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Abstract

Can ongoing fMRI BOLD signals predict fluctuations in swiftness of a person’s response to sporadic cognitive demands? This
is an important issue because it clarifies whether intrinsic brain dynamics, for which spatio-temporal patterns are expressed
as temporally coherent networks (TCNs), have effects not only on sensory or motor processes, but also on cognitive
processes. Predictivity has been affirmed, although to a limited extent. Expecting a predictive effect on executive
performance for a wider range of TCNs constituting the cingulo-opercular, fronto-parietal, and default mode networks, we
conducted an fMRI study using a version of the color–word Stroop task that was specifically designed to put a higher load
on executive control, with the aim of making its fluctuations more detectable. We explored the relationships between the
fluctuations in ongoing pre-trial activity in TCNs and the task response time (RT). The results revealed the existence of TCNs
in which fluctuations in activity several seconds before the onset of the trial predicted RT fluctuations for the subsequent
trial. These TCNs were distributed in the cingulo-opercular and fronto-parietal networks, as well as in perceptual and motor
networks. Our results suggest that intrinsic brain dynamics in these networks constitute ‘‘cognitive readiness,’’ which plays
an active role especially in situations where information for anticipatory attention control is unavailable. Fluctuations in
these networks lead to fluctuations in executive control performance.
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Introduction

The concept of brain being an intrinsically driven system [1] has

recently gained attention and attracted research efforts. Intrinsic

neural activity, which manifests as fluctuations in the functional

magnetic resonance imaging (fMRI) blood-oxygen level dependent

(BOLD) signals, exposes the temporally coherent networks (TCNs)

or intrinsic connectivity networks that correspond to various

known functions [2–6]. These TCNs have been consistently

observed during rest and task performance, and their inter-

individual differences correlate with differences in various cogni-

tive and psychological functions [7–10]. Furthermore, as an

evidence of functional and behavioral relevance of intrinsic neural

activity at an individual level, fluctuations in BOLD signals have

been shown to correlate with intra-subject fluctuations in the

performance of perceptual and motor tasks [11]. Indeed, in some

task-relevant regions or TCNs, ongoing BOLD signals immedi-

ately before the onset of a trial can predict the outcome of

subsequent somatosensory [12], auditory [13], visual [14,15], and

motor [16,17] processes.

The impact of these intrinsic brain dynamics on the outcomes of

higher-order cognitive processes that require executive control

remains unknown. More specifically, it remains to be determined

whether ongoing BOLD signals in TCNs predict intra-subject

performance fluctuations in response to sporadic high-executive-

control demands. A general expectation is that high ongoing pre-

trial activity in an executive-control-related network would

function as a ‘‘readiness’’ activity for executive control and

facilitate successful performance. Previous studies [18–21] have

indicated the involvement of two interacting but functionally

separable network groups in executive control: the cingulo-

opercular network (CON) and the fronto-parietal network (FPN).

The CON has been implicated in the stable maintenance of task

set and goals. The FPN has been observed to respond more

rapidly to control demands and to initiate and adjust control on a

trial-to-trial basis. Therefore, ongoing activity of the TCNs in

these two groups is expected to have different effects on

subsequent executive control. In contrast, higher pre-trial activity

in TCNs that are deactivated during the task could lead to

deteriorated performance. The default mode network (DMN), the

activity of which increases when individuals are not focused on the

external world [22–24], is representative of these task-negative

networks.

The purpose of the current study was to explore the predictive

effects of pre-task activity in these executive-control-related TCNs
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on subsequent executive control performance. In contrast to

previous fMRI studies addressing similar predictive effects, our

study aimed to determine the functional significance of ongoing

activity on executive control with higher sensitivity by focusing on

the following aspects: (1) minimizing inter-trial dependency and (2)

raising the demand on executive control.

With regard to inter-trial dependency, several studies [25–27]

have shown that prestimulus activity in several regions of the

CON, FPN, or DMN can predict fluctuations in the performance

of simple tasks requiring executive control. However, these studies

used similar task settings in consecutive trials with short trial-to-

trial onset asynchrony, which would have made the onset of the

next trial predictable and the outcome of one trial influencing the

next. Therefore, it remains unclear whether BOLD fluctuations

that were predictive of executive control performance originate

from ongoing intrinsic brain dynamics, or are dominated by

anticipatory attention, performance monitoring, maladaptation,

and attention reorienting processes that occur in a combined

sequence of trials [25–27].

To reduce inter-trial dependency, a recent study [28] used a

color–word Stroop task of sparsely timed trials with variable and

unpredictable intervals (20240 s). The results showed that

ongoing activity in the dorsal anterior cingulate cortex (dACC)

and dorsolateral prefrontal cortex (dlPFC) along with ventral

visual areas could be predictive of subsequent response speeds for

the task. However, the predictive effect was observed only in some

subjects who showed a behavioral Stroop interference effect, using

a regions-of-interest (ROIs) analysis that was limited to several

regions specified to be task-relevant. A possible reason for this

limited effect was the simplicity of the task set, which suggests the

need for higher demand on executive control. Task set is a specific

cognitive state that a person enters in order to conduct a task at

hand, and executive control is assumed to play key roles in

implementing, configuring, and maintaining a task set [18,29]. In

the standard Stroop task used in the previous study [28], the

required task set was very simple: ‘‘ignore the word.’’ Therefore, it

is possible that the response speed for this task was not sensitive

enough to detect the contribution of ongoing activity in various

networks to the fluctuations in executive control. Another possible

issue related to inter-trial dependency is the inter-trial interaction

caused by congruent and incongruent conditions. Experiencing

congruent trials in a Stroop task affects the task set and the conflict

effect in subsequent incongruent trials [30,31]. Even in a sparse-

event-related design, the inclusion of congruent trials may add

another source of variance in executive control performance,

making it more difficult to detect the effects of ongoing activity.

Addressing these points, we conducted an fMRI study using a

version of the color–word Stroop task that was designed to put a

higher load on executive control in order to make its fluctuations

more detectable. Incongruent color–word stimuli were used for all

trials to avoid the possible inter-trial interactions due to inclusion

of the congruent condition. To enhance the independence

between trials, the task trials were sparsely timed, and they had

long, variable, and unpredictable intervals. TCNs were extracted

from BOLD data obtained during the performance of the task and

during rest. We investigated the relationships between the activity

of the TCNs around the onset of the task trial and the trial-by-trial

variation in the task response time (RT). Performing the Stroop

task requires selective attention, inhibition of prepotent responses,

maintenance of task set, cognitive flexibility, and processing speed.

RT has been widely used to evaluate these aspects of executive

control [25,28,30–33]. Specifically, we defined TCNs that predict

cognitive performance as those in which fluctuations in prestimu-

lus signals significantly explained RT variance of the subsequent

trials.

Our primary hypothesis was that high ongoing pre-trial activity

in an executive-control-related TCN would work as a ‘‘prepara-

tory’’ activity and facilitate successful performance (short RTs).

Particularly, TCNs constituting the CON were expected to show

high and persistent performance predictivity because of the

increased load on executive control imposed by the task and the

increased importance of task-set maintenance, as well as the

network’s major role in conflict resolution and response inhibition

[34]. The TCNs included in the FPN are involved in top-down

visuospatial attention [35] and bottom-up attention reorienting

[36]. Due to the task-driven nature of these processes in an uncued

setting, the performance predictive effects of these TCNs could be

transient. On the other hand, the performance predictivity of the

DMN TCNs was expected to be the inverse of the executive

control TCNs; their ongoing activity could reflect disengagement

from the external environment [22–24], and would lead to slower

responses. In addition, we also expected performance predictivity

in the perceptual and motor-related TCNs that should be

controlled by the executive TCNs while conducting the task.

Materials and Methods

Participants
This study was approved by the Ethics Committee of Tohoku

University Graduate School of Medicine, and has been conducted

according to the Declaration of Helsinki. Written informed

consent was obtained from all participants. Forty-eight healthy,

right-handed Japanese university students (20 females and 28

males; age: 19224 years, mean 6 SD: 20.361.4) participated in

this study. Handedness was evaluated using the Edinburgh

Handedness Inventory [37]. The subjects had normal or

corrected-to-normal vision, and reported no history of neurolog-

ical or psychiatric conditions.

Task and Procedure
In fMRI sessions, we used a modified version of the color–word

Stroop task. In our task, a stimulus for each trial consisted of a

color-naming Kanji (Chinese character) word at the center of the

screen, and four smaller color-naming Kanji words surrounding

the central one, all naming and colored by either blue (‘‘ ’’),

green (‘‘ ’’), red (‘‘ ’’), or yellow (‘‘ ’’), on a black background

(Figure 1A). All the words used were color–word incongruent.

Based on previous studies [38,39], we expected that this task,

consisting of a number of conflicting components and requiring

the subject to switch attention to different aspects of the stimuli

(first color and then word; see the explanation below), would place

an even higher demand on executive control compared with the

usual color–word Stroop task setting. Stimuli were projected onto

a translucent screen that was viewed by the subjects through a

mirror attached to the head coil. The center word subtended a

0.69u visual angle, and the surrounding words 0.53u, and the

diameter from the center of the screen to the center of the

surrounding words formed a 0.88u visual angle. Subjects were

required to find, from the four surrounding words, the one that

named the font color of the center word, and indicate its direction

(up, down, left, or right) by operating a MR-compatible joystick

device (RTC Joystick, Resonance Technology Inc.) with their right

hand. They were instructed to minimize errors and respond as

quickly as possible, and also to fix their eyes on the center of the

screen, rather than search the surrounding words in a sequential

manner. In each trial, the stimulus was presented for 4.5 s and

subjects were asked to respond during this period.

Ongoing Activity in TCNs Predicts Fluctuating Executive Control
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To ensure that the task trials were as independent as possible

from each other, and to exclude the exertion of anticipatory

attention control as much as possible, the presentation of trials was

made sporadic and unpredictable by long and random inter-

stimulus intervals (ISIs) in the range of 19.5249.5 s (mean: 26.8 s).

Figure 1C shows the distribution of ISIs, which was basically the

same as that used in a study addressing the effect of prestimulus

intrinsic activity on the outcome of visual perception [14]. These

settings resulted in trial-to-trial onset asynchrony varying from

24 s to 54 s (mean: 31.3 s), a much more sparse and unpredictable

condition compared with previous studies, which used mean trial-

to-trial onset asynchrony of approximately 6 s [25,26,40,41].

During the ISIs, subjects were instructed to keep their eyes on the

fixation cross at the center of the screen. Each stimulus

presentation was synchronized to one of the trigger signals from

the scanner, which informed the start of volume acquisition. The

stimulus presentation and response recording were controlled by

in-house software.

Each individual was subjected to four fMRI task sessions, each

lasting approximately 13 min and containing 25 trials. Before the

experiment, subjects performed 150 self-paced practice trials of

the same Stroop task on a computer outside the MRI scanner.

Between the fMRI task sessions, as a control task, subjects also

conducted four sessions of a simple response task on a computer

outside the scanner. In this task, subjects were required to answer

the direction of presented arrow stimuli (up, down, left, or right;

length 1.91u visual angle) using a joystick device (Figure 1B). ISI

settings, duration of sessions, and the number of trials were the

same as for the fMRI task. Due to technical reasons, log data of

the simple response task for two subjects was incomplete.

Therefore, they were excluded from the analyses related to the

simple response task. Between all the sessions, subjects had self-

paced breaks of 5 min or longer.

Analyses on Behavioral Data
To check whether Stroop task performance was essentially

independent between trials, we tested the auto-correlation of RTs

between successive trials. Linear auto-correlation of lag 1 was

calculated for each session of each subject, converted to a z-score

using Fisher’s r-to-z transformation, averaged over sessions, and its

significance over subjects was then tested using a two-tailed one

sample t-test. To confirm that the pre-trial ISIs did not

significantly affect RTs of the subsequent trials, we tested the

correlations between RTs and the preceding ISIs in the Stroop

task sessions. Pearson’s correlation coefficient was calculated for

each subject over sessions, subjected to Fisher’s r-to-z transforma-

tion, and its significance over subjects was tested using a two-tailed

one sample t-test.

Image Acquisition
MRI data were collected using a 3-T Philips Intera Achieva

scanner equipped with an 8-channel head coil. The fMRI BOLD

signal was measured with a first field echo-echo planar imaging

(FFE-EPI) sequence (64664 matrix, TR = 1500 ms, TE = 30 ms,

flip angle = 75u, FOV = 192 mm, slice thickness = 4.5 mm,

gap = 0.5 mm, 25 trans-axial slices per volume). For the task

sessions, 520 functional volumes were acquired in each run.

Resting-state BOLD activity before and after task sessions was also

recorded for each subject. For each of the two resting sessions, 240

functional volumes were acquired. Scanning parameters were the

same as those used in task sessions. During the resting-state

scanning, subjects were instructed to remain immobile with their

eyes closed, keep as motionless as possible, stay awake, and not

think about anything in particular. Head motion was restricted

using a pillow, a band, and foam cushions.

Preprocessing of Functional Images
All EPI images were (1) realigned to the first image in the time

series to correct for head movement; (2) slice-time corrected with

the first slice of each volume as a reference slice; (3) normalized to

the Montreal Neurological Institute (MNI) reference space using

an EPI template and resliced to a cubic voxel size of 3 mm3; and

(4) smoothed by a Gaussian kernel with 8 mm FWHM, using

SPM8 (Wellcome Department of Cognitive Neurology, London,

UK, http://www.fil.ion.ucl.ac.uk/spm/). In the preprocessing

phase of the independent component analysis (ICA) explained

below, the data were further intensity-normalized (i.e., converted

to percent-signal-change units by dividing the time series of each

voxel by its average intensity), to improve the accuracy and

reliability of ICA [42].

TCN Extraction
To extract TCNs from fMRI data, we used spatial ICA, which

has been shown to extract consistent and reproducible TCNs

[3,43–46]. Unlike seed-based approaches, ICA does not require

predefined ROIs. This is appropriate for the current study because

we were open to the possibility that even TCNs that are not

overtly involved in task execution could exert effects on the trial-

by-trial fluctuations in task performance.

Figure 1. Experimental paradigm. (A) The Stroop task for fMRI sessions. In each trial, subjects were required to indicate the position of a
surrounding word that names the font color of the central word. All the words used were color–word incongruent. (B) Control task outside the
scanner. Subjects were required to simply replicate the directions indicated by the arrows. (C) Distribution of inter-stimulus intervals (ISIs) across trials
for both tasks.
doi:10.1371/journal.pone.0099166.g001
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We extracted TCNs from brain activity that occurred during

the Stroop task sessions, as well as during the resting sessions.

Group ICA was performed on fMRI data from all 48 subjects,

including data from the six (four task and two resting) sessions for

each individual, using the GIFT toolbox (http://mialab.mrn.org/

software/gift/). ICA model order (number of components) was set

to 53, based on the mean number of independent components

estimated in each session for each subject by minimum description

length (MDL) criteria modified to account for spatial correlation

[47]. To reduce the computational load for ICA, a two-step data

reduction by principal component analysis (PCA) was applied to

the preprocessed fMRI data [44,48]: the first step reduced the data

of each subject and each session into T1 = 83 principal compo-

nents (PCs), which were then spatially concatenated, and the

second PCA reduced it to C = 53 PCs. Then, Infomax ICA [49]

was applied 100 times using Icasso and the centrotypes of the

independent component (IC) clusters were extracted as stable

estimates of aggregate ICs [50]. Icasso also gives a cluster quality

index for Iq each IC, which provides a measure of how stable the

ICA decomposition was for the specified setting [50]. The above

procedure was repeated with different values of the first step PCA

order in the range of 53–106, and T1 = 83 was chosen as the

setting that gives the most stable decomposition (i.e. the highest

average Iq value). Subject- and session-specific spatial maps and

time courses were back-reconstructed using the GICA algorithm

[48], with no additional scaling of the result. The time courses of

back-reconstructed single subject-level TCNs from the task

sessions were analyzed to identify performance predictive TCNs,

as explained in the section below. We did not use the recently

developed GICA3 algorithm [51], because it can be sensitive to

PCA reduction components and its use for higher model order (.

50) was not currently recommended by the developers of the

GIFT toolbox.

The resulting group-level ICs were classified into TCNs or

artifacts by inspecting their spatial maps and the power spectral

characteristics of the time courses [42]. For spatial maps, we based

our classification on (1) whether the peak voxels were located in

the gray matter and (2) how similar their patterns were to known

TCNs or to vascular, ventricular, motion, and susceptibility

artifacts [6,52–54]. For power spectra of ICs, we assessed two

metrics, dynamic range (DR) and low to high power ratio (LH), for

the IC time courses of the resting sessions. These metrics have

been used previously to classify components extracted from

resting-state fMRI data [42,55]; both of these values were

generally higher for TCNs than for artifacts. DR was defined as

the difference between the maximum and minimum of the spectral

power distribution for each time course. LH was defined as the

ratio of the integral of power in the region of the spectrum below

0.02 Hz to the total [55]. Each metric was averaged for the two

resting sessions, and for all subjects, to summarize the spectral

characteristics of each IC.

Functional Network Connectivity Among TCNs
To understand the functional roles of the TCNs through the

temporal relationships between their ongoing activities, we

additionally evaluated functional network connectivity (FNC)

[56] during the resting and task sessions. The back-reconstructed

time course of individual TCNs for each session and subject was

submitted to linear detrending and Fourier band-pass filtering

(0.0078–0.15 Hz), to reduce scanner-originated and physiological

noise. For the task sessions, we also calculated FNC using the

residual time courses from which the average trial-evoked response

in each TCN was subtracted (see the next section). Functional

connectivity between each pair of TCNs was derived by

calculating zero-lag Pearson’s correlation coefficients between

the preprocessed time courses for each session and subject. The

correlation coefficients were subjected to Fisher’s r-to-z transfor-

mation and averaged separately for the two resting sessions and

the four task sessions for each subject. The averages over subjects

were calculated for each pair of TCNs, and the significance tested

using a two-tailed one sample t-test.

Statistical Analysis of Predictive Ongoing Activity
The same detrending and band-pass filtering as for the analysis

of FNC were applied to the back-reconstructed time courses of

individual TCNs for each task session and subject. Furthermore,

average trial-evoked response in each TCN for each task session

and subject was estimated by applying a finite impulse response

(FIR) model to the processed time course. Twenty-five candlestick

predictors were assigned for each scanning time point starting

from the trial onset, and with an interval of TR = 1.5 s, modeling

the period 36 s from the onset. This average response was

regressed out from the processed TC, removing the expected after-

effect of the previous trial (which was already small due to the long

ISIs), and leaving a residual signal reflecting the trial-to-trial

fluctuations in the activity of that TCN. The signal values at the

15 time points from 26 s to +15 s around the trial onsets were

used as an explanatory variable in an analysis of covariance

(ANCOVA) model explaining the variance of RT in the

corresponding trials. This model also included other trial-

associated variables as covariates: (i) session (124), (ii) trial (12

25), (iii) center word, (iv) word corresponding to the correct answer

(font color of the center word), (v) font color corresponding to the

correct answer, and (vi) position of the correct answer. The trial

was treated as a continuous variable, whereas other factors were

treated as categorical variables with three degrees of freedom. In

summary, we estimated a general linear model with the residual

signal variable and the covariates xs RT~b0zbi,tTCi,tz

btrialxtrialz
P

other covariates cov

P

3

bcovxcov for each TCN (i) and each

time point (t ), for each subject. Error trials and time-out trials were

excluded from the analysis.

The estimated values of the model coefficient bi,t were subjected

to a random-effect statistical analysis, to explore TCNs for which

ongoing pre-trial activity would predict RT fluctuations in the

subsequent trials, as well as TCNs for which the trial-evoked

response would be modulated in relation to RT fluctuations, at a

population level. We performed a two-tailed one sample t-test on

the group average of bi,t, for each TCN i and each time point t.

Due to the exploratory nature of this study, the test results were

considered significant at p,0.05 with control of the false discovery

rate (FDR) for all the TCNs and time points.

The statistical tests were conducted using R statistical software

[57].

Results

Behavioral Data
Subjects performed both the Stroop task inside the scanner and

the simple response task outside the scanner with high accuracy

(mean accuracy was 0.976 and standard deviation (SD) was

0.026 for the Stroop task; mean accuracy was 0.983 and SD was

0.027 for the simple response task). There was no significant

difference between the accuracy of the two tasks. For the Stroop

task, mean RT was 1.91 s and SD was 0.47 s. For the simple

response task, mean RT was 0.74 s and SD was 0.29 s. Both mean

RT and SD were significantly higher in the Stroop task than in the

simple response task (RT mean: tpaired(45) = 28.96, p,2.2610216;

Ongoing Activity in TCNs Predicts Fluctuating Executive Control
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RT SD: tpaired(45) = 8.90, p,1.8610211). Since the distribution of

RT data was skewed (Figure 2), we also tried analyses using log-

transformed RT data, but found similar results. Therefore, we

demonstrated the results using raw RT data.

There was no significant auto-correlation between RTs of

successive Stroop trials (t(47) = 20.33, p.0.74). Moreover, there

was no significant correlation between RTs and pre-trial ISIs

(t(47) = 20.67, p.0.50).

Extracted TCNs
Of the 53 independent components (ICs) obtained by group

ICA, 18 ICs were identified as artifact components and the

remaining 35 ICs were selected as TCNs (Table 1). Each IC had a

cluster quality index greater than 0.8, indicating a highly stable

ICA decomposition. Anatomical labels were given to the TCNs

based on their spatial maps (Table 1). To facilitate the

interpretation of results, the TCNs were classified into seven

network groups: the CON, FPN, DMN, visual, auditory,

sensorimotor, and subcortical networks, based on the overlap of

their spatial maps with previously reported networks [18,19,42,58–

60] and their activation/deactivation to the task (Figure S1).

The FNC between all pairs of TCNs was evaluated by the

correlations between the TCN time courses (Figure 3 and Figure

S2). The connectivity pattern was largely consistent with the above

classifications, with tighter connectivity between the TCNs within

the same network group than between the different groups. On

average, an anti-correlation tendency between the FPN and the

DMN, as well as a positive correlation tendency between the CON

and both the FPN and the DMN was observed in both the resting

and task sessions. The results of one-sample t-tests (indicated by

asterisks in Figure 3 and Figure S2) show that the patterns of

connectivity between the TCNs were highly consistent over

subjects.

Predictive Ongoing Activity in TCNs
Analysis of the relationships between the activity of TCNs and

RT fluctuations identified nine ‘‘RT-predictive TCNs’’, for which

the activity fluctuations before the trial onset (t # 0.0 s)

contributed significantly to explaining the RT fluctuations of the

subsequent trials (Figure 4 and S1; Table 2). Three of these RT-

predictive TCNs (IC53, 38, and 41) were classified into the CON,

one (IC50) was in the FPN, two (IC23 and 24) were in the visual

network, and three (IC13, 05, and 04) were in the sensorimotor

network.

The dACC TCN (IC53) centered on the dorsal part of the ACC

and also extended to the posterior cingulate cortex (PCC;

Figure 4A). It was activated by the task, and higher ongoing

activity around t = 23.0 and 0.0 s predicted a quicker response,

with the relationship strengthened further at t = +1.5 to +4.5 s. At

approximately the peak of the activation (t = +6.0 s) the relation-

ship was inverted, and a longer RT corresponded to larger post-

peak activation.

The anterior insula (AI) TCN (IC38) centered around the

insular cortex, with higher weight on the anterior part of the right

insula (Figure 4B). The network was activated by the task, with

higher ongoing activity as far back as 6.0 s before the trial onset

persistently predicting a quicker response. The relationship

between its activity and RT was inverted 4.5 s after the trial

onset, but before peak activation, which occurred around 6.0 s

from the onset. Thus, trials with longer RTs entailed higher or

delayed task-evoked activation of this network.

The frontal operculum (FO) TCN (IC41) extended over the

bilateral FO and inferior frontal gyrus (IFG) with higher weight on

the left side, and a location exterior and anterior to the AI TCN

(IC38) (Figure 4C). Although this network was slightly deactivated

by the task, its higher ongoing activity from t = 26.0 to 0.0 s also

predicted a quicker response, similar to the AI TCN. Its activity

during the response period was positively correlated with RT, like

that of the AI TCN.

The right middle frontal gyrus (r. MFG) TCN (IC50) extended

mainly along the middle frontal gyrus (MFG), IFG, and the

precentral gyrus, with larger involvement of the right hemisphere

(Figure 4D). It showed clear activation by the task, and its response

was positively modulated by RT, indicating that trials with a

longer RT elicited a larger response in this network, whereas

higher ongoing activity around t = 26.0 and 24.5 s predicted a

quicker response.

The left and right fusiform gyrus (FG) TCNs (IC23 and 24)

centered around the left and right FG, respectively (Figure 4E and

Figure 2. Distribution of response time (RT) for the Stroop task (A) and simple response task (B). Data of all subjects were concatenated.
doi:10.1371/journal.pone.0099166.g002
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Table 1. All the independent components (ICs) extracted by the group ICA.

IC Iq
MNI peak Spectral metrics Label Group

x y z DR LH

IC53 0.900 0 20 30 0.055 0.504 dACC CON

IC38 0.933 42 18 26 0.017 0.408 AI CON

IC41 0.921 254 16 24 0.015 0.379 FO CON

IC12 0.974 32 56 28 0.013 0.317 MFG/dlPFC FPN

IC36 0.965 254 14 36 0.013 0.330 l. MFG FPN

IC50 0.866 56 20 34 0.013 0.342 r. MFG FPN

IC39 0.955 224 16 64 0.045 0.497 l. SFG/FEF FPN

IC46 0.948 38 20 58 0.028 0.419 r. SFG/FEF FPN

IC47 0.960 30 22 70 0.036 0.363 SMA FPN

IC28 0.955 230 264 64 0.014 0.334 SPL FPN

IC09 0.968 0 270 58 0.016 0.326 precuneus FPN

IC30 0.965 242 18 16 0.023 0.373 l. IFG Op FPN

IC52 0.889 44 0 18 0.037 0.439 r. Rolandic Op FPN

IC44 0.953 256 236 52 0.025 0.403 l. IPL FPN

IC29 0.970 66 228 30 0.048 0.480 r. SMG FPN

IC02 0.979 0 50 24 0.032 0.495 mPFC DMN

IC49 0.899 0 246 4 0.013 0.356 PCC DMN

IC43 0.931 212 260 2 0.009 0.245 PCC+lingual DMN

IC35 0.960 262 222 0 0.081 0.557 MTG DMN

IC45 0.952 254 266 28 0.043 0.411 l. AG DMN

IC31 0.971 62 254 10 0.083 0.543 r. MTG DMN

IC51 0.943 2 284 40 0.015 0.395 cuneus VIS

IC33 0.975 30 270 44 0.018 0.212 SOG VIS

IC08 0.973 4 294 0 0.015 0.359 calcarine VIS

IC03 0.976 26 294 214 0.006 0.252 lingual VIS

IC07 0.974 234 264 226 0.014 0.300 cerebellum VIS

IC23 0.974 246 270 28 0.108 0.609 l. FG VIS

IC24 0.975 48 264 28 0.094 0.528 r. FG VIS

IC21 0.967 258 222 16 0.084 0.560 l. SMG+STG AUD

IC37 0.949 62 216 8 0.021 0.398 r. STG AUD

IC40 0.930 54 24 52 0.007 0.269 l. SM MOT

IC05 0.971 236 224 70 0.009 0.275 r. SM MOT

IC04 0.971 48 232 64 0.018 0.357 SM MOT

IC13 0.966 62 22 30 0.017 0.423 precentral MOT

IC22 0.976 24 2 214 0.013 0.332 BG+Amyg SC

IC01 0.979 2 2 4 0.008 0.341 Artifact

IC06 0.978 30 12 230 0.016 0.325 Artifact

IC10 0.974 14 38 58 0.019 0.301 Artifact

IC11 0.976 0 242 234 0.019 0.423 Artifact

IC14 0.963 226 236 76 0.006 0.148 Artifact

IC15 0.968 46 8 26 0.054 0.434 Artifact

IC16 0.980 26 240 18 0.069 0.505 Artifact

IC17 0.964 242 14 22 0.013 0.289 Artifact

IC18 0.975 226 244 14 0.013 0.232 Artifact

IC19 0.972 238 12 216 0.009 0.280 Artifact

IC20 0.974 4 240 22 0.009 0.233 Artifact

IC25 0.974 224 240 28 0.024 0.344 Artifact

IC26 0.970 2 246 70 0.030 0.392 Artifact
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F). The former was activated by the task, and its relatively higher

ongoing activity at t = 23.0 s predicted a slower response. Its

activity around the mean peak of activation was also positively

correlated with RT. In contrast, the latter did not show a clear

response to the task. Its relatively higher ongoing activity at t = 2

4.5 s predicted a slower response.

The sensorimotor (SM) TCN (IC13) covered the lateral and

inferior parts of the sensorimotor areas bilaterally (Figure 4G). It

was deactivated by the task, and relatively higher ongoing activity

around t = 21.5 and 0.0 s predicted a slower response, with the

relationship strengthened further at t = +1.5 and +3.0 s. At around

t = +6.0 s the relationship was inverted, and a shorter RT was

accompanied by faster recovery towards baseline activity.

The left and right SM TCNs (IC05 and 04) covered the left and

right primary sensorimotor area, respectively (Figure 4H and I).

They were activated by the task, and their relatively higher

ongoing activity at t = 0.0 s predicted a slower response (longer

RT). Their activity after the mean peak of activation was also

positively correlated with RT, so that trials with longer RT

coincided with higher or delayed task-evoked activation in these

TCNs.

Considering the delay between the evoked hemodynamic

signals and the actual electrophysiological neural activity, it has

been suggested that ongoing activity states before the onset of trials

may be reflected in the BOLD signals after the trial onset but well

before the peak of the evoked hemodynamic response [16,25].

Therefore, we also searched for TCNs for which the activity at 0.0

, t # +3.0 s from the trial onset significantly explained RT

variability. We identified ten such TCNs: two in the FPN [MFG/

dlPFC (IC12) and precuneus (IC09) TCNs]; three in the DMN

[medial prefrontal cortex (IC02), PCC+lingual gyrus (IC43), and

middle temporal gyrus (IC35) TCNs]; three in the visual network

[cuneus (IC51), calcaline (IC08), and lingual gyrus (IC03) TCNs];

one in the auditory network [left superior temporal and

supramarginal gyri TCN (IC21)]; and one in the subcortical

network [basal ganglia and amygdala TCN (IC22)] (Figure 5 and

Figure S1). Task-evoked responses of the TCNs in the DMN were

negative, while the other TCNs were ‘‘task-positive’’, showing

activation in response to the task. As a common feature, higher

activity occurring at the early post-trial onset phase in the task-

positive TCNs was accompanied by shorter RTs, while higher

activity occurring after the activation peak was associated with

longer RTs. This relationship was inverted for the TCNs in the

DMN; their sustained activity in the early phase led to longer RTs,

whereas quicker recovery of activity levels after deactivation

tended to appear in trials with a shorter RT.

Discussion

Our results revealed TCNs for which fluctuations in activity

several seconds before the onset of trials predicted fluctuations in

RT for the subsequent trials. These TCNs were prominent in the

CON, and also distributed in the FPN, visual network, and

sensorimotor network. Besides these, there were also TCNs in the

FPN, DMN, and perceptual networks whose early post-trial onset

signals explained RT fluctuations.

Implications of Behavioral Results
In the behavioral results, the significantly larger mean and SD

of RT in the Stroop task compared with the control task suggests

that a greater part of RT variance was due to the fluctuations in

cognitive aspects required by the task, especially executive control.

Furthermore, the mean and SD of the RT was much larger than

the values reported in previous studies that have addressed the

effects of pre-trial activity on trial-by-trial performance variability

[25,26,28,40,41]. This suggests that the task used in this study

placed a higher load on executive control, and this in combination

with differences in the task settings (sporadic and unpredictable vs.

successive and predictable), made the fluctuations in executive

control function more easily detectable.

Executive control tasks in a consecutive-trial setting have shown

that the performance of one trial influences the subsequent trial,

indicating the involvement of performance monitoring, maladap-

tation, and attention reorientation systems [25,61]. In contrast,

RT data in our study were virtually independent between

successive trials. Moreover, if anticipatory attention control had

affected executive control performance, we would have observed

longer RTs in the trials with a longer pre-trial ISI because these

were rarer and thus not easily anticipated. However, we did not

observe a significant effect of pre-trial ISIs on RTs. These results

support our expectation that the top-down adaptive systems did

not play a major role in causing trial-by-trial RT fluctuations in

our task setting.

Table 1. Cont.

IC Iq
MNI peak Spectral metrics Label Group

x y z DR LH

IC27 0.960 232 276 52 0.010 0.218 Artifact

IC32 0.975 2 6 16 0.028 0.315 Artifact

IC34 0.958 42 266 54 0.023 0.340 Artifact

IC42 0.959 32 288 28 0.016 0.205 Artifact

IC48 0.888 60 20 22 0.007 0.228 Artifact

Iq: cluster quality index; MNI peak: Montreal Neurological Institute (MNI) coordinates of the highest peak position; DR: dynamic range; LH: low to high power ratio.
ICs were classified into TCNs or artifacts, and TCNs were labeled with anatomical names based on their spatial maps. AG: angular gyrus; AI: anterior insula; Amyg:
amygdala; dACC: dorsal anterior cingulate cortex; dlPFC: dorsolateral prefrontal cortex; FEF: frontal eye field; FO: frontal operculum; IFG: inferior frontal gyrus; IPL: inferior
parietal lobule; MFG: middle frontal gyrus; mPFC: medial prefrontal cortex; MTG: middle temporal gyrus; PCC: posterior cingulate cortex; SFG: superior frontal gyrus;
SMA: supplementary motor area; SMG: supramarginal gyrus; SOG: superior occipital gyrus; SPL: superior parietal lobule; Op: operculum;
TCNs were divided into the following groups based on their spatial organization and their activation/deactivation to the task: cingulo-opercular network (CON), fronto-
parietal network (FPN), default mode network (DMN), visual (VIS), auditory (AUD), sensorimotor (MOT), and subcortical (SC) networks.
doi:10.1371/journal.pone.0099166.t001
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RT-predictive TCNs
Cingulo-opercular network. The RT-predictivity of the

dACC TCN (Figure 4A) is consistent with previous studies

[25,28], which have also reported that relatively higher ACC

activity around the trial onset predicts a shorter RT for visual

attention and Stroop tasks. The present results, in which ongoing

ACC activity several seconds before the onsets predicts the

outcome of sparse and unpredictably presented Stroop task trials,

may add further insight to discussions about the functional role of

the ACC. The ACC is one of the most prominent regions

activated during the color–word Stroop task as well as during

similar executive control tasks [39,62,63]. There have been two

predominant views concerning a major role for the ACC in

performing these tasks: the maintenance of goal-oriented control

and gating of irrelevant information, and the stimulus-driven

detection and monitoring of conflicts and errors [33,63,64]. The

current results support the former view, in contrast to some

previous studies [25,63], which have supported the latter.

The RT predictivity of the AI and FO TCNs (Figure 4B and C)

is partially consistent with some previous results [25], but differs

from others [28], and provides new information. Weissman et al.

(2006) reported that higher activity in the right IFG around the

trial onset (up to 21.25 to 0 s before the onset) predicts a shorter

RT for a visual attention task [25]. With reference to this, we

Figure 3. Functional network connectivity (FNC) between all temporally coherent networks (TCNs) for the ongoing activity time
courses in the task sessions. The residual time course in each TCN of each subject was obtained by regressing out the average response from the
back-reconstructed and preprocessed time course, leaving trial-to-trial fluctuation of the ongoing activity in the TCN. For each pair of TCNs, the
correlation coefficient was calculated for each subject over sessions, subjected to Fisher’s r-to-z transformation, and averaged over subjects. The
asterisks indicate significant connectivity over subjects (two-tailed one sample t-test, p,0.001 with control of the false discovery rate [FDR] for all TCN
pairs). The solid lines indicate the division of TCNs into network groups. The FNC matrices (see also Figure S2) also support the division of the FPN
into dorsal and ventral parts [64,29], as indicated by the dashed lines. See the note below Table 1 for the abbreviations.
doi:10.1371/journal.pone.0099166.g003

Ongoing Activity in TCNs Predicts Fluctuating Executive Control

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e99166



Ongoing Activity in TCNs Predicts Fluctuating Executive Control

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e99166



would like to stress two contrasting aspects to our results. Firstly,

although higher pre-trial activity in both the AI and FO TCNs

predicted a shorter RT for the Stroop task, the AI TCN was

activated, whereas the FO TCN was not activated in response to

the task. Secondly, the RT-predicting effects of ongoing activity

were persistent and traced back further than previously reported,

to 26.0 s before the trial onset. These two points strongly

implicate the sustained, rather than task-driven nature of ongoing

activity in these TCNs. In contrast, the study by Coste et al.

(2011), which used a very similar sparse-event-related design but

with the standard Stroop task, did not show RT predictivity in the

regions corresponding to the AI and FO TCNs. The most likely

explanation for the discrepancy would be the higher load on

executive control, and thus the increased importance of task-set

maintenance, for our task compared with the standard Stroop

task, as we have hypothesized.

Consequently, the sustained RT predictivity of all constituent

TCNs of the CON (Figure S1A) suggests that its role in stable task

set maintenance [18,19] is the key for the predictive effect of

ongoing activity in this network on subsequent executive control

performance. On the other hand, some studies that have focused

on the relationships between the CON (or the salience network)

and other networks, have argued against stable set maintenance as

the network’s major function, rather emphasizing the role of the

network (especially the right AI) in identifying salient stimuli and

initiating transient control signals that lead to switching between

the default mode and executive brain states [65–67]. Others have

argued that the ACC plays a critical role in state maintenance,

while the insula performs a major role in switching between states

[68]. One way to reconcile such apparent inconsistencies may be

by interpreting the role of the CON as implementing heightened

arousal and awareness of the present [69], which can be either

sustaining or transient depending on the dynamic reorganization

of the CON’s interactions with other networks [21]. The

exploration of such possibilities is beyond the scope of the present

study, and will be the subject of future investigations.

Fronto-parietal network. The RT predictivity of the right

MFG TCN (IC50; Figure 4D), along with the partial RT

predictivity of the dorsolateral prefrontal (dlPFC) TCN (IC12;

Figure 5 and Figure S1B) are generally compatible with previous

studies [25,28]. Weissman et al. (2006) reported that higher

activity in the right MFG 1.2522.5 s after the onset of trials

predicted a shorter RT for the visual attention task [25]. Coste

et al. (2011) reported that higher ongoing activity in the left dlPFC

21.5 s before the onset predicted a shorter RT on the Stroop task

in a subject group that showed a stronger behavioral Stroop

interference effect. On the other hand, the earlier time period for

RT predictivity in the right MFG TCN (6.0 to 4.5 s before the

onset) suggests that additional consideration is required to

adequately interpret the specific role of this TCN. We hypothe-

sized that due to the task-driven nature of the processes expected

in the FPN [18–20] under the uncued task setting, the

performance predictive effects in the FPN TCNs would be more

transient.

The importance of attention switching in our task design needs

to be taken into consideration. For a successful performance, our

task required a quick shift of attention between different attributes

of the stimuli: first the color of the center word (not prepotent and

requires top-down attention), and then the semantic meaning of

surrounding words (prepotent and salient). This would have

increased the importance of rapid switching between top-down

and bottom-up attention. The right MFG has been proposed as a

hub node connecting dorsal and ventral fronto-parietal attention

networks and is implicated in sustained attention, vigilance, and

task set [4,36]. The FNC pattern between the right MFG TCN

and other FPN TCNs was also consistent with this (Figure 3 and

Figure S2). We could speculate that RT-predictive ongoing

activity in the right MFG TCN reflects mediation of the dorsal

and ventral attention networks, leading to a state of preparedness

for flexible attention switching. However, it is difficult to

understand why RT predictivity in this TCN was not sustained

until the trial onset.

Default mode network. We hypothesized that higher

ongoing pre-trial activity in the DMN [22–24] reflects dissociation

from the external task, and would lead to deteriorated perfor-

mance (longer RTs). The results showed some TCNs in the DMN

for which early post-trial onset signals showed significant

predictivity on RT fluctuations in the expected direction (i.e.

higher early activity led to a slower response), but their ongoing

activity before the trial onset did not (Figure S1C). In previous

studies, higher ongoing pre-trial activity in the DMN predicted

errors [26,27] but the effect on response time was not so significant

[25,28]. These observations suggest a possibility that the occur-

rence of errors is more sensitive to dissociation from external tasks

than the RT. Another likely interpretation is that the dissociation

from the task during the ISI was indeed ‘‘default’’ in this sparse

and unpredictable task setting, and swift inhibition of these TCNs

after the onset of the task was more important for achieving

successful trials.

Visual network. The RT predictivity of the left fusiform (l.

FG) TCN (Figure 4E) is consistent with the results of a previous

study [28], which found that higher pre-trial activity in the visual

word form area [70], a subregion of the left fusiform cortex

contributing to the processing of visual word forms, led to slower

response to the Stroop task. The result was interpreted in terms of

the attentional bias toward the prepotent but inappropriate

attribute (i.e. visual word form) over another appropriate attribute

(i.e. color). Our results for the RT-predictive left and right FG

TCNs (Figure 4E and F) can be interpreted in a similar manner.

Temporarily heightened ongoing activity in these TCNs on the

ventral visual pathway, possibly related to fluctuating top-down

control, generated a bias toward processing of visual attributes

such as word form or shape and interfered with the processing of

color, which was also required at the first stage of our Stroop task.

Figure 4. Description of the RT-predictive temporally coherent networks (TCNs). Spatial maps, BOLD activity around the trial onsets, and
the relationship between their activity and the response time (RT) for the nine RT-predictive TCNs. (A) dorsal anterior cingulate cortex TCN (IC53); (B)
anterior insula TCN (IC38); (C) frontal operculum TCN (IC41); (D) right middle frontal gyrus TCN (IC50); (E) left fusiform gyrus TCN (IC23); (F) right
fusiform gyrus TCN (IC24); (G) sensorimotor TCN (IC13); (H) left sensorimotor TCN (IC05); (I) right sensorimotor TCN (IC04). For each TCN, a spatial map
(converted to z-score and thresholded with z .3.0) shows its average distribution over all subjects and sessions, sectioned at the highest peak
position [with its Montreal Neurological Institute (MNI) coordinates given], and superimposed on the MNI 152 standard space T1 template image.
Dots in the BOLD activity represent pre-trial activity (time # 0.0 s) and task response (time . 0.0 s) averaged over the trials in four task sessions for
each subject, with the black line showing the grand average over all subjects. The time course for the relationship between activity and RT is shown
as the group-averaged time course of estimated coefficients of an analysis of covariance (ANCOVA) model explaining the variance of RT. Error bars in
the graphs show standard error of the mean (SEM) over subjects.
doi:10.1371/journal.pone.0099166.g004
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On the other hand, in the visual as well as other networks, we

also observed several task-positive TCNs for which higher activity

at the early post-trial onset phase predicted shorter RTs (Figure 5;

Figure S1D, E, and G). These TCNs also showed the ‘‘compen-

satory’’ response, i.e., the inverted relationship with RT in the

later phase [25]. The higher early post-onset signal in these TCNs

may have reflected either ongoing ‘‘preparatory’’ activity facilitat-

ing task-relevant functions such as visuospatial, language, and

salience processing, or swifter recruitment of such functions in

response to the task.

Figure 5. Description of temporally coherent networks (TCNs) that were partially RT-predictive. Ten TCNs for which the activity at 0.0, t
# 3.0 s from the trial onset significantly explained response time (RT) variability. The format for composite visualization of each TCN is the same as in
Figure 4.
doi:10.1371/journal.pone.0099166.g005
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Sensorimotor network. The RT predictivity of the senso-

rimotor TCNs (Figure 4G, H and I; Figure S1F) is another unique

result in this study. These TCNs were motor-related. More

specifically, the two superior TCNs [left and right SM TCNs

(IC05 and 04)] overlapped the representation areas of fingers on

the sensorimotor somatotopic organization, and the bilateral and

inferior SM TCN (IC13) overlapped the lip representation areas

[71]. We refer to them as the right and left finger TCNs and the lip

TCN, respectively. Note that the task required a response using

the right hand, and the contralateral left finger TCN (Figure 4H)

showed clearer activation than the ipsilateral right finger TCN

(Figure 4I), whereas the task-irrelevant lip TCN showed deacti-

vation (Figure 4G). Second, higher activity in these TCNs,

specifically around the trial onsets, predicted longer RTs. Bilateral

performance predictivity is consistent with previous studies

[16,17]. However, to the authors’ knowledge, the predictive

effects of prestimulus activity in the sensorimotor TCNs on

executive control performance have not yet been reported. For a

task with high demands for conflict-resolution, higher ongoing

activity in the finger TCNs could require additional control in

order to suppress the urge for an immediate motor response,

thereby leading to a slower response. Higher pre-trial activity of

the lip TCN may have reflected distraction from the task, leading

to a slower response.

Limitations
The behavioral and imaging results have supported the use of

the modified version of the Stroop task to achieve higher average

cognitive load and larger variations in task performance, resulting

in increased sensitivity for detecting RT-predictive ongoing

activity in a wider range of TCNs. However, it also led to the

involvement of additional aspects of executive control that are not

included in the standard Stroop task: rapid switching of attention

and visuospatial attention. As discussed above, the results of

several RT-predictive TCNs could be interpreted in terms of

attention switching and other executive control aspects such as

task set maintenance, because their neural bases have not yet been

clearly established. Additional studies will be needed to dissociate

the contribution of ongoing activity in the RT-predictive TCNs to

the fluctuations in those different aspects of executive control.

Regarding visuospatial attention, we used visual stimuli with a

small visual angle. In addition, the participants were asked to fixate

on the center of the screen and not to search the surrounding

words in a sequential manner. However, we could not objectively

ensure their compliance with such directives (e.g. by using eye-

tracking). Therefore, it is possible that a certain amount of the RT

was devoted to the visual search process. On the other hand, we

did not find RT predictivity in any of the TCNs that contain

regions well-known for their involvement in visuospatial attention,

such as the intraparietal sulcus and the frontal eye field [35,72]

(Figure S1B). This suggests that the fluctuations in visuospatial

attention may not have had much impact on the observed RT

fluctuations.

In this study, we used only incongruent color–word stimuli to

avoid the possibility of an inter-trial interaction caused by the

congruent condition [30,31]. However, if a large enough number

of trials were performed, these kinds of inter-trial interactions

could be eliminated by discarding the first few trials that follow a

congruent trial. Under those conditions, it would also be possible

to address the effects of pre-trial activity in the TCNs on the

Stroop congruency effect, by focusing on the incongruent trials just

after a congruent trial.

Due to practical constraints, we administered the simple control

task outside the scanner. However, fMRI data obtained during the

control task may have been useful to help clarifying whether the

observed RT-predictive effects in the sensorimotor TCN were due

to fluctuations in local activity, or were caused by fluctuations in

top-down control.

Due to the exploratory nature of this study and the small effect

size that was anticipated in order to be comparable with previous

results [25,26,28], we preferred to control the false discovery rate

(FDR) for all the selected TCNs and time points. This strategy

provides higher sensitivity but lower reproducibility in comparison

to family-wise error rate (FWER) correction methods, such as the

Bonferroni correction. Still, our criteria for significance were at

least as stringent as those used in previous studies, and thus we

believe that this strategy ensured that our results were comparable,

or perhaps even more robust.

With the experimental design and behavioral results, the

observed RT-predictive ongoing activity strongly suggests that

intrinsic brain dynamics in a wide range of TCNs can be a

primary source of performance fluctuation in situations where the

demand for executive control occurs unpredictably. Nevertheless,

we cannot totally exclude possible influences that task-driven

processes may have had on performance-predictive ongoing

activity. It has been observed that intrinsic and task-related neural

activity are not always superimposed in an additive way, but

sometimes interact with each other to generate the observed

signals [14,15,73]. Furthermore, many studies conducted over a

long time scale have shown that the spatial and temporal

characteristics of intrinsic brain activity are modulated by the

current context or preceding experiences [2,74–79]. Taken

together, our results should be interpreted from a wider

perspective regarding mechanisms for processing information in

neural systems, and seen as further evidence that active

information processing is shaped by the intrinsic activity interact-

ing with task demands, a concept shared by theoretical frame-

works such as the Bayesian inference engine [80] and the free

energy principle [11].

Conclusions

In summary, this study explored the possibility that ongoing,

intrinsic brain dynamics, revealed as fluctuating activity in

distributed executive-control-related TCNs, can predict trial-to-

trial fluctuations in executive control performance. We conducted

an fMRI study using a version of the color–word Stroop task with

higher cognitive load, with the aim of achieving increased

sensitivity to fluctuations in executive control, and explored the

relationships between fluctuations in ongoing pre-trial activity of

TCNs and the task response time (RT). The results revealed

distributed TCNs, especially prominent in the cingulo-opercular

network, for which fluctuations in activity several seconds before

the onset of the trials predicted RT fluctuations of the subsequent

trials. This suggests that fluctuations in intrinsic activity lead to

fluctuations in executive control performance. Intrinsic activity in

the reported TCNs, reflecting their interactions with task

demands, shapes ‘‘cognitive readiness’’, which plays an active role

even in situations where information for anticipatory attention

control is unavailable. Apart from acquiring a theoretical

understanding of the effects of intrinsic neural dynamics on

executive control functions, the results of these and future studies

may also have a great impact from a practical point of view. Since

the demand for executive control can be quite sporadic and

unpredictable, yet acute in daily life situations (e.g., driving a car),

decoding such a state of cognitive readiness could help to develop

technologies for improving safety or enhancing the efficiency of

various forms of human intellectual activity.
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Supporting Information

Figure S1 Description of all temporally coherent net-
works (TCNs), divided into seven network groups. Spatial

maps, BOLD activity around the trial onsets, and the relationship

between their activity and response time (RT) for the TCNs in the

(A) cingulo-opercular network (CON); (B) fronto-parietal network

(FPN); (C) default mode network (DMN); (D) visual network; (E)

auditory network; (F) sensorimotor network; (G) subcortical

network. The format for composite visualization of each TCN is

the same as in Figure 4. TCNs in solid boxes are those for which

pre-trial activity (26.0 s # t # 0.0 s relative to the task onset)

predicted the RTs; dashed boxes indicate TCNs of which the

activity at 0.0 , t # +3.0 s from the trial onsets significantly

explained RT variability. Cyan boxes indicate negative RT

predictivity (higher early activity predicted faster response); orange

boxes indicate positive RT predictivity (higher early activity

predicted slower response).

(PPTX)

Figure S2 Functional network connectivity (FNC) be-
tween all temporally coherent networks (TCNs) for
resting session time courses (A) and for task session
time courses without regressing out the average task-
evoked responses (B). The procedure for calculating and

visualizing the FNC is the same as in Figure 3.

(PPTX)
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