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Abstract
To fully achieve the goals of a genomics‐enabled learning health care system, purposeful efforts

to understand and reduce health disparities and improve equity of care are essential. This paper

highlights 3 major challenges facing genomics‐enabled learning health care systems, as they

pertain to ancestrally diverse populations: inequality in the utility of genomic medicine; lack of

access to pharmacogenomics in clinical care; and inadequate incorporation of social and

environmental data into the electronic health care record. We advance a framework that cannot

only be used to directly improve care for all within the learning health system but can also be used

to focus on the needs to address racial and ethnic health disparities and improve health equity.
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1 | INTRODUCTION

Electronic health records (EHRs) are revolutionizing the practice of

medicine. Not only does the digitalization and standardization of

medical records help to improve patient outcomes by facilitating

integrated care within complex medical settings,1 these properties also

enable the improvement of the health care system itself2-4 by simplify-

ing the periodic assessment of system function and quality,5,6 the so‐

called learning health system model. With the adoption of EHRs also

comes changes to the content of the medical record. For example,

the burgeoning ubiquity of genomic information in the clinical setting,

from the increased use of genetic tests as an element of clinical care to

direct to consumer testing results provided by patients, has galvanized

efforts to integrate these data into the medical record.7,8 This surge

has also spurred the development of means of providing of relevant

clinical knowledge and patient‐specific information related to medical

genomics, known as genomic clinical decision support (CDS).9-11

However, the foundations for most integration and genomic CDS
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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efforts, and indeed for the basis for many clinical genetic tests, rests

in a body of work severely limited by the diversity of its participant

populations.12 In some cases, these shortcomings have been identified;

yet without adequate data on diverse populations, we cannot truly

know the extent of these limitations, potentially compounding already

gaping disparities in health.

Genomic integration into EHRs therefore comes with both signif-

icant caveats and substantial opportunity. On the one hand, care must

be taken to assess the utility of genomic testing and the meaning of

genomic results in specific contexts.11,13-16 On the other, the nature

of EHRs and the facility with which they can be analyzed as a

dataset allows health care systems to evaluate the effects of geneti-

cally enabled care on health outcomes, which have the potential to

add not only to the improvement of patient care directly, through

the refinement of clinical practices, but also indirectly through

enhancement of the body of knowledge upon which biomedical

discovery and development is based.17 In so doing, these health care

systems can shed light on gaps in our scientific knowledge and
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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stimulate research that will help our medical advances serve all

populations equitably.

In this paper, we examine the conceptual foundations of EHRs and

the learning health care model. We also explore the major challenges

to health equity presented by the current state of EHRs and genomic

and precision medicine, focusing on issues related to ancestral diver-

sity. Finally, we take stock of these challenges and discuss a framework

to aid in addressing them through research, technology, and learning

health care.
2 | THE LEARNING HEALTH CARE MODEL

Many aspects of the modern practice of medicine we owe to the scien-

tific method. Aseptic technique, vaccines, CPR: these cornerstones of

clinical care arose via a process of hypothesis‐driven, empirical deter-

mination of optimal methodology.18-20 This process is routinely applied

to the tools of medicine, resulting in new treatment strategies and

technologies that promise the radical improvement of clinical out-

comes. However, these new tools are only as useful as their successful

deployment. Outcomes may differ based on distinct factors affecting

certain populations or individual patients, which must be considered

in the care strategy. Moreover, the blanket application of a specific

treatment for a given condition may drive up costs with limited medical

benefits across the board.21 Proper implementation, therefore,

requires its own application of the scientific method, embodied by

the continuously learning health care system (LHS), to determine the

ideal mechanism and context for use.
2.1 | Assumptions of a Continuous Learning Health
Care System

In 2012, the National Academy of Medicine, then the Institute of

Medicine, published a roadmap to guide the development of LHSs.22

The guide assumed several characteristics of LHSs that touch on
TABLE 1 Characteristics of a Continuously Learning Health Care System

Science and Informatics

• Real‐time access to knowledge – A learning health care system continuous
guide, support, tailor, and improve clinical decision making and care safety a

• Digital capture of the care experience – A learning health care system cap
application of knowledge for care improvement.

Patient‐Clinician Relationships

• Engaged, empowered patients – A learning health care system is anchored
families, and other caregivers as vital members of the continuously learning

Incentives

• Incentives aligned for value – In a learning health care system, incentives
reduce waste, and reward high‐value care.

• Full transparency – A learning health care system systematically monitors
makes information available for care improvement and informed choices an

Culture

• Leadership‐instilled culture of learning – A learning health care system is s
and adaptability in support of continuous learning as a core aim.

• Supportive system competencies – In a learning health care system, comp
team training and skill building, systems analysis and information developme
improvement.

Adapted from IOM, 201222
capabilities science and informatics, the patient‐clinician relationship,

incentives, and culture (Table 1). A tacit assumption of the framework

is the commitment to quality care for an increasingly diverse patient

population. The human body, while generally universal among human

beings, is subject to environmental impingements, both positive and

negative, that result in a constellation of characteristics affecting

individual patient care. The LHS model acknowledges the many forces

acting on a patient's condition and demands that the information avail-

able for clinical decision making reflect the individual patient's situation

to the greatest extent possible. The derivation of this information

comes from the systematic reappraisal of action‐outcome relationships

in the context of multiple factors and the integration of these findings

into clinical practice.
2.2 | Benefits of a Learning Health Care System

The LHS model offers myriad prospective benefits over the classic

model of clinical medicine. First and foremost is the potential for

improvement in patient care. In 2012 to 2013, there were an estimated

265 860 premature deaths that could have been prevented with effec-

tive and timely health care.18,22 Of those, over 83 000 deaths could

have been avoided if all states improved their care to the level of the

best‐performing state. Health disparities are dramatically impacted by

social determinants of health like socioeconomic status, urbanicity/

rurality, sexual orientation, and gender identity.23-29 Inequality in care

in the United States is also disproportionately detrimental to racial

and ethnic minority groups.30 This inequality has worsened for certain

key measures—eg, at risk adults without a doctor visit; adults without

a usual source of care; older adults without recommended preventive

care—in the recent past.18 The LHS model offers the means by which

the utility of particular care strategies can be dissected according to

situation to give practitioners a better understanding of what works

and when. Implementation of that knowledge in the care setting allows

for the improved delivery of appropriate, often life‐saving treatment

that is sensitive to individual needs.
ly and reliably captures, curates, and delivers the best available evidence to
nd quality.

tures the care experience on digital platforms for real‐time generation and

on patient needs and perspectives and promotes the inclusion of patients,
care team.

are actively aligned to encourage continuous improvement, identify and

the safety, quality, processes, prices, costs, and outcomes of care, and
d decision making by clinicians, patients, and their families.

tewarded by leadership committed to a culture of teamwork, collaboration,

lex care operations and processes are constantly refined through ongoing
nt, and creation of the feedback loops for continuous learning and system
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Knowing what is likely to work in a given care scenario minimizes

unnecessary procedures and care that drive up cost without improving

benefits by identifying the most probabilistically effective courses of

treatment. According to recent figures, wasteful spending constitutes

up to a third of the money spent annually in the United States on

health care.31 In 2011, wasteful health spending, excluding fraud,

may have amounted to nearly $1 trillion (Table 2).32 The LHS model

is uniquely poised to address wasteful health spending across the

board. When information is leveraged to improve care, not only do

patients receive better care tailored to their individual needs, treat-

ment costs are also more likely to represent well‐informed medical

decisions, improving overall value of clinical care.
3 | EHR TECHNOLOGY

The explosion of techniques, tools, and treatments, while aiding in the

advancement of our clinical capabilities, have also exponentially

complicated medical practice. To draw meaningful links between

patient conditions, patient‐provider interactions, numerous interven-

tion strategies, and health outcomes, and to distribute that information

in a way that reaches the point of care, LHSs need a means of record-

ing the relevant information that lends itself to data capture, curation,

and delivery assumed by the model.22 The EHRs standardize the col-

lection of information about patients, their care, and their health out-

comes and facilitate the serial revision of practices according to

system‐wide syntheses of available information. Without this stan-

dardization, connecting outcomes to practices would require great

effort, and the undertaking on a large scale would not be feasible.

Today, the EHR plays an essential role within a complex and rapidly

evolving health IT ecosystem, consisting of technological infrastructure

and methodology to aggregate, store, distribute, analyze, and extract

information from the health record. However, in leveraging health IT,

information fed back into the system is only as good as the information

collected at the front end. To meet the needs of diverse individuals in

an increasingly complex clinical environment, that diversity and com-

plexity must be adequately reflected in the EHR as a first step towards

effectively leveraging this information throughout the health IT

ecosystem.

Adequate reflection of diversity not only means that EHRs must

support inclusion of relevant data but also means that efforts must
TABLE 2 Estimates of Waste in U.S. Health Care Spending in 2011, by Ca

Cost to Medicare and Medicaida (In billio

Low Midpoint H

Failures of Care Delivery $26 $36 $

Failures of Care Coordination $21 $30 $

Overtreatment $67 $77 $

Administrative Complexity $16 $36 $

Pricing Failures $36 $56 $

Subtotal (%) $166 (6%) $253 (9%) $

Fraud and Abuse $30 $64 $

Total (%) $197 $300 $

Adapted from Lallemand, 2012.32 Totals may not match sum of components, du
spending estimated at $2.687 trillion.
be made to record as much information from each patient as possible

to capture their unique condition and context. For patients who

receive routine care at a limited number of sites, information acquisi-

tion is a relatively simple task. But many patients have limited access

to care, primarily seek out care in settings where the focus is on urgent

issue remediation, and rely on care from multiple disparate settings,

not all of which may share information or even utilize EHR technology.

The eMERGE research study found that general IT implementation

was the primary challenge in the integration of pharmacogenomics in

the CDS tools in the EHR.11 The challenges of general information

technology implementation will adversely impact federally qualified

health clinics, community hospitals, and rural health care systems.

These patients may be far more likely to bear the brunt of health

disparities, in part because the seamless development of a complete

electronic medical record is much more difficult.33 For these patients,

providers must be conscientious about using every patient‐provider

interaction as an opportunity to enhance the comprehensiveness of

the EHR.
3.1 | The Genomic Medicine‐Enabled EHR

Changes to the practice of medicine are changing medical record

content. With the advent of precision medicine, health care has seen

a rapid increase of the use of genomic information in the clinical

setting.34,35 This information may be derived from clinical tests for

disease diagnosis or risk, as well as testing for pharmacological

response. However, genomic information may also enter the clinical

setting via the patient directly. Direct‐to‐consumer genetic testing

platforms and research use of genomic sequencing have made per-

sonal genomic information readily accessible to public citizens, and

patients may share this information with their health care providers.

Genomic information of all kinds is making its way into the EHR.36

Genomic information and interpretation in the EHR must be not only

clinically relevant, it must also signify the most advanced information

available. The rapidly expanding body of knowledge pertaining to

genetic variation and gene‐environment interactions that shape health

add a dimension of complexity to this effort. It also presents a growing

burden on practitioners who, with relatively little formal training in

genomics,37 must stay abreast of major developments in the field

and to apply relevant information at the point of encounter. As such,

there is a growing need for genomic CDS integrated into the EHR that
tegory

ns) Total Cost to U.S. Health careb (In billions)

igh Low Midpoint High

45 $102 $128 $154

39 $25 $35 $45

87 $158 $192 $226

56 $107 $248 $389

77 $84 $131 $178

304 (11%) $476 (18%) $734 (27%) $992 (37%)

98 $82 $177 $272

402 $558 (21%) $910 (34%) $1,263 (47%)

e to rounding. a Includes state portion of Medicaid. b Total U.S. health care
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both are resilient to consistent updates and provides information with

adequate ease and depth to benefit clinical care.

Although the needs relating to genomic data integration and CDS

have been widely recognized,13,36 complications have stymied most

efforts to broadly address these needs. Foremost, among these

complications are the absence of standardized genomic data models,

exchange formats, and representations of knowledge that would facil-

itate integration across systems in a scalable and consistent fashion.

Such efforts are further hampered by lack of platform interoperability

and widespread data sharing. Thus, genomic data and CDS integration

projects have largely been platform‐ or site‐specific, drawing on differ-

ent methodology and genomic information and data sources, a recipe

for considerable variation in the utility of the final product.
4 | HEALTH EQUITY CHALLENGES OF
GENOMICS‐ENABLED LEARNING HEALTH
SYSTEMS

The promise and productivity generated by the completion of the

human genome project in 2003 have propelled genomic and precision

medicine, as well as the biomedical research agenda, into the future. A

proponent of this new era of precision medicine, President Barack

Obama asked:
“Instead of trying a one‐size‐fits‐all treatment, what if

medical experts could tailor one specifically for

everyone's body? By bringing together doctors and data

like never before, precision medicine aims to deliver the

right treatments in the right dosage at the right time—

every time.”38
While precision medicine and its genomic foundations do harbor

great potential, neither can be embraced without caveat. The latent

shortcomings of these approaches were presaged in a cautionary

perspective published in Nature Genetics only a year after the

completion of the human genome project. The article by Tate

and Goldstein―entitled “Will tomorrow's medicines work for

everyone?”―grappled with the precise challenges we face today, more

than a decade later:
“If genetics does eventually prove relevant to the

treatment of common diseases, then to the extent that

genetic advances are uneven among racial and ethnic

groups, disparities may result.”39
The medical benefits of genomics are beginning to be realized. Yet

researchers have already observed that a lack of inclusion of

ancestrally diverse populations is undermining genomic and precision

medicine.40 Thus, not only are we are faced with the challenge of

incorporating genomic information into clinical care, we do so with

the full knowledge that this information is woefully incomplete. The

lack of publicly available data on clinically relevant variants in diverse

ancestral populations adversely affects the utility of new genomic

knowledge for all patients for both diagnosis and treatment. To fully

realize the benefits of precision medicine, EHRs must also be able to

support the integration of relevant social and environmental, as well
as genomic, information, and this information must reflect the broad

diversity of humanity. The LHS model is uniquely poised not only to

help address these challenges to health equity but also to evaluate

and implement refined clinical tools.
4.1 | Challenge I: Clinical Utility of Genomic
Medicine

The results of genome‐wide association studies (GWAS) that examine

the association between disease incidence and genomic variation com-

prise a large portion of the medical genetic literature. In 2010, Need

and Goldstein published an article in Trends in Genetics that first

highlighted the lack of ancestral diversity in GWAS available in public

databases.41 A year later, Bustamante, Burchard, and De La Vega

further enunciated the numerous barriers in place for truly diverse

genomics research.42 In their comment in Nature, they reported that,

as of 2010, 96% of GWAS were performed in populations of exclu-

sively European descent. “Such challenges,” they maintained, “do not

justify restricting the beneficiaries of medical genomic research to a

small subset of humanity. Population‐based studies must be carried

out on a global scale.”

Popejoy and Fullerton's 2016 update on Bustamante et al original

analysis indicated a nearly 300% increase in the proportion of GWAS

participants of non‐European descent.43 While promising, that still

means non‐European individuals constitute only 19% of GWAS partic-

ipants overall. Almost two‐thirds of non‐European GWAS participants

are Asian, primarily the result of an increase in studies conducted in

Asia, leaving individuals of African, Hispanic and Latin, Pacific Islander,

Arab and Middle Eastern, Native, and mixed ancestry to comprise only

5% of the overall GWAS population.

Although the inclusion of diverse ancestral populations in such

genomic databases as OMIM begin to address the issue of data avail-

ability, considerably more effort is needed to address the staggering

dearth of information in non‐European ancestral populations. It is esti-

mated that 25% of GWAS findings identified in primarily European

ancestral populations have significantly different effect sizes in non‐

European ancestral groups.44 Moreover, GWAS homogeneity and bias

towards inclusion of subjects with European ancestry may miss key

associations due to low frequency of variants in these populations.45

“Irrespective of what's driving it,” Popejoy and Fullerton note, “the

continued under‐representation of populations of mixed ancestry or

of people whose ancestry is not European is a problem. Until

researchers are able to conduct amply powered GWAS on each major

ancestral population across the world, scientists will continue to miss

important information about disease biology.”

The GWAS is not the only category of genetic and genomic

research lacking study population diversity, and this lack of diversity

could have dire consequences for minority patients. Nowhere was this

more clearly illustrated than in a 2016 study by Manrai et al detailing

the validity of clinical genetic tests for hypertrophic cardiomyopathy

risk when applied in ancestrally diverse patient populations.46 The

study found that misclassification of benign variants as pathogenic

occurred in multiple patients all of whom were of African or

unspecified ancestry. The authors further articulated the importance

of these findings:
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“Such misclassifications invalidate risk assessments

undertaken in relatives, requiring a chain of amended

reports and management plans. Our findings suggest

that false positive reports are an important and perhaps

underappreciated component of the “genotype‐positive

–phenotype‐negative” subgroup of tested persons. These

findings show how health disparities may arise from

genomic misdiagnosis.”
The future of genomic and precision medicine is contingent on the

success of genomics research in understanding genetic variation in

diverse ancestral populations.47 To adequately meet their mission of

service to their entire patient population, genomic‐enabled LHSs must

acknowledge this problem and commit to playing an essential role in

resolving it.
4.2 | Challenge II: Pharmacogenomics and Health
Equity

Lack of diversity in research populations affects not only diagnostic

and risk assessment tools but also treatment strategies. For example,

the prescription drug clopidogrel (known by the brand name Plavix) is

an inhibitor of platelet aggregation; its action is contingent of the

metabolism of the drug in the liver into its active form, a process that

depends on the CYP2C19 enzyme.48 Mutations in the CYP2C19 gene

can significantly reduce drug metabolism, and thus drug efficacy.49

Clopidogrel was originally approved by the FDA in 1997 as an alterna-

tive to aspirin for preventing acute myocardial infarction.50 The FDA

issued a black box warning in 2010 stating that poor metabolizers

may not receive the full benefit of the drug treatment and may remain

at risk for heart attack, stroke, and cardiovascular death.51

In March 2014, David Louie, District Attorney for the State of

Hawaii, filed a lawsuit against the manufacturers of clopidogrel,

Bristol‐Myers Squibb Company and Sanofi‐Aventis U.S. The complaint

asserted claims against the Defendants for violation of Hawaii state

laws for false, deceptive, and unfair marketing of clopidogrel.52 The

Complaint asserts that the drug “has diminished or no effect on

approximately 30% of the patient population” of the State of Hawaii.

The Attorney General, on behalf of the State, contends that the phar-

maceutical companies knew and failed to disclose, prior to the FDA's

2010 warning, that the drug did not benefit everyone within the State

equally, and that individuals of certain ancestral background―Pacific

Islanders and East Asians, ancestral groups that make up a significant

proportion of the Hawaiian population―were more likely to harbor

CYP2C19 mutations that made them poor responders to clopidogrel's

active ingredient.53-55 Not all physicians, however, agree that CYP2CI9

testing should be routine in Hawaii.56

We are continuously learning about interindividual differences in

drug exposure and/or drug response. Some interindividual differences

are associated with individual patients’ ancestral backgrounds, and the

drug development pipeline is beginning to warm to that concept.57

Today, race and ethnicity are often used as medical surrogates for

biological ancestry, even in prescribing recommendations.12 There is

a growing number of drugs with FDA‐approved product labeling

directed at specific races and ethnicities.58 While standard GWAS
analytic techniques do take hidden population structure into consider-

ation, this information may not make its way into the interpretation

and implementation of these results in clinical applications. The geno-

mics‐enabled LHS has the potential to hasten our move beyond the

crude proxies of racial and ethnic categories, measures that are fluid

and change over time, to looking at the genotypes that may influence

drug exposure and response.12 This would require LHSs to embrace

genetic and genomic information more broadly as a component of

patient care, including such information as ancestral markers in the

EHR as well as the routine analysis of EHR data. Nevertheless, even

understanding not only the self‐identified race and ethnicity of

the patient but also the ancestral background, would augment the

LHS by getting us closer to the end goal of geographically derived

genetic differences.
4.3 | Challenge III: Social and Environmental
Determinants of Interindividual Health Differences

The statement “your zip code is a better predictor of your health than

your genetic code” has been used for many years to emphasize the

limitation of genomics.59 It also highlights the fact that social and

environmental factors play an important role in interindividual differ-

ences in health outcomes.60 For example, it is now commonly accepted

that smoking cessation can drastically reduce risk of cardiovascular

disease.61,62 More recent research has linked such properties as

neighborhood ethnic density,63 childhood trauma,64,65 and poverty66,67

to health outcomes. Thus, true implementation of precision medicine

requires the consideration of these factors as part of clinical care. The

National Academy of Science in 2013 convened a committee to

recommend core social and behavioral domains for inclusion in all EHRs

(Table 3).68 As outlined in the report:
“It [the Committee] identified a parsimonious panel of

measures that is comprehensive, interoperable and

efficient… While recognizing the additional time needed

to collect such data and act upon it, the committee

concluded that the health benefits of addressing these

determinants outweigh the added burden to providers,

patients, and health care systems.”
Understanding the social and behavioral environment of patients,

in addition to genomic information, can greatly inform clinical decision

making. Social determinants of health―such as income, financial

resource strain, education, and health literacy―are especially impor-

tant in providing a social context for understanding a patient's clinical

phenotype. Some EHRs capture such data as geolocation and employ-

ment status, as well as alcohol and smoking history, which may be used

as proxies to measure the effects of certain social determinants on

health and wellness.69 Income and education are strongly correlated

with health and life expectancy.70 More than the effect such factors

may have on health directly, they may also impinge on patients’ access

to genomic and precision medicine and to new medical technologies.

Therefore, potential health benefits of genomics‐enabled LHSs require

the inclusion of genomic data and social and environmental EHR data

to “harness the full potential of the information to provide better

patient care,” as well as the recognition that social and environmental



TABLE 3 Candidate Set of Domains for Consideration for the Inclusion in All Electronic Health Records

Sociodemographic Domains

• Sexual orientation Race/ethnicity Country of origin/U.S. versus foreign born Education Employment Financial resource strain (food and housing
insecurity)

Psychological Domains

• Health literacy Stress Negative mood and affect (depression, anxiety) Psychological assets (conscientiousness, patient engagement/activation,
optimism, self‐efficacy)

Behavioral Domains

• Dietary patterns Physical activity Tobacco use and exposure Alcohol use

Individual‐Level Social Relationships and Living Conditions Domains

• Social connections and social isolation Exposure to violence

Neighborhoods and Communities

• Neighborhood and community compositional characteristics (socioeconomic and racial/ethnic characteristics)

Adapted from IOM, 201468
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barriers to care exist and must be overcome.36 Not the least of these

barriers is inconsistent appreciation for the import of such information

by health care providers. Educational initiatives may be required to

enhance providers’ recognition and use of social and environmental

information as elements of clinical care.
5 | CONCEPTUAL FRAMEWORK

It is not enough to acknowledge the limitations of our present under-

standing regarding the biological underpinnings of disease in diverse

ancestral and social backgrounds. Nor is it prudent to allow the

biomedical research community to shoulder the full burden of

generating more complete data when a well‐suited mechanism for

informing the biomedical research process exists at our fingertips.

Inherent in the LHS model is the capacity for routine evaluation and

adaptation of care practices. As more and, a wider variety of
FIGURE 1 Improving Health Equity through Learning Health Care: A Fram
information, including genomic and social data, are incorporated into

the EHR, there arises the potential for the LHS to inform not only care

practices for diverse patient populations but also the biomedical

research guiding precision medicine (Figure 1). Initial efforts to

provide integrated CDS may be limited in its broad utility, due to

the constraints mentioned previously. Yet the full extent of these

limitations will remain unrealized until tested, which is precisely

what can be accomplished through evaluation of health outcomes in

diverse contexts.

The current LHS model is extremely proficient at asking the ques-

tion of when information improves health outcomes; what is critical for

ameliorating health disparities is the question of for whom does the

information confer improvement. Attempts by LHSs to approach this

question has largely been hampered by the content available in the

EHR. Thus, leveraging the LHS model for health equity purposes is

contingent on capturing an expanded set of data within the health

record that allows for evaluation based on sociodemographic,
ework.



TABLE 4 Steps to Improving Equity in Genomics‐Enabled Learning Health Care Systems

Methods, Measures, and Models

• Develop international standards for the classification of populations to support global implementation of LHSs Develop new models to enhance the
use of de‐identified clinical data from diverse populations

Monitoring

• Publicly monitor archived genotype and phenotype data available for genomic research by ancestral population

Patient Engagement

• Develop sustained and respectful relationships with ancestrally underrepresented communities to encourage participation in genomic research that
may benefit clinical care Develop new methods for recruitment of ancestrally underrepresented communities for research participation within the
genomics‐enabled LHS

EHR Infrastructure

• Enhance EHR information capture to improve resolution of population diversity Develop CDS that is sensitive to social, environmental, and ancestral
factors, as well as genetic features Improve interoperability of EHR platforms to allow for information transfer between disparate points of care
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environmental, and genomic factors. Similarly crucial for this approach

is the bidirectional flow of information between the biomedical

research community and the LHS. By feeding evaluations of clinical

utility in the context of diverse biological, social, and environmental

factors back into the research environment, we can revise the body

of knowledge upon which CDS tools are based, in the interests of

greater equity across the patient spectrum, and identify knowledge

gaps requiring further experimental investigation.

Leaders in the field have set out principles for integrating person-

alized medicine into health care practice. These principles include

establishing best practices for the collection and dissemination of evi-

dence needed to demonstrate clinical utility and recognition of its

value of care and to provide effective healthcare delivery infrastruc-

ture and data management systems to guide clinical decisions, so that

individual patient and clinical support information is comprehensive,

useful, and user friendly.71 The framework we propose can be con-

strued as an expansion of these principles to incorporate the concept

of health equity. These efforts will likely require steps be taken by

the larger health care community (Table 4).
6 | CONCLUSION

In 2015, the National Academy of Medicine held a workshop on

genomics‐enabled LHSs; the workshop report included only a brief dis-

cussion of health care disparities, which referenced Charles Friedman's

comments at the workshop:
“…the problems that get attention are those around which

communities of interest form and generate enthusiasm for

solutions. If communities of interest form around reducing

disparities, learning cycles could take shape around those

issues. ‘Let's look at ourselves and decide what's

important.’”36
We agree that those guiding the use of the learning health care

model have a responsibility to focus specifically on the question of

how we can use the genomics‐enabled LHS to reduce health

disparities an improve equity of care in the age of precision medicine.

Moreover, in this paper, we have highlighted several major challenges

facing such an enterprise: inequality in the utility of genomic medicine;

lack of access to pharmacogenomics in clinical care; and inadequate
incorporation of social and environmental data into the EHR. This dis-

cussion by no means encompasses the full scope of complexities facing

the fields of genomic and precision medicine, which also includes such

issues as inequality in genomic platforms, inconsistencies and method-

ological problems in older studies, often low prevalence of high‐risk

pharmacogenomic variants, and a widespread need for genomics train-

ing amongst clinical providers. Nor do we attempt to put forward a

solution that would comprehensively address the challenges presented

in this paper. Nevertheless, we posit a framework that can not only be

used to directly improve care for the full spectrum of patient diversity

but can also be intentionally leveraged to address health disparities

and improve health equity writ large. Adoption of this framework, in

conjunction with solutions addressing the broader health IT and clinical

ecosystems, as well as the research community, could usher in a new

chapter in health. Precision medicine may yet revolutionize care across

all patient populations, and the genomics‐enabled learning health care

model is a powerful instrument we can use to ensure the revolution is

equitable. By raising consciousness around the issues of health equity

in the context of learning health care, and by outlining an approach to

address some of the major challenges faced by precision health care,

we hope to advance current efforts and stimulate dialog and positive

change.
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