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Abstract

Errors ingenetranscriptioncanbecostly, andorganismshaveevolved toprevent theiroccurrenceormitigate their costs. The simplest

interpretation of the drift barrier hypothesis suggests that species with larger population sizes would have lower transcriptional error

rates.However,Escherichiacoli seemstohaveahigher transcriptionalerror rate thanspecieswith lowereffectivepopulationsizes, for

example Saccharomyces cerevisiae. This could be explained if selection in E. coli were strong enough to maintain adaptations that

mitigate the consequences of transcriptional errors through robustness, on a gene by gene basis, obviating the need for low

transcriptional error rates and associated costs of global proofreading. Here, we note that if selection is powerful enough to evolve

local robustness, selection should also be powerful enough to locally reduce error rates. We therefore predict that transcriptional

error rates will be lower in highly abundant proteins on which selection is strongest. However, we only expect this result when error

rates arehighenough to significantly impactfitness.Asexpected,wefindsucha relationshipbetweenexpressionand transcriptional

error rate for non-C!U errors in E. coli (especially G!A), but not in S. cerevisiae. We do not find this pattern for C!U changes in

E. coli, presumably because most deamination events occurred during sample preparation, but do for C!U changes in S. cerevisiae,

supporting the interpretation that C!U error rates estimated with an improved protocol, and which occur at rates comparable with

E. coli non-C!U errors, are biological.
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Introduction

Errors are costly, and we therefore expect natural selection to

reduce their rate. However, selection cannot achieve every-

thing. In particular, it is only able to purge deleterious muta-

tions when their selection coefficient s is significantly greater

than one divided by the “effective population size.” This nu-

merical limit to selection may reflect not just the number of

individuals in a population, but also competing selection at

linked sites (Lynch 2007; Good and Desai 2014). The “nearly

neutral theory” holds that deleterious mutations close to this

limit are abundant (Ohta 1973), and the “drift barrier hypoth-

esis” holds that differences in the precise location of this limit

explain important differences among species (Lynch 2007).

For example, codon usage bias is stronger in species believed

to have higher effective population sizes (Vicario et al. 2007),

indicating stronger selection to purge slightly deleterious syn-

onymous mutations.

Rajon and Masel (2011) highlighted the distinction be-

tween a “global” solution that ameliorates a problem at

many loci at once, and a set of “local” solutions that solve

them one at a time. Because mutations affecting single loci

are likely to have smaller fitness consequences than mutations

with genome-wide effects, the drift barrier forms a more for-

midable barrier to local solutions than it does to global solu-

tions. When local solutions evolve (in populations with large

effective population sizes), they can obviate the need for

global solutions. This yields the counterintuitive prediction

that when global solutions are examined, it may be species

with low effective population sizes that show the most ex-

treme adaptations. Specifically, rates of error in transcription

� The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

3754 Genome Biol. Evol. 12(1):3754–3761. doi:10.1093/gbe/evz275 Advance Access publication December 16, 2019

GBE

http://orcid.org/0000-0002-6783-4849
http://orcid.org/0000-0003-4453-9895
http://orcid.org/0000-0003-1431-6586
http://orcid.org/0000-0002-7398-2127
http://creativecommons.org/licenses/by/4.0/


and translation could be higher in species with high effective

population sizes, because reducing error rates by kinetic

proofreading is a costly global solution (Rajon and Masel

2011).

Here we focus on mistranscription errors, where during

transcription, the wrong nucleic acid is incorporated at a sin-

gle site. This can lead to nonfunctional proteins, incurring

three types of costs. First is the energetic cost of futile tran-

scription and translation (Wagner 2007); which can be signif-

icant in bacteria with large population sizes (Petrov and Hartl

2000; Lynch and Marinov 2015). Second, there is the oppor-

tunity cost of not using ribosomes to make other gene prod-

ucts (Dekel and Alon 2005; Scott et al. 2014; Kafri et al.

2016). Third, there is the cost of disposing of a misfolded

and potentially toxic protein (Drummond and Wilke 2009;

Geiler-Samerotte et al. 2011; Tomala and Korona 2013).

Rajon and Masel (2011) predicted that in populations with

smaller effective population sizes and more loci, costly proof-

reading might evolve to reduce the rate of mistranscription

and hence the frequency with which these three costs are

born, whereas in populations with very large effective popu-

lation sizes and fewer loci, local solutions might evolve to

reduce the cost of each mistranscription event, allowing their

rate to stay high.

This prediction seems to have been confirmed for mistran-

scription (Xiong et al. 2017), whose rate of 8.2 � 10�5 in

Escherichia coli (Traverse and Ochman 2016b) is far higher

than that in S. cerevisiae (3.9 � 10�6) (Gout et al. 2017) or

Caenorhabditis elegans (4.1� 10�6) (Gout et al. 2013), which

have lower effective population sizes. Indeed, the rate is

higher even than that of Buchnera aphidicola (4.7 �10�5)

(Traverse and Ochman 2016b). Buchnera is a highly mutation-

ally degraded species in which the drift barrier is an obstacle to

the maintenance of fidelity in many other important cellular

functions (McCutcheon and Moran 2012); this high rate in

Buchnera may thus indicate that the drift barrier forms an

obstacle even to global solutions (Xiong et al. 2017). All these

error rates except for that of C. elegans (Gout et al. 2013),

were estimated using Cir-Seq (Acevedo and Andino 2014),

and should therefore be comparable, although sample prep-

aration techniques differ in vulnerability to deamination.

If the drift barrier theory of Rajon and Masel (2011)

explains the high rate of mistranscription in E. coli, this

implies that selection in E. coli must be potent enough

to be sensitive to the consequences of transcription errors

in a local (i.e. site-specific) way, not just to its global rate.

Local solutions to mistranscription fall into two categories:

local robustness to the consequences of mistranscription

when it occurs (this evolved robustness is hypothesized to

be responsible for permitting globally high mistranscrip-

tion rates), and locally reduced mistranscription rates at

the sites most sensitive to it.

Here, we test whether selection is able to maintain locally

lower transcriptional error rates in highly expressed genes.

Selection to purge deleterious mutations is generally more

effective in highly expressed genes, as evidenced, for exam-

ple, by stronger codon bias (Duret and Mouchiroud 1999;

Cutter and Charlesworth 2006; Sharp et al. 2010; Ran et al.

2014), which lowers translational error rates (Zhang et al.

2016). Somatic mutations (Frigola et al. 2017), alternative

transcriptional start sites (Xu et al. 2019), post-

transcriptional modifications (Liu and Zhang 2018a, 2018b),

alternative mRNA polyadenylation (Xu and Zhang 2018), and

translation errors (Mordret et al. 2019) also occur at lower

rates at sites where they are likely to have larger effects. We

similarly predict that because high mistranscription rates mat-

ter more for highly expressed genes, highly expressed genes

should evolve a lower rate of mistranscription. We make this

prediction for E. coli, where mistranscription rates are globally

high and thus so is local selection pressure. In contrast, we do

not expect a relationship between expression level and mis-

transcription rate in S. cerevisiae, where mistranscription rates

are globally much lower.

Results and Discussion

Mistranscription rate data in E. coli were taken from Traverse

and Ochman (2016a), who used Cir-Seq (Acevedo and

Andino 2014) to distinguish mistranscription events from se-

quencing errors. Within the largest and highest-quality batch

of their data (see Materials and Methods section), data from

four experimental conditions (minimal vs. rich media, and

midlog vs. stationary phase) were sometimes analyzed sepa-

rately and sometimes pooled. Mistranscription rates are much

higher for C!U substitutions: �10�4 rather than �10�5 for

other mistranscription types. Because C!U changes are more

sensitive to preparation artifacts (Chen et al. 2014), that is

they may not be mistranscription errors, we excluded them

from most of our analysis.

To further ensure the data quality, we exclude “hotspot”

nucleotide sites experiencing significantly (P< 10�9) more

errors of one type than expected from our model fitted as

described below. This eliminates recent mutations, inaccurate

mapping of reads to the genome, or other artifacts of the

experiment or pipeline, as well as any sites subject to pro-

gramed post-transcriptional RNA editing. We excluded 5

protein-coding and 2,390 noncoding sites that met this

“hotspot” criteria for at least one experimental condition.

The high rate of apparent mistranscription hotspots in non-

coding genes has been interpreted (Traverse and Ochman

2016a) as a consequence of E. coli having multiple polymor-

phic rRNA operons, making mapping of reads inaccurate. We

therefore restrict our analysis to protein-coding genes.

We modeled the number of errors observed per nucleotide

site as count data, using a generalized linear model. The num-

ber of errors expected is the product of the number of obser-

vations of that nucleotide site, and the modeled

mistranscription rate, the latter a linear function of log protein
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abundance, experimental condition, and substitution type

(see Materials and Methods section). The dependence on pro-

tein abundance (fig. 1; slope of 0 rejected from eq. 1 model

with P¼ 2� 10�14) supports our prediction from drift barrier

theory, a result that gets slightly stronger if we omit our hot-

spot removal procedure. The 11 non-C!U substitution types

have substantially different mistranscription rates (supplemen-

tary fig. S1, Supplementary Material online); fitting different

intercepts for each type (while leaving their slopes the same) is

strongly supported for inclusion in our equation (1) model

(P¼ 2� 10�16).

Different intercepts for different experimental conditions

are also supported, in addition (P¼ 1.5� 10�3). Fitting differ-

ent slopes for each experimental condition only marginally

improves the fit relative to our equation (1) model

(P¼ 0.052), mostly attributable to a steeper slope in the

minimal-static condition, which had far fewer data points

than the other conditions (supplementary fig. S2,

Supplementary Material online).

Standing out from results on all non-C!U error types in

supplementary figure S1, Supplementary Material online, and

shown in figure 2, is the fact that G!A errors depend more

strongly on protein abundance than other error types do

(P¼ 3� 10�4, eq. 2 as improvement on eq. 1). A separate

model fit to G!A error data only, gives a slope of

�2.9� 10�6 (95% CI of �1.6� 10�6 to �4.2� 10�6) with

log10 protein abundance, that is there are 1.6–4.2 fewer

G!A errors per million G transcription events per 10-fold

increase in expression, against a background of about 20–

40 errors per million G transcription events. To ensure that

the nonzero slope of figure 1 is not driven solely by G!A

errors, we repeated the analysis for the ten error types, that is

excluding both C!U and G!A (fig. 2, right). This yields a

slope of�8.4� 10�7 (P¼ 1� 10�7) with log10 protein abun-

dance, with a 95% confidence interval (CI) corresponding to

0.4 and 1.2 fewer expression errors per million opportunities

per 10-fold increase in expression.

Traverse and Ochman (2016a) reported that mistranscrip-

tion errors were more commonly synonymous (32%) than

would be predicted if errors occurred at random across the

genome (24%). When controlling for the effects of substitu-

tion type, condition, and protein abundance in our equation

(2) model of mistranscription rates, the synonymous versus

nonsynonymous status of the potential mistranscription error

did not predict the error rate (P¼ 0.89). Indeed, following our

data processing and quality filters, the overall frequency with

which a mistranscription error was synonymous was 23.4%,

suggesting that the previously reported excess of synonymous

mistranscription events was due to data quality issues. In any

case, whatever molecular mechanism is responsible for varia-

tion in mistranscription rates, it seems to act at the level of the

gene rather than at the level of the nucleotide site.

Molecular chaperones play a critical role in mitigating the

harm from mistranscription by reducing misfolding. Genes

that are chaperone clients might tolerate higher mistranscrip-

tion rates. Alternatively, sensitivity to mistranscription might

select both for a lower mistranscription rate and chaperone

use. We found no support for either hypothesis; adding an

intercept term for GroEL chaperonin use was not a significant

improvement on top of our equation (2) model (P¼ 0.085).

We also tested other predictors including gene length, abso-

lute position of a locus (number of nucleotides from the start

of gene), and relative position of a locus (absolute position/

total gene length), but neither slope nor intercept were sig-

nificantly different from 0 (i.e. P> 0.05) for any of the three

metrics.

As discussed in the Introduction section, Cir-Seq data

on the yeast S. cerevisiae indicates a much lower mistran-

scription rate than E. coli (Gout et al. 2017), suggesting

that it uses a global solution, reducing site-specific selec-

tion pressures on mistranscription rates. We therefore do

not predict a relationship between gene expression and

local mistranscription rate in this species, and do not find

one for the 11 non-C!U substitution types (fig. 3 bottom;

P¼ 0.2 in our eq. 1 model controlling for substitution type

as a fixed effect).

However, C!U substitutions, which occur at much higher

rates than other substitution types and hence are subject to

more selection even in S. cerevisiae, are less frequent for

highly abundant proteins (fig. 3 top; P¼ 0.006 for nonzero

slope on a C!U equivalent of eq. 2). This confirms that the

protocol of Gout et al. (2017) succeeded in avoiding

FIG. 1.—Highly expressed E. coli genes are subject to lower mistran-

scription rates. The dashed line shows the equation (1) model applied to

the 11 non-C!U substitution types, in which both condition and substi-

tution type affect the intercept but not the slope, plotted as a weighted

average over conditions and substitutions, with weights proportional to

the frequencies of opportunity to occur (i.e. by the numbers of reads of

sites with A/C/G/U). Solid line shows the pooled data, binned by protein

abundance as described in the Materials and Methods section, and plotted

according to mean protein abundance and the mean and 95% CI of the

mistranscription rate within each bin. Data were divided into ten bins;

because of the limited availability of reads for low-expression genes,

data within the first three bins were pooled. Note that mistranscription

rate is per possible error, so the total mistranscription rate per nucleotide is

around three times larger.
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deamination events during sample preparation (which should

not depend on protein abundance), where that of Traverse

and Ochman (2016a) did not.

Discussion

The high rate of mistranscription errors in E. coli came as a

surprise to many (Traverse and Ochman 2016a, 2016b). This

naturally raises the hypothesis that it is the data that are in

error. Although the Cir-Seq technique is effective in prevent-

ing sequencing errors from inflating estimated mistranscrip-

tion rates (Acevedo and Andino 2014), it does not eliminate

artifacts of the sample preparation and analysis such as muta-

tions occurring during the Cir-Seq experiment, nor inaccurate

mapping of reads to the genome. Although these could arti-

ficially inflate estimated mistranscription rates, we are not

aware of any plausible mechanism by which the degree of

such inflation would be a function of protein abundance. Our

results thus confirm the credibility of the data, and hence of

the statement that E. coli has a strikingly high non-C!U

mistranscription rate. After applying our quality filters, we

calculate the total rate of all non-C!U errors as 4.1 � 10�5

per site, or 8.6 � 10�5 if C!U errors are also included. In

contrast, in S. cerevisiae, we calculate from the data of Gout

et al. (2017) a non-C!U mistranscription rate of 2.3� 10�6,

or 3.5 � 10�6 with the C!U error type included.

The dependence of the E. coli mistranscription rate on the

strength of selection (as reflected by protein abundance), but

not the S. cerevisiae mistranscription rate, is consistent with

proposed drift barrier explanations (Rajon and Masel 2011;

McCandlish and Plotkin 2016; Xiong et al. 2017). In particular,

E. coli is smaller and is generally accepted to have a larger

effective population size than S. cerevisiae. Escherichia coli

also has fewer loci, occurring within 4,453 genes in K-12

(Riley 2006) compared with 5,178 genes in S. cerevisiae

(Engel et al. 2014), which makes it easier to evolve robustness

at each one. What is more, the average E. coli mRNA produ-

ces about 540 proteins out of a total of 2.5� 106 per cell (Lu

et al. 2007), that is 0.02% of the proteome, which is twice as

much as the average yeast mRNA producing 5,600 proteins

out of a total of 5� 107 per cell (Lu et al. 2007), that is 0.01%

of the proteome. Although a typical yeast mRNA has a longer

half-life and so makes proteins over a longer time (6.7 vs.

27.4 min; Siwiak and Zielenkiewicz 2013), the magnitude of

this should not be enough to counteract all other factors

making local solutions easier to evolve in E. coli.

We have shown that local mistranscription rates vary in a

systematic way on a per-gene basis, but have not determined

the mechanisms by which expression error rates vary.

Mistranscription rates are affected by local sequence charac-

teristics such as long mononucleotide repeats (Ackermann

and Chao 2006; Gu et al. 2010) and at the gene level by

FIG. 2.—C!U errors in E. coli are mostly artifacts, G!A depend most strongly on protein abundance, but the other ten error types also show

dependence. Dotted lines (left) show linear models with both the slope and intercept fitted separately for each error type using data pooled across all four

conditions; for a comparison of all 12 error types, see supplementary figure S1, Supplementary Material online. The C!U slope is not different from 0

(P¼0.91). The dashed line (right) shows an equation (1) model in which the slope is the same across all ten error types (non-C!U, non-G!A). To display this

model, we averaged the intercept over the four conditions, weighted according to the numbers of reads in each condition. Solid lines show the mean

mistranscription rates, binned by protein abundance as described in the Materials and Methods section, plotted according to mean protein abundance within

each bin; error bars show 95% CI. Data were divided into eight bins; because of the limited availability of reads for low-expression genes, data within the first

three bins were pooled. Note that mistranscription rate is per possible error, so total mistranscription rate per nucleotide is around three times larger.

Meer et al. GBE

Genome Biol. Evol. 12(1):3754–3761 doi:10.1093/gbe/evz275 Advance Access publication December 16, 2019 3757

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz275#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz275#supplementary-data


the presence or absence of specific RNA polymerase subunits

(Thomas et al. 1998; Walmacq et al. 2009) or transcription

factors (Irvin et al. 2014; Roghanian et al. 2015; Bubunenko

et al. 2017). Our finding that G!A errors depend more

strongly on expression than do other error types in E. coli

suggests that GreA, which specifically reduces G!A tran-

scription errors (Traverse and Ochman 2018), may be a likely

mechanistic candidate.

We have also shown that the local mistranscription rates

even of highly expressed E. coli genes are higher than the

global mistranscription rate in S. cerevisiae, suggesting that

E. coli genes are somehow more robust to the consequences

of mistranscription than are S. cerevisiae genes. However, the

robustness associated with E. coli’s global solution is not so

complete as to eliminate selection for locally lower mistran-

scription rates in the genes subject to the strongest selection,

leading to the trend detected here.

Materials and Methods

Scripts used in these analyses are available at https://github.

com/MaselLab/Meer-et-al-Transcriptional-Error-Rates

Escherichia coli Mistranscription Data

Preprocessed data were obtained from Traverse and Ochman

(2016a), that included how many times each of the

4,641,652 nucleotide loci in the K-12 MG155 reference ge-

nome (GenBank accession: NC.000913.3) was observed, and

how often each nucleotide was seen there. We assigned

these loci to 4,140 protein coding genes and 178 noncoding

genes using the annotation of GenBank accession

NC.000913.3. We analyzed the 3,935,551 nucleotide loci

within annotated nonoverlapping protein-coding ORFs, and

47,344 nucleotide loci from noncoding genes based on an-

notated “start” and “stop” positions. We excluded any sites

that were present in overlapping genes, as we could not as-

sign a single error rate or protein abundance in such cases.

Traverse and Ochman (2016a) data were obtained in mul-

tiple batches (referred to as “replicates” in their data tables),

with results reported only on two of the batches. Batch no. 2

had approximately half as much data and twice the error rate

of batch no. 1, so we restrict our analysis to batch no. 1 only.

Combining the data from each of the four experimental con-

ditions (minimal vs. rich media, and midlog vs. stationary

phase) within batch no. 1 effectively yielded 15,742,204

protein-coding sites and 189,376 noncoding sites, where

“site” is used here as shorthand for condition � nucleotide

locus, that is to describe the set of reads of a nucleotide locus

within just one experimental condition.

We excluded any site that had no reads and any protein-

coding transcript site with no protein abundance measure,

leaving 5,994,463 coding and 182,233 noncoding sites.

Each site can experience three different substitution error

types (e.g. C!U, C!A, and C!G), which we treated sepa-

rately, yielding 17,983,389 coding and 546,699 noncoding

“possible errors” for analysis. Note that data for the three

alternative errors at the same site are not, strictly speaking,

independent, because the occurrence of one error reduces

the denominator for the other two. However, at low error

rates, this effect is negligible.

Mutations occurring during the Cir-Seq experiment, inac-

curate mapping of reads to the genome, or other artifacts of

the experiment or pipeline can result in the appearance of

mistranscription “hot spots” that are best removed. We cal-

culated the likelihoods of seeing that many or more errors for

each of the 18,530,088 possible errors being analyzed, using

a significance cutoff of 10�9 to ensure that only

10�9�18,530,088¼ 0.02 possible errors are falsely excluded,

or potentially more if there is genuine biological variation in

mistranscription rates beyond that captured by our linear

model. We calculated likelihoods from a cumulative binomial

distribution based on the number of reads at that site and the

rate of error expected at that site from our model. When a

possible error was excluded with likelihood <10�9, we ex-

cluded the entire nucleotide locus (i.e. all three possible sub-

stitutions in all four conditions). We performed an iterative

FIG. 3.—In S. cerevisiae, only C!U mistranscription errors depend on

protein abundance. Dashed line shows a linear model fitted to a pooled

data set of the 11 non-C!U substitution types. Dotted line shows a linear

model fitted to C!U data alone. To display non-C!U model fit, we took

a weighted average of the intercept over substitution types as a function of

the frequencies of opportunity to occur. Solid line shows pooled data,

binned by protein abundance as described in the Materials and

Methods section, and plotted according to mean protein abundance

and the mean and 95% CI of the mistranscription rate within each bin.

C!U data were divided into eight bins; because of the limited availability

of reads for low-expression genes, data within the first three bins were

pooled. For non-C!U data, two out of ten bins were pooled. Note that

mistranscription rate is per possible error, so total mistranscription rate per

nucleotide is around three times larger. All 12 error types are shown sep-

arately in supplementary figure S3, Supplementary Material online.
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procedure, first fitting a model of constant error rate for all

non-C!U errors and a separate error rate for C!U errors,

using expectations from this model to exclude outliers, then

using the cleaned-up data to develop a more sophisticated

error rate model of all conditions/substitution types, and using

the revised expectations from this model to update which loci

should be excluded etc. until convergence. In the final itera-

tion, one or more possible errors were determined to be an

outlier at 5 protein-coding and 2,390 noncoding loci. For

protein-coding outliers, we excluded all possible errors at

each of the 5 outlier loci, that is up to 60 possible errors (3

possible errors at 5 loci in 4 conditions). Some sites had no

transcript reads in some conditions, resulting in only 48 rather

than 60 possible errors being excluded by this procedure,

leaving 17,983,341 possible errors in protein-coding tran-

script regions for analysis. Excluding C!U substitutions, due

to their significantly higher error rate and likelihood of occur-

ring post-transcriptionally, further reduced this to 16,466,559

non-C!U possible errors for analysis.

Saccharomyces cerevisiae Mistranscription Data

Similarly preprocessed transcript data were obtained from

Gout et al. (2017), who recorded how many times each nu-

cleotide locus was observed in the S288C reference genome

(GenBank accession: GCA_000146045.2), to which the wild-

type BY4741 strain used in their experiment is very closely

related. Only one experimental condition was used in this

study. Using the same methodology as for the E. coli data,

we used the accession to assign nucleotide sites to the 5,983

protein-coding nuclear gene regions based on the annotated

“start” and “stop” positions. This process identified

8,853,931 nucleotide loci within annotated protein-coding

ORFs, resulting in 26,561,793 possible errors for analysis.

Excluding any transcript site without reads or with unre-

ported or zero protein abundance left us with 18,649,818

possible errors. Using our outlier detection protocol, we iden-

tified 44 loci containing possible errors as outliers and ex-

cluded all possible errors at the associated loci (132 possible

errors in total), leaving 18,649,686 possible errors for analysis.

C!U errors were also identified as having a substantially

higher error rate in the yeast data (1.8� 10�5 vs. 2.3� 10�6

for other mistranscription types), and were excluded from

some analyses, resulting in 17,394,875 non-C!U possible

errors.

Protein Abundance Data

Integrated protein abundance data were taken from PaxDB

(Wang et al. 2015).

GroEL Client Status

We labeled the 1,929,741 possible errors associated with 252

E. coli proteins as having GroEL client status, based on the

identification of those proteins by Kerner et al. (2005) as

specific interactors with the GroEL chaperonin.

Statistical Model

We modeled the error rate at site i within gene j as a linear

function of the log-abundance of protein j, that is

Ei

Ri
¼ qþ b ln Abundancej

� �
;

where Ei is the number of reads containing a particular error

and Ri is the total number of reads at that nucleotide site.

To better model the error function in the linear model, we

multiply both sides by Ri :

Ei � Ri þ Ri log10ðAbundancejÞ þ ePoisson:

The observed number of errors Ei has the properties of count

data, and so can be modeled as a sample from a Poisson

distribution. We fitted the statistical model above using a

generalized linear model function in R (glm, stats package),

specifying the family of the model as “poisson(link ¼ identi-

ty).” For E. coli, experimental condition and type of error (ex-

cluding C!U) were added as fixed effects to yield:

Ei � type :Ri þ cond :Ri

þ Ri log10ðExpressionjÞ þ ePoisson:

(1)

Slope as a function of expression level can also be made de-

pendent on type and/or condition. For S. cerevisiae, the con-

dition term does not apply, and expression was not supported

as predictive in the model. For E. coli, a separate slope for

G!A errors was supported, yielding

Ei � type :Ri þ cond :Ri

þ GA : Ri log10 Expressionj

� �
þ ePoisson:

(2)

P-values associated with adding or removing terms to equa-

tion (1) or (2) models were obtained using the ANOVA com-

mand with the v2 option to compare nested models in R, as

given throughout the text, sometimes manually correcting the

number of degrees of freedom.

Data Binning

We binned data by protein abundance for visualization and

comparison with the fitted models. All possible errors were

sorted by the abundance value of the corresponding protein.

Bin boundaries were evenly spaced along our log-abundance

axis between the 5% quantile and the 95% quantile, with

data beyond these quantiles included in the edge bins. For

each bin, one point was plotted with y-value equal to the

mean and 95% CI of the mistranscription rate and an x-value

equal to the geometric mean of protein abundance. The num-

ber of mistranscription errors observed is expected to follow a
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binomial distribution with r trials, each with probability p of an

error. We thus estimated a standard error of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bpð Þbp=r

p
,

where r is the total number of reads within the bin and bp is

the observed error frequency within the bin. To generate the

95% CI we multiplied this standard error by 1.96. To keep

standard errors for low-abundance bins reasonably low, data

from several low-abundance bins were combined.

Binned data are shown for the purpose of illustrating that it

is appropriate to log-transform protein abundance before us-

ing it as a linear predictor of error rate. Note that it is normal

for the edge bins to depart from the linear trend (Wilke 2013),

and thus the linearity of the fit should be judged within the

central region of the relationship.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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