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Abstract

High throughput biology enables the measurements of relative concentrations of thousands

of biomolecules from e.g. tissue samples. The process leaves the investigator with the prob-

lem of how to best interpret the potentially large number of differences between samples.

Many activities in a cell depend on ordered reactions involving multiple biomolecules, often

referred to as pathways. It hence makes sense to study differences between samples in

terms of altered pathway activity, using so-called pathway analysis. Traditional pathway

analysis gives significance to differences in the pathway components’ concentrations

between sample groups, however, less frequently used methods for estimating individual

samples’ pathway activities have been suggested. Here we demonstrate that such a method

can be used for pathway-based survival analysis. Specifically, we investigate the pathway

activities’ association with patients’ survival time based on the transcription profiles of the

METABRIC dataset. Our implementation shows that pathway activities are better prognostic

markers for survival time in METABRIC than the individual transcripts. We also demonstrate

that we can regress out the effect of individual pathways on other pathways, which allows us

to estimate the other pathways’ residual pathway activity on survival. Furthermore, we illus-

trate how one can visualize the often interdependent measures over hierarchical pathway

databases using sunburst plots.

Author summary

Most of the important cellular functions are carried out by not just individual biomole-

cules but are rather dependent on the concerted reactions involving large sets of biomole-

cules, which are referred to as pathways. Yet, measurement techniques naturally have to

measure the abundances of each such molecule individually. To assess the difference in

functional activity between samples one often uses statistical techniques to integrate abun-

dances into pathway activity. Here we implemented a method for investigating which

such pathway activities that are prognostic for patients’ survival when analyzing breast

cancers. We showed that the pathway activities are more prognostic of a patient’s survival

time than prognoses made directly from the measured concentrations of individual mole-

cules. We also show which such pathway activities that are not just active due to the
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overall increased proliferation in malign cancers. We also illustrate how pathway activities

can be efficiently and interactively visualized using so-called sunburst plots.

This is a PLOS Computational Biology Methods paper.

Introduction

In molecular biology, high throughput experiments enable the measurement of thousands or

even millions of analytes in any sample of biological origin. Such wealth of data makes it possi-

ble to describe samples very accurately, with a precision that opens the door to new under-

standings of the mechanisms governing biological and medical processes.

Although this abundance of data indicates a possibility for acquiring knowledge, the sheer

number of dimensions in such measurements also presents us with many challenges: when

analyzing high-dimensional vectors with statistical methods one easily faces the curse of

dimensionality, i.e. that the sample space grows exponentially with each added dimension [1].

This becomes a problem when the number of samples is lower than the number of measured

analytes. Further, in e.g. differential expression analysis, which tests the concentration differ-

ences of each measurement separately, we to some degree run into decreased sensitivity due to

multiple hypothesis testing.

One of the more promising ways of alleviating these problems is through pathway analysis

[2, 3]. Proteins frequently operate in an orchestrated manner and phenotypes are frequently

the consequence of sets of proteins and not just of single-proteins. Metabolic pathways, or

other aggregated biological knowledge that groups analytes, provide a model-driven way of

combining molecular information and thus also the measurements from a high throughput

experiment in a biologically meaningful way.

Traditional pathway analysis first determines the quantitative differences in gene expression

between patient groups, and subsequently either tests the significantly differential genes anno-

tation for enrichment in the tested pathway [4–6], or tests if the genes belonging to a pathway

have more extreme differences than other genes, using so-called gene-set enrichment analysis

[3]. Both types of analysis leave the user with a significance value for the analytes in a pathway

annotation being differentially abundant under the different conditions. Yet this feels unsatis-

fying, as embedding the pathway analysis in the statistical test significantly limits the types of

statistical tests that can be applied in the analysis.

An alternative is offered by single sample pathway analysis, which promises activity scores

for each sample and pathway. The method ASSESS [7] fits two mixture models to data to

quantify pathways, however, the supervised learning step of the procedure makes further sta-

tistical testing challenging. Another critique is that most pathway analysis methods derive sta-

tistical significance by comparing the behavior of genes belonging to a pathway with those that

do not. Goeman & Bühlmann [8] argue in favor of self-contained tests, in which the signifi-

cance of a pathway relates only to the expression of said pathway’s genes, resulting in a more

restrictive null hypothesis that leads to a higher statistical power. GSVA [9] uses a competitive

test for gene set enrichment. The ssGSEA [10] method, by utilizing internal ranks of expres-

sion as a basis for enrichment, is thus also not self-contained. While this is also true for sing-

score [11], it has a large advantage in that it does not need other samples as a background

when providing each sample’s score.
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Two methods, PLAGE [12] and Pathifier [13], will produce self-contained unsupervised

metrics of pathway activity. The former does so through Singular Value Decomposition (SVD)

in a space formed only by a pathway’s genes. The latter takes the same approach but uses a

Principal Curve instead, and while this enables non-linear gene interactions to be captured, it

introduces the need for annotated baseline samples, as well as a larger dataset.

We believe in the merits of doing statistical analysis on a pathway level, as the function of a

pathway is often much better understood than that of individual genes, and statistical opera-

tions on a pathway-level are often more directly related to the biology of the problem. Cell pro-

liferation, as an example, has been established as one of the hallmarks of cancer [14, 15]. It is a

complex, systemic process that involves many different mechanisms, in different parts of the

cell, as well as signaling pathways that regulate them. In breast cancers, it has been shown that

one can separate Luminal A from Luminal B subtypes based on the level of proliferation [16].

Thus, when investigating how molecular profiles of tumors affect patients, one may want to

look at proliferation as a whole, instead of focusing on individual analytes.

However, the real advantage of assigning pathway activity to individual samples is that it

opens the way for less blunt statistical analysis than case-control comparisons. Here, we reim-

plemented the PLAGE [12] for pathway summarization and studied its performance when

applied to survival analysis using a Cox proportional hazards model [17]. We highlight the

advantages and flexibility that working on a pathway level provides. Particularly we demon-

strate how to counter the confounding effects on the pathway analysis of increased cell prolif-

eration in severe breast cancers. We also demonstrate how one can use sunburst plots for

exploratory visualization of the significance of pathway activities while maintaining a pathway

hierarchy.

Materials and methods

METABRIC transcription profiles, and their annotation

Normalized gene expression and clinical annotation in the METABRIC dataset were down-

loaded from the European Genome-phenome Archive. This data consists of microarray reads

from 1992 breast cancer specimens, primarily fresh frozen, together with the clinical annota-

tion, including survival information, of the respective patients. Twelve samples were reported

twice in the dataset [18] and these were removed from our analysis, but otherwise, the entire

cohort was used.

Pathway annotations were retrieved from the Reactome database [19], version 76, with

annotations as Ensembl gene IDs. The pathways’ gene ID annotations were converted to Illu-

mina probe IDs (HT_12_v4), through BioMart [20], by assuming that any transcript associ-

ated with each Reactome protein’s underlying gene was associated with the pathway.

The clinical endpoint for this study was breast cancer-specific survival (BCSS) defined as

patients who have not died from breast cancer in the study period from the date of surgery to

the end of follow-up.

Estimation of pathway activities

We followed the PLAGE [12] method’s singular vector decomposition strategy. Let G ¼
fa1; a2; . . . ; agg be the set of all measurements we want to study, the Illumina probes in our

case, and let P ¼ fb1; b2; . . . ; bpg, P � G be the subset of measurements that are associated

with our pathway of interest. We define Ag×m as the matrix of log-transformed and standard-

ized measurements of our samples (where m is the number of samples), and Bp×m as a matrix

constructed by using only the rows in X that are present in P. We then decompose B using a
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Truncated Singular Value Decomposition (SVD):

Bp�m � Up�1S1�1V
T
m�1 ð1Þ

Note that there is a slight difference in preprocessing compared to Tomfohr et al. [12]

which use a Ag×m that contains standardized measurements that were not log-transformed.

Here we name the pathway’s left singular vector U as an eigensample, and the right singular

vector V as an eigengene, following the nomenclature in Wall et al. [21]. Note that the eigen-

gene contains one vector element per sample, and we will use these vector elements as a mea-

sure of pathway activity. Practically we here make use of the scikit-learn python package [22].

Proportional hazards model

Cox’s proportional hazards model [17, 23] relates the survival function Si(t) of patient i to the

value of any of its covariates Xi as,

lðtjXiÞ ¼ l0ðtÞexpðXi � bÞ: ð2Þ

Where λ(t) is the hazard function and is defined as the rate of mortality at time t, for patients

that have survived up to that time, and λ0(t) is the baseline hazard defined as λ(t|0). The hazard

function is then associated with the survival function by λ(t) = −S0(t)/S(t).
Here we used the pathway activities derived previously as the explanatory variables X for a

Cox regression, doing so one pathway at a time, to study the connection between each of the

samples’ pathway activities and the survival of patients. This regression gave us both a coeffi-

cient β showing the magnitude of the effect of a pathway, and a p value representing the statis-

tical significance of its coefficient. The p values were subsequently corrected for multiple

testing into q values [24]. In here we make use of the lifelines python package [25].

Concordance index

The concordance index (or C-index) is a generalization of the area under the curve (AUC)

classifier performance that can take into account censored data. It represents the model’s accu-

racy in ranking the survival times of the samples [26]. It can be calculated as,

c ¼

P
i6¼j1ti<tj

1Zi>Zj dj
P

i6¼j1ti<tj
dj

: ð3Þ

Here, for each patient i, we have the observed survival time, ti, and the censoring variable,

di, that takes a value of either 1 if the event of death has been observed and 0 otherwise. The

indicator variable 1ti<tj
¼ 1 if ti< tj and 0 otherwise. The variable η is the hazard score for

each sample, calculated as ηi = Xi � β. The C-index is calculated using 5-fold cross-validation:

for each step, the coefficients β are fitted to 80% of the data, the hazard score η is calculated for

the samples in the holdout data and the index is obtained by comparing it to their survival sta-

tus. Just as for AUC, a concordance index of 0.5 corresponds to a null prediction and 1 to a

perfect prediction.

Results

A pathway-level survival analysis

We implemented a method for evaluating a pathway activity’s influence on survival, based on

a Cox’s proportional hazards model [17] on top of the PLAGE method to estimate pathway

activity from transcript abundances [12]. The method is generic for any censored data,
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however, here we demonstrate its efficiency on the METABRIC breast cancer dataset. The

transcription profiles of the 1980 breast cancers in the METABRIC data were downloaded and

grouped according to the Reactome database into pathway groups. After the operation, each

pathway group contained the transcripts corresponding to proteins in each pathway, and as

there are overlaps between pathways in Reactome, this means that each transcript could appear

in multiple pathways. The expression matrix of each pathway was factorized into eigensamples

(left-singular vectors) and eigengenes (right-singular vectors) using the first eigenvector of a

Singular Value Decomposition (SVD) following Wall et al. [21]. The eigensample represents

the linear combination of genes and the eigengene the linear combination of samples that best

explains the variance of the expression matrix of the pathway. This slightly backward naming

convention stems from the idea that an eigengene models the variation of samples of a typical

gene, while an eigensample models the variation of the genes in a typical sample.

We then project each sample into this eigengene and use this result as a representation of

the sample’s pathway activity. These pathway activities together with the survival information

for each patient were fed into a Cox model for proportional hazards, which regresses these val-

ues against the survival information (survival time and disease-specific death) to obtain both

the regression coefficient and the statistical significance for the effect of each pathway activity

on patient survival. The significance, first obtained as p values were multiple testing corrected

into q values [24]. Fig 1 gives an overview of the procedure.

Before we investigate the output of our model, we would like to motivate PLAGE’s choice

of SVD as a means to capture pathway activity. As an example, let’s consider the pathway

‘Metabolism of folate and pterines” consisting of 26 proteins. When investigating the covaria-

tion matrix of the transcripts and the survival time for 907 samples from patients that were

Fig 1. A method to analyze the coupling of pathway activity on patient survival. We used singular value

decomposition to give, for each sample and pathway, an individualized pathway readout. We then combine those

readouts with the survival information to perform survival analysis on a pathway level.

https://doi.org/10.1371/journal.pcbi.1010020.g001
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deceased in the METABRIC cohort, we found both examples of transcript levels that correlate

positively and negatively with the survival time (Fig 2). By having the probe reads ranked by

their contribution to the eigensample, we see that the eigensample captures information from

genes that have both a positive and negative influence on survival. We also see that probes that

have a negative contribution to the eigensample also have a negative influence on survival,

while the opposite is also true. It is the linear combination of these expressions, obtained in an

unsupervised manner, that is used for later survival analysis.

Analysis of breast cancer data set

The transcription profiles of the 1980 breast cancers in the METABRIC data were down-

loaded, and they were analyzed with our method. S1 Table list the pathways and their prog-

nostic significance, and the results are also available as an interactive plot (https://

statisticalbiotechnology.github.io/metabric-pathway-survival/results.html). We found 1030

pathways (out of the 2214 pathways in Reactome) that were associated with patient survival

with q� 0.05. We note that most pathways involved with the Cell Cycle are indeed associated

with survival, as one would expect, as well as pathways relating to DNA replication and DNA

repair.

This result is reassuring but possibly insipid, as we already know that Cell proliferation is a

driver of cancer [14], and it specifically has a strong influence on survival. We also know that it

affects most other aspects of cancer cell activity, making it hard to disentangle this signal from

other important processes that affect the survival of patients. Luckily we have scored the activ-

ity of all pathways and can use them to highlight associations that otherwise are drowned by

the more trivial background of cell proliferation.

Fig 2. Heatmap of the coefficients of the Pearson correlation matrix between the variables survival time, the

eigengene of the gene expression values, and the gene expression values within the pathway ‘Metabolism of folate

and pterines” for samples from diseased patients. We sorted the genes in the expression matrix by their contribution

to the eigensample and encompassed them with a dotted line. The patients’ survival time both correlates and anti-

correlates with the different genes. However, the eigengene captures the covariational trend within the expression data

and correlates well with the patients’ survival time.

https://doi.org/10.1371/journal.pcbi.1010020.g002
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Traditionally proliferation is quantified by the transcription of marker genes, like MKI67

[27]. However, here we instead used the pathway activity of the “Diseases of the mitotic cell

cycle”, calculated by our model, as a proxy for abnormal cell proliferation. We then regressed

out the influence of proliferation on other pathway activities, by adding an independent vari-

able for cell proliferation in our Cox’s regression model for each pathway.

After regressing out our measure of proliferation the number of significant (q� 0.05) path-

ways, as expected, is reduced to 264 (S2 Table, (https://statisticalbiotechnology.github.io/

metabric-pathway-survival/results_proliferation.html). We see that the operation removes the

significance of most pathways relating to the cell cycle and DNA replication. Also, several

other pathways’ significance diminishes, e.g. the “Metabolism of folate and pterines” pathway

became insignificant, indicating that its prognostic power was mostly driven by cell prolifera-

tion (when removing that confounding effect of cell proliferation, its effect on the survival of

the patients is removed, from q = 9 � 10−13 to q = 0.17). However, pathways relating to cell pH

regulation due to respiratory oxidation [28] (e.g. “Bicarbonate transporters”, from q = 2 � 10−10

to q = 7 � 10−5) and HER2-signaling [29] (e.g. “GRB7 events in ERBB2 signaling”, from q = 3 �

10−8 to q = 7 � 10−5) remain highly significant after the operation. This demonstrates an advan-

tage of calculating individual measurements of pathway activity for each sample, as we can

subtract the effects of known confounders.

Pathway’s eigensamples appear stable and their estimates appear well

calibrated

For the results to be meaningful, the eigensample should be stable, i.e. if the decomposition is

repeated for similar samples, a similar eigensample should result. This is especially important

for datasets that are smaller than the ones used here. To simulate this, we randomly subsam-

pled 20% (396 samples) of the tumors 100 times, each time performing the same decomposi-

tion, and made pairwise comparisons of the resulting eigensamples using the cosine distance

(S1 Fig). We found that most eigensamples were indeed stable, and most importantly, the

most significant pathways in respect to survival prognosis were all stable (S2 Fig).

We also performed a permutation test to check the calibration of the p values coming from

the Cox regression model. We randomly selected 100 pathways by their regression p value, by

first sampling a uniformly in the range [−5, 0] and selecting the pathway with the p value clos-

est to 10−a, then for each pathway the association between the gene expression values and the

survival information was permuted 100/n times, where n is the regression’s p value. The frac-

tion of permutations with a more extreme outcome was then compared to the original Cox

model’s p value. The results (S3 Fig) indicate that our model is indeed well-calibrated for the

null hypothesis that there is no association between gene expression in the form of the pathway

activation and patient survival.

Finally, to test whether the signal we see comes from a meaningful set of transcripts, as

opposed to any set of transcripts, we performed a gene set permutation analysis (S1 Text),

which confirmed the relevance of the manually curated sets.

Pathways are more predictive of survival than individual transcripts

We also tested how well eigengenes can be used to predict the survival of each patient. We do

this by, for each pathway, performing 5-fold cross-validation using the Cox model to predict

survival on the holdout data, measuring the success of the prediction using the Concordance

Index. Fig 3A shows the distribution of the Concordance Index after performing the cross-val-

idation on all pathways and contrasts it to the distribution of the concordance index obtained

by doing the same process with individual transcripts. We see that there is a general gain in
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predictive power when combining the information contained in individual transcripts using

our method. When we compare pathways against only their constituent transcripts, we note

that the presence of a strongly predictive transcript is a necessary but not sufficient condition

for a highly predictive pathway, e.g. the top 10 best predictive pathways contain 6 of the top 10

transcripts, yet these same transcripts are present in pathways with no predictive power (0.49

< CI< 0.51). It is also interesting to note that in both cases there is a depletion of scores

around the null prediction of 0.5, this deviation is further indication that transcripts, as well as

pathway scores, are not independent.

Eigengenes are more predictive of survival than enrichment scores

We compared our method to the alternative method of using the enrichment scores of single-

sample geneset enrichment analysis (ssGSEA) [10] instead of eigengenes as an independent

variable in a Cox-regression. To obtain the enrichment scores, we used ssGSEA as imple-

mented in https://github.com/broadinstitute/ssGSEA2.0 with its default parameters. We

found our eigengenes more sensitive than ssGSA, with 1030 vs 352 reported pathways with q
values below 5%. We also found that the concordance indices of our model outperformed the

ones produced by the ssGSEA-fed model (Fig 3B).

Including more than one eigengene makes the model more sensitive to co-

variates

We investigated an extended PLAGE model by including more than one eigengenes for each

pathway. When checking the predictive performance of regressing all the eigengenes together,

using a 5 fold cross-validation, there is a significant increase in the number of pathways that

have high predictive power, when compared to a single eigengene (S4(A) Fig). This, however,

is likely just a consequence of increasing the degrees of freedom of the regression, and we can

see that when we regress each of the eigengenes separately, we do not see the same effects (S4

(B) Fig). Similarly, when looking at the p values for each coefficient obtained in the regression

(S5(A) Fig), we find only a marginal gain when looking at more than one component at once.

Fig 3. Comparison of how well eigengenes predict survival. A histogram of the concordance indices was calculated with 5-fold cross-validation of

Cox regressions based on eigengenes compared to (A) individual transcripts and (B) ssGSEA enrichment scores.

https://doi.org/10.1371/journal.pcbi.1010020.g003
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Looking at multiple eigengenes, however, also increases the exposure of the analysis to con-

founding factors. We noted that gene expression is not independent, and thus exogenous fac-

tors will influence the variance of the expression of genes inside the pathway. When adding

more singular vectors to the analysis, the likelihood that one will capture such confounding

factors increases. This becomes clear if we perform the regressions again, this time controlling

for the effects of proliferation (S5(B) Fig), where we see that the advantages of using multiple

eigengenes vanish and we start to see the burden of testing the extra hypothesis.

Interactive visualization of pathway-level results

We know that biological pathways are not independent, yet the relationship between pathways

also has a hierarchical nature, and in many pathway databases, large pathways are composed

of smaller, connected pathways. This information is lost when we present a table with the

results of our analysis, and for this reason, we developed an interactive visualization of the

results based on a sunburst chart that highlights not only the numerical results but also the

hierarchy and relationship between pathways. Fig 4 shows a static view of our interactive fig-

ure, the full plot is available at https://statisticalbiotechnology.github.io/metabric-pathway-

survival/ Looking at pathway statistics in a hierarchical plot is a step in trying to understand

the interactions between scores, and have a clearer picture of which biological processes are

driving the significance in the tests.

Discussion

Here we have reimplemented the PLAGE method for deriving a quantitative value of pathway

activity for each sample, and we demonstrated its usefulness when associating pathway activity

to patient survival. This is done by singular value decomposition of the expression of genes

Fig 4. Sunburst diagrams offer an exploratory visualization of the influence of the pathways in the Reactome hierarchy on the

survival of patients. We use an interactive sunburst chart to visualize and explore the result. This allows us to navigate the pathway

hierarchy and see the relationships in a more natural way than e.g. in a static table. The sunburst (A) without and (B) with the

pathway “Diseases of mitotic cell cycle” regressed out. Interactive versions of the same figures are available from https://

statisticalbiotechnology.github.io/metabric-pathway-survival.

https://doi.org/10.1371/journal.pcbi.1010020.g004
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inside a pathway, using the resulting eigensample to ascribe a pathway activity to each sample,

and testing its association to the survival of patients using a Cox Proportional Hazards model.

Over the years databases of metabolomic pathways have been collected, condensing knowl-

edge of molecular biology into causative relations. We here have made use of such relations, or

at least their ability to group molecules in functional relevant subsets. The correlation of the

concentration differences of such a subset of gene products can be seen as a manifestation of

the same biological phenomenon. Thus, we argue that pathway-level statistics give a clearer

view of how biological processes govern clinical outcomes.

When integrating the signals from multiple gene-products into one pathway activity, noise

should be reduced as the random measurement errors tend to be averaged out, while the

underlying common gene-regulation will corroborate over the analytes. Also, with pathway-

level statistics we test fewer hypotheses than at the gene level, which increases the statistical

power of the pathway-level measurements. Despite this, both over-representation analysis and

gene set enrichment analysis are often found insensetive in terms of the number of signifi-

cantly regulated pathways at a given false discovery rate.

The results of our analysis showed many pathways that are involved with cell proliferation

as the most significantly associated with the survival of the patients. Although this is an obvi-

ous result, it is also a welcome find that validates our method. Furthermore, our strategy to

extract individual measurements of pathway activity for each sample allows us to elaborate on

the statistical model of survival. By regressing out the effects of proliferation, the confounding

effect of this major perturbation of our samples was removed, allowing us to see other features

of our data more clearly [30].

When adding multiple principle components, we obtain multiple measurements of path-

way activity for each pathway and sample. In such expanded analysis one hopes that all the

measurements capture the active regulation of the pathway, however, it also exposes the model

to confounding factors. We hence find that PLAGE’s usage of only the first eigenvector of its

decomposition gives a well-found compromise between having a sensitive and stable measure

and one that is a good representation of pathway activity.

One drawback of pathway analysis, however, is that, while gene expression is itself not inde-

pendent, pathways by their nature overlap and so are intrinsically dependent entities, making

true multiple hypotheses corrections an even less trivial task. One should hence make sure to

also check the significances of the sub- and super-pathways of the examined pathway in the

studied pathway database. We believe that the sunburst plots presented in this study are very

powerful for such considerations.

At the heart of the method is the unsupervised dimensionality reduction that produces a

pathway activation score for each sample. While we show some advantages of this idea on sur-

vival analysis, these should not be restricted to this field alone, and are suitable for application

on any analysis where readouts are used to derive statistical significance.

Finally, SVD-based pathway analysis can be extended to include different modalities of data

such as proteomics or metabolomics. As long as the novel data can be grouped into pathways,

and the assumption of covariation within and between the different modalities hold, they can

be included in the same factor analysis step and their information used for integrating pathway

activity in an even broader sense.

Supporting information

S1 Text. A null model based on set permutation.

(PDF)
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S1 Fig. Test of stability of pathways eigensamples. We randomly selected a subset of 20%

(398 samples) of the tumors and made pairwise comparisons of the direction of the eigensam-

ples using the cosine distance. To provide a background measure, the procedure was repeated

for a collection of random vectors directions picked uniformly in spaces with the same dimen-

sions as the original data.

(TIF)

S2 Fig. Pathways’ significance as a function of their decompositions’ stability. We compare

the results of the test of stability against the statistical significance derived from the regression

of each pathway’s activity against survival.

(TIF)

S3 Fig. Investigation of the statistical calibration of p values from the Cox regression

model. The associations between gene expression values and survival status were permuted

and the fraction of permutations with a more extreme outcome was compared to the Cox

model’s p value.

(TIF)

S4 Fig. Comparing the predictive power of regressing more than one singular vector. A)

The concordance index distribution when building on joint regression model including a

specified number of eigenes of the same pathway. B) The concordance index distribution

when builing separate regression models for each eigengene.

(TIF)

S5 Fig. Comparing the statistical power of testing more than one singular vector. A) The

fraction of tests that are under a certain q value threshold, by regressing the n 2 [1, 5] fist sin-

gular vectors of each pathway together, as well as for testing individual transcripts. B) Same

context, but now we control for the proliferation signal in each regression model.

(TIF)

S1 Table. Significance of Cox-regression of Reactome’s pathways.

(TSV)

S2 Table. Significance of Cox-regression of Reactome’s pathways, when regressing out Dis-

eases of the Mitotic Cell Cycle pathway.

(TSV)
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