shows the simulation uncertainty and accuracy

omparison results when including the optimized 4 × 3 Had fixed proto-

ol (Had fixed4 ×3 ). Had fixed4 ×3 had lower CBF uncertainty and higher ac-

uracy than Had fixed8 ×7 across most of the ATT range. For the uniform

TT distribution, for which the protocols were optimized, Had fixed4 ×3 

ad the least confident and least accurate CBF estimates of all the pro-

ocols on average, except Had fixed8 ×7 . For the in vivo ATT distribution,

ue to the shorter ATTs encountered, Had fixed4 ×3 had more confident

BF estimates than the other literature protocols, but not the Hybrid

rotocols, and had more accurate CBF estimates than single-PLD and

eq single-LD . These results suggest that if a Had fixed protocol is to be used,

 4 × 3 encoding will generate more accurate CBF estimates, which is in

ine with previous findings ( Guo et al., 2017 ). However, for the intended

TT distribution, a T 1 -adjusted Hadamard design is still a superior al-

ernative, while the Hybrid T1 -adj protocol remained superior at almost

ll ATTs, making it extremely robust to ATT variations within the opti-

ized range. 

The standard time-encoded protocols were relatively simple and fast

o optimize, due to the reduced dimensionality of the timing parameter

pace enforced by the design constraints. This contrasts with the se-

uential and hybrid protocols which must be iteratively optimized, and

herefore take more time; the Seq mutli-LD , Had variable , and Hybrid variable 

rotocols also required many random initializations to avoid local min-

ma. Since the optimization only needs to be performed once, this is not a

ajor drawback. However, the standard time-encoded protocols might

ake better candidates for real-time protocol optimization since they

an be quickly adjusted during a scan to better match patient specific

TT information generated from preceding TRs ( Xie et al., 2010 ). 

Hadamard-encoding schemes were used for the time-encoded proto-

ols because these provide the most efficient encodings. However, they

an only be of size (rows × columns) 2k × (2k-1), for k = 1,2,4,6,8,10,….

ess efficient encodings may provide more flexibility in the protocol tim-

ngs and could be explored with the same optimization framework used

n this work. 

Time-encoded protocols which rely on a decoding step are poten-

ially more susceptible to motion and physiological artefacts, since more

mages are used to decode each difference image than standard ASL

rotocols. Although several methods have been proposed to improve

he robustness of these methods to data corruption, including Walsh-

rdered Hadamard encodings ( von Samson-Himmelstjerna et al., 2016 )

nd subtraction free CBF estimation, which can exclude corrupted vol-

mes ( von Samson-Himmelstjerna et al., 2015 ), future studies could

nvestigate whether it is beneficial or not to use the optimized time-

ncoded protocols developed in this work compared to optimized se-

uential multi-timepoint and single-PLD protocols in the context of miss-

ng data. The optimized Hybrid T1 -adj protocol only uses a 4 × 3 encoding

atrix and so should be more robust to motion than protocols which use

arger encodings. 

.4. Choice of ATT prior distribution 

A uniform ATT prior distribution representative of gray matter in

oung healthy volunteers of 0.5–2 s was chosen based on the ATT range

een in ( Woods et al., 2019 ), which used a similar labeling plane place-

ent. However, the in vivo ATTs in this study were generally shorter,

ith 95% of the ground truth ATTs ≤ 1.51 s. This may be due in part to

he use of a visual stimulus to maintain subject alertness, which can lead

o a reduction in ATTs in the visual cortex ( Qiu et al., 2010 ), a region

hich typically has longer ATTs than other GM brain regions ( Dai et al.,

017 ). Flow crushing gradients were also not used here, which have
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Fig. 8. The variable noise MC simulation (pos- 

terior SDs) (A, C) and in vivo (posterior SDs) (B, 

D) median CBF uncertainty measures for the lit- 

erature protocols (top) and the proposed hybrid 

protocols (bottom). These MC simulations use 

the estimated variable noise levels across ATTs 

calculated from the in vivo single-PLD data and 

scaled to the noise SD used in the original MC 

simulations. The variable noise MC simulation 

uncertainty trends across ATTs better match 

the trends seen in vivo . 
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een shown to increase the measured ATTs across the brain ( Dai et al.,

017 ), though the spoiler gradients sandwiching the GRASE refocusing

ulses will have caused some flow crushing ( Günther et al., 2005 ). It

hould also be noted that 5.2% of the voxels had ATTs < 0.5 s, which

as outside the optimized ATT range. If these voxels are excluded from

he analysis, however, the results are similar and the conclusions re-

ain unchanged (results not shown). Since resting ASL scans do not

ypically use a visual stimulus and vascular crushing is not currently

ecommended for clinical scans ( Alsop et al., 2015 ), it is likely an ATT

rior range of 0.5–1.8 s is sufficient for protocol optimization for young

ealthy volunteers. However, a range of 0.5–2 s may be more appro-

riate if vascular crushing is used or for older populations ( Dai et al.,

017 ). 

In cases where the ATT is likely to be greatly delayed relative to the

ange chosen in this work, the protocols should ideally be optimized for

 longer range of ATTs, as demonstrated in ( Woods et al., 2019 ) for se-

uential multi-PLD protocols. Although optimizing for longer ATTs will

mprove the CBF estimation accuracy in these cases, this comes at the

ost of lower accuracy at short ATTs. The CBF accuracy at long ATTs is

lso inherently limited compared to that of short ATTs due to increased

 1 decay of the label. Future studies could compare the performance of

he best protocols from this work in the case of delayed ATTs. 

.5. Use of in vivo ground truth estimates 

For the in vivo accuracy comparison ( Section 4.6 ), in the absence of

n independent gold standard CBF measurement we used in vivo ground

ruth CBF estimates derived from fitting the combined ASL data. This

ssumes that these ground truth estimates are accurate and not greatly

ffected by bias. These assumptions were confirmed by the small ground
ruth posterior probability SDs and the relatively equal bias found in

imulations across protocols. 

However, deviations from the model parameters derived from litera-

ure values could lead to biases in the CBF estimates which differentially

ffect each protocol and the ground truth estimates. Parameters which

cale the magnitude of the ASL signal, such as the blood T 1 and label-

ng efficiency, will similarly affect each protocol. The tissue T 1 ( T 1t )

nd brain/blood water partition coefficient ( 𝜆), though, vary the shape

f the kinetic curve. Variations in 𝜆 will have a negligible effect under

ormal physiological conditions ( Buxton et al., 1998 ), but errors in T 1t 

ould lead to different CBF biases across protocols. Supporting Infor-

ation Figure S11 shows, using simulations, how variations in the true

 1t affect the accuracy of the protocols relative to the estimated ground

ruth values. We found that when the true T 1t varies, but the fitting

 1t is fixed, the relative accuracy of the protocols remains very similar,

xcept for the single-PLD protocol. This suggests that reasonable varia-

ions in T 1t would not greatly affect the results of the in vivo accuracy

omparison 

Additionally, the good agreement between the simulation accuracy

omparison, where the ground truth is known, and in vivo comparison

urther suggests the validity of the ground truth estimates in this study.

.6. Variable CBF uncertainty across ATTs 

There was a gradual increase in the in vivo CBF uncertainty (posterior

istribution SDs) at shorter ATTs compared to the simulations, which

ssumed equal noise across all ATTs. One explanation is that brain re-

ions with shorter ATTs are generally located closer to the middle of the

rain and so further from the head-coil receive elements than regions

ith longer ATTs. This could result in an SNR level that was negatively
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orelated with ATT. Another explanation is that shorter ATTs are in re-

ions closer to larger upstream arteries and so experience greater signal

ariability due to cardiac pulsation. 

To test the hypothesis that the CBF posterior SDs vary with ATT,

he voxelwise temporal noise, 𝜎, was calculated from the calibrated in

ivo single-PLD control images by taking the SD across repeats. A linear

odel, σ( ATT ) = 𝑎 ⋅ ATT + 𝑏 , was fit to these data from all subjects using

he ground-truth ATT estimates and the "fit" function in MATLAB using

isquare weights, which is robust to outliers. The fitted parameters were

 = −4 . 28 × 10 −4 s − 1 and 𝑏 = 20 . 29 × 10 −4 with the model explaining

8% of the variance ( 𝑅 

2 = 0 . 58 ) , indicating there is indeed increased

oise in the control images at locations with shorter ATTs. 

This noise model was used in additional MC simulations, similar to

hose described in the Methods Section 3.2 , after being rescaled so that

(1.25 s) was equal to the noise SD used in the original simulations.

ig. 8 shows a comparison between the variable noise simulations and

n vivo data, demonstrating a much-improved qualitative match than

he fixed noise simulations. This suggests the relationship between ATT

nd temporal signal variation largely explains the differences seen in

he trends in vivo , though we cannot deduce the relative contributions

o this variability from pulsatility or proximity to the receive coil using

ur data. This ATT dependent noise model may not be useful for general

rotocol optimization because it will likely vary across subjects, subject

lacement, and head coil design. 

.7. CBF and ATT variation across subjects 

Large differences in the CBF and ATT maps were seen across subjects

Supporting Information Figure S3 and Supporting Information Figure

4). These differences may be due to previously seen global variations

cross age and sex, such as decreasing CBF and increasing ATT with

ge ( Chen et al., 2011 ; Dai et al., 2017 ; Parkes et al., 2004 ) and higher

BF and lower ATT in women ( Henriksen et al., 2013 ; MacIntosh et al.,

010 ; Vernooij et al., 2008 ). 

.8. Macrovascular signal 

We did not use vascular crushing in this study due to its incompat-

bility with the 3D GRASE readout and the increased signal loss with

 separate vascular crushing module. Although there is some inherent

ascular crushing in the GRASE readout ( Günther et al., 2005 ), there

ill be residual macrovascular signal in these data, particularly at short

LDs, which may lead to errors in the CBF estimates. 

In this work, we used a one-compartment model to fit the data

ecause the introduction of more free model parameters with a two-

ompartment model leads to increased CBF and ATT uncertainties. This

ould not be a problem if there were a uniform increase in the uncer-

ainties, however, when we used a two-compartment model, the uncer-

ainties increased by varying amounts across ATTs in a different way

or each protocol. This is due to the different temporal sampling of each

rotocol. The fast dynamics of the macrovascular compartment are best

t to high-temporally sampled data ( van der Plas et al., 2019 ), but the

ensity of the timepoints varies greatly within and across the protocols.

his can lead to high uncertainties on the macrovascular compartment

hich greatly increase the uncertainties of the CBF and ATT estimates. 

In order to exclude voxels with macrovascular signal from biasing

he comparison, we used the posterior distribution SDs output by the

tting algorithm to identify voxels which were not well fit by the one-

ompartment model. As Supporting Information Figure S5 shows, the

xcluded voxels were mostly located in regions with large arteries, sug-

esting that our goal was successful. Furthermore, the good agreement

n the relative performances of the protocols between simulation and

n vivo suggests that any remaining residual macrovascular effects have

ot dominated the in vivo comparison. 
. Conclusions 

In this work, we demonstrated that optimized multi-timepoint pro-

ocols can generate more confident, accurate, and repeatable CBF esti-

ates across a given ATT range than a single-PLD protocol, while also

enerating ATT maps. We found that the time-encoded free-lunch pro-

ocol with T 1 -adjusted LDs can lead to improved CBF estimates over a

xed-LD time-encoded protocol and is a good approximation to the opti-

al time-encoded design. Finally, we demonstrated that a novel hybrid

ime-encoded with sequential PLD protocol design utilizing T 1 -adjusted

abel durations out-performed a wide range existing literature protocol

esigns for estimating CBF, both in simulation and in vivo . 
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