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Recent studies have well demonstrated that 5-methylcytosine (m5C) regulators play pivotal
roles in pathological conditions, including cancer. This study first tried to identify potential
5-methylcytosine (m5C) regulators in breast cancer by combination of expression,
diagnosis, and survival analyses, and then established an ncRNA–mRNA network
accounting for m5C regulators’ roles in breast cancer. Among 13 m5C regulators,
DNMT3B and ALYREF were significantly upregulated in breast cancer and their high
expression indicated unfavorable prognosis. Both DNMT3B and ALYREF possessed the
statistical abilities to distinguish breast cancer from normal breast samples. Moreover, five
potential upstream miRNAs (let-7b-5p, miR-195-5p, miR-29a-3p, miR-26a-5p, and miR-
26b-5p) of m5C regulators could not only serve as independent prognostic predictors but
also together made up a promising miRNA prognostic signature in breast cancer. Next,
upstream potential lncRNAs of the five miRNAs were predicted and analyzed. Pathway
enrichment analysis revealed that the target genes of these miRNAs were markedly
enriched in some cancer-related pathways, and further investigation indicated VEGFA
and EZH2 were found to be the most potential target genes in the m5C regulators-related
ncRNA–mRNA network in breast cancer. These findings comprehensively provided key
clues for developing m5C regulators-related effective therapeutic targets and promising
diagnostic biomarkers in breast cancer.
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INTRODUCTION

It has been widely acknowledged that epigenetic dysregulation partially leads to the occurrence and
progression of a variety of human disorders, including malignancies (Koschmieder and Vetrie, 2018;
Nakamura et al., 2019). Traditional epigenetic modifications contain DNA methylation, histone
modification, and chromatin remodeling (Dawson and Kouzarides, 2012). Recently, the focus on
epigenetic research has shifted from DNA to RNA (Wang P et al., 2020). To date, more than 250
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FIGURE 1 | Overview of expression, diagnostic, and prognostic values of m5C regulators in breast cancer. (A) Diagram of m5C regulators. (B) Expression of m5C
regulators in TCGA breast cancer cohort. Blue: normal samples; red: cancer samples. (C) Expression of m5C regulators determined by the Oncomine database. (D)
Survival analysis (including overall survival and relapse-free survival) for m5C regulators in breast cancer using the Kaplan–Meier plotter. (E)Prognostic values of DNMT3B
in breast cancer. (F) Prognostic values of ALYREF in breast cancer. (G) ROC curve of DNMT3B in breast cancer. (H) ROC curve of ALYREF in breast cancer. The
protein level of DNMT3B (I) or ALYREF (J) in breast cancer detected by Human Protein Atlas database. Scale bar: 100 um. (K) Expression of DNMT3B in breast cancer
among various stages. (L) Expression of ALYREF in breast cancer among various stages. (M) (I) Expression of DNMT3B and ALYREF across different cancer types by
the Oncomine database. **p < 0.01; ***p < 0.001.
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types of RNA modification have been identified, among which
N6-methyladenosine (m6A) is the most prevalent RNA
modification of internal mRNA, and its dysregulation has been
found to be closely linked to carcinogenesis (Li et al., 2019). In
addition to m6A, 5-methylcytosine (m5C) is another RNA
modification, which is commonly appeared in mRNAs,
tRNAs, and rRNAs (Helm, 2006; Schaefer et al., 2009).

Similar to DNA or protein modification, RNA methylation is
also modulated by various types of regulators, such as
methyltransferases (“writers”), RNA binding proteins
(“readers”), and demethylases (“erasers”) (Li et al., 2019; Boo
and Kim, 2020). For m5C, 11 “writers” (consisting of NSUN1-7,
DNMT1-2, DNMT3A, and DNMT3B), 1 “eraser” (TET2), and
1 “reader” (ALYREF) have been identified (He et al., 2020). Some
of these m5C regulators have been found to be correlated with
cancer initiation and development. For instance, Sun et al. (2020)
indicated that NSUN2-mediated m5C modification of H19 was
correlated with poor differentiation of hepatocellular carcinoma;
Jiang et al. (2020) suggested that NSUN5 was overexpressed in
colorectal cancer and it promoted proliferation and cell cycle
progression of colorectal cancer. However, a comprehensive
study focusing on m5C regulators in breast cancer remains
ambiguous. Furthermore, the miRNA–mRNA network related
to m5C regulators in breast cancer is also absent.

In this study, we first overviewed the expression profiles,
prognostic and diagnostic values of m5C regulators in breast
cancer. Then, we successively predicted and analyzed the
upstream potential binding miRNAs of m5C regulators in
breast cancer. Next, a miRNA prognostic signature in breast
cancer was established. The upstream lncRNAs that could
potentially bind to miRNAs were also predicted. Subsequently,
downstream target genes of potential miRNAs were forecasted
and analyzed. Consequently, an m5C regulators-related
miRNA–mRNA regulatory network was constructed in breast
cancer. These current findings may provide key roles in seeking
and developing promising biomarkers and therapeutic targets for
breast cancer patients.

RESULTS

Overview Expression, Prognosis, and
Diagnosis of m5C Regulators in Breast
Cancer
It has been well known that m5C regulators can be generally
divided into three classes, namely, “writer” (NSUN1-7, DNMT1-
2, DNMT3A, and DNMT3B), “eraser” (TET2), and “reader”
(ALYREF) as vividly presented in Figure 1A. To explore their
underlying roles of these m5C regulators in breast cancer, we first
determined their expression levels using TCGA breast cancer
data. As shown in Figure 1B, expression of NSUN1, NSUN2,
NSUN5, DNMT1, DNMT3A, DNMT3B, and ALYREF was
significantly increased, but DNMT2 and TET2 expression was
markedly decreased in breast cancer tissues when compared with
normal breast tissues. For NSUN3, NSUN4, NSUN6, and
NSUN7, no statistical differences were observed between

breast cancer samples and control samples. Moreover, we
found that, among these m5C regulators, ALYREF was most
highly expressed in breast cancer. Next, Oncomine analysis was
employed to further assess expression of m5C regulators in breast
cancer. The result demonstrated that most of these m5C
regulators, except NSUN2, NSUN7, and DNMT2, were
overexpressed in breast cancer (Figure 1C). Subsequently, the
prognostic values of m5C regulators in breast cancer were
evaluated, containing two indices overall survival (OS) and
relapse-free survival (RFS), as presented in Figure 1D.
Intriguingly, only breast cancer patients with higher expression
of DNMT3B and ALYREF had poorer OS and RFS (Figures
1E,F). By combination of expression and survival analyses,
DNMT3B and ALYREF were selected for subsequent
investigation. ROC curve analysis was conducted to determine
the diagnostic values of DNMT3B and ALYREF in breast cancer.
As shown in Figures 1G,H, both DNMT3B and ALYREF
possessed the significant abilities to distinguish breast cancer
tissues from normal breast tissues. Moreover, DNMT3B and
ALYREF protein levels in breast cancer tissues were also
obviously higher than that in normal breast tissues (Figures
1I,J). Based on molecular characteristics, breast cancer can be
classified into three different subtypes, consisting of luminal,
HER2 positive, and triple-negative breast cancer. Thus, we also
assessed the expression of DNMT3B and ALYREF in luminal,
HER2 positive, and triple negative breast cancer. As presented in
Figure 1K, DNMT3B expression in HER2 positive and triple-
negative breast cancer were higher than that in luminal breast
cancer. For ALYREF, its expression in triple-negative breast
cancer was highest and in luminal breast cancer was lowest.
All these findings together indicate that DNMT3B and ALYREF
may be two most potential oncogenes in breast cancer among all
these m5C regulators.

Identification of Upstream miRNAs of m5C
Regulators in Breast Cancer
Next, we predicted upstream miRNAs that could bind to
DNMT3B or ALYREF using the starBase database. A total of
158 and 20 miRNAs were found to be potentially binding to
DNMT3B or ALYREF, respectively (Supplementary Table S1).
For better visualization, DNMT3B-miRNA and ALYREF-
miRNA networks were established as shown in Figures 2A,B.
Based on the action mechanism of miRNA, there should be
negative relationship between DNMT3B/ALYREF and their
corresponding miRNAs. Thus, expression correlation of
DNMT3B/ALYREF with miRNAs in breast cancer was
determined (Supplementary Table S2). Further analysis
revealed that more than half of DNMT3B/ALYREF-miRNA
pairs showed positive expression correlation (51.3% for
DNMT3B and 55.0% for ALYREF) in breast cancer, but only
10.1 and 25.0% pairs presented negative expression relationship
for DNMT3B and ALYREF, respectively (Figure 2C).
Subsequently, miRNAs in these DNMT3B/ALYREF-miRNA
pairs with negative expression correlation were chosen for
expression analysis in breast cancer. The expression landscape
of these miRNAs in breast cancer is vividly shown in Figure 2D.
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The result suggested that 15 of 21 miRNAs were significantly
downregulated in breast cancer when compared with normal
controls. Finally, survival analysis was conducted to evaluate the
prognostic values of the 15 miRNAs in breast cancer. As shown in
Figures 2E–I, among these miRNAs, only high expression of five
miRNAs (consisting of let-7b-5p, miR-195-5p, miR-29a-3p, miR-
26a-5p, and miR-26b-5p) indicated favorable prognosis in breast
cancer. Moreover, expression levels of the five miRNAs in breast
cancer are also presented in Figures 2J–N. Taken correlation
analysis, expression analysis, and survival analysis into
consideration, let-7b-5p, miR-195-5p, miR-29a-3p, miR-26a-

5p, and miR-26b-5p may be five most potential upstream
tumor suppressive miRNAs of m5C regulators in breast
cancer. By matching with DNMT3B/ALYREF-miRNA pairs,
we found that all the five miRNAs could only potentially bind
to DNMT3B.

Prediction of Upstream lncRNAs of miRNAs
in Breast Cancer
To further find the upstream possible lncRNAs of the five
miRNAs (let-7b-5p, miR-195-5p, miR-29a-3p, miR-26a-5p,

FIGURE 2 | Identification of potential miRNAs of m5C regulators in breast cancer. (A)miRNA–DNMT3B network. (B)miRNA-ALYREF network. (C) Distribution of
expression correlation among miRNA-DNMT3B or miRNA-ALYREF pairs. NeR: negative correlation; PoR: positive correlation; NoR: no significant correlation. (D)
Expression landscape of candidate miRNAs of DNMT3B or ALYREF in breast cancer. The prognostic values of let-7b-5p (E), miR-195-5p (F), miR-29a-3p (G), miR-26a-
5p (H), and miR-26b-5p (I) in breast cancer. The expression levels of let-7b-5p (J), miR-195-5p (K), miR-29a-3p (L), miR-26a-5p (M), and miR-26b-5p (N) in
breast cancer.
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and miR-26b-5p), two online databases, consisting of starBase
and miRNet, were employed. By intersection of the analytic
results from starBase and miRNet databases, 53, 112, 52, 43,
and 43 lncRNAs were, respectively, forecasted to potentially bind
to let-7b-5p, miR-195-5p, miR-29a-3p, miR-26a-5p, and miR-
26b-5p as listed in Supplementary Table S3.

Construction of a Potential miRNA
Prognostic Signature in Breast Cancer
Our data suggested that each of the five potential miRNAs (let-
7b-5p, miR-195-5p, miR-29a-3p, miR-26a-5p, and miR-26b-5p)
could be used to independently predict prognosis of breast cancer
patients. We then further determined whether an miRNA-related
prognostic model, consisting of the five potential miRNAs, could
be constructed in breast cancer. A total of 1065 TCGA breast
cancer patients, containing 917 living patients and 148 deceased
patients, were employed (Figure 3A). As shown in Figure 3B,

high expression of five miRNAs’ sum indicated good prognosis in
breast cancer (p-value = 0.004441). The expression sum of this
model was calculated by the following formula: 2.502*Elet-7b-5p +
1.987*EmiR-195-5p + 2.064*EmiR-29a-3p + 2.184*EmiR-26a-5p +
1.229*EmiR-26b-5p (Figure 3C). The established miRNA
prognostic signature might be utilized as a potential model for
predicting prognosis of patients with breast cancer.

Enrichment Analysis and Protein–Protein
Interaction Network Analysis
To further explore the underlying functions, downstream target
genes of let-7b-5p, miR-195-5p, miR-29a-3p, miR-26a-5p, and
miR-26b-5p were first predicted. A total of 758 target genes,
involving 164 of let-7b-5p, 288 of miR-195-5p, 237 of miR-195-
5p, 121 of miR-26a-5p, and 104 of miR-26b-5p, were forecast as
listed in Supplementary Table S4. Gene Ontology function
annotation revealed that these target genes were significantly

FIGURE 3 | Establishment of a potential prognostic signature based on fivemiRNAs (let-7b-5p, miR-195-5p, miR-29a-3p, miR-26a-5p, andmiR-26b-5p) in breast
cancer. (A) Summary statistics of data used in this prediction model. (B) Survival curve of the constructed miRNA signature in breast cancer. According to the median
expression of miRNAs calculated by the formula, the total breast cancer patients can be divided into two groups, including high-risk group and low-risk group. (C)
Calculating formula of this miRNA prognostic signature.
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enriched in cell growth and/or maintenance for biological process
category (Figure 4A), cytoplasm, collagen type IV, and nucleus
for cellular component category (Figure 4B), and extracellular
matrix structural constituent, ubiquitin-specific protease activity,
and protein serine/threonine kinase activity for molecular
function category (Figure 4C). Next, pathway enrichment
analysis for these target genes demonstrated that they were
obviously enriched in a lot of cancer-related pathways, such as
beta-1 integrin surface interactions, integrin family cell surface
interactions, and VEGF and VEGFR signaling networks
(Figure 4D). In order to have a good command of the
interactions among these target genes, PPI network analysis
was carried out using STRING, after which the top 30 hub
genes were identified based on node degree, and a sub-PPI
network was established by usage of Cytoscape software
(Figure 4E). As shown in Figure 4F, among this PPI network,

PTEN, CCND1, VEGFA, CDC42, and EZH2 were ranked as the
top five hub genes, which may function as key genes in the m5C
regulators-related miRNA–mRNA regulatory network in breast
cancer.

Establishment of a DNMT3B-Related
miRNA–mRNA Network in Breast Cancer
Identically, there should be negative relationship between let-7b-
5p, miR-195-5p, miR-29a-3p, miR-26a-5p, and miR-26b-5p and
their respective target genes in breast cancer. Therefore,
expression levels of the top 30 hub genes in breast cancer
were detected using TCGA breast cancer data. As presented in
Figure 5A, only 13 of 30 hub genes (CCND1, VEGFA, CDC42,
EZH2, NRAS, CASP3, PPP2R1A, COL1A1, WWP1, COL1A2,
CUL2, COL3A1, and COL5A1) were significantly upregulated in

FIGURE 4 | Enrichment analysis and protein–protein interaction (PPI) network analysis for the target genes of five miRNAs (let-7b-5p, miR-195-5p, miR-29a-3p,
miR-26a-5p, and miR-26b-5p). (A) Top 10 enriched biological process (BP) items analyzed by FunRich. (B) Top 10 enriched cellular component (CC) items analyzed by
FunRich. (C) Top 10 enriched molecular function (MF) items analyzed by FunRich. (D) Top 10 enriched biological pathway items analyzed by FunRich. (E) PPI sub-
network of top 30 hub genes according to node degree. (F) Top 30 hub genes ranked by node degree.
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breast cancer, indicating that they might be the potential target
genes of let-7b-5p, miR-195-5p, miR-29a-3p, miR-26a-5p, and
miR-26b-5p. Moreover, the expression correlation of these
miRNA-target gene pairs (N = 17) in breast cancer were
evaluated. As shown in Figures 5C–L, 10 of 17 miRNA-target
gene pairs had negative expression relationship, including miR-

195-5p/VEGFA, miR-29a-3p/CDC42, miR-26a-5p/EZH2, let-
7b-5p/CASP3, miR-195-5p/PPP2R1A, miR-29a-3p/COL1A1,
miR-29a-3p/COL1A2, miR-195-5p/CUL2, miR-29a-3p/
COL3A1, and miR-29a-3p/COL5A1 pairs. Finally, a potential
DNMT3B-related miRNA–mRNA network in breast cancer was
constructed (Figure 6).

FIGURE 5 | Identification of potential target genes of five miRNAs (let-7b-5p, miR-195-5p, miR-29a-3p, miR-26a-5p, and miR-26b-5p) in breast cancer using
starBase. (A) Expression landscape of top 30 hub genes in breast cancer. (B) Correlation analysis for the candidate miRNA-hub gene pairs in breast cancer. The
expression relationship of miR-195-5p/VEGFA (C), miR-29a-3p/CDC42 (D), miR-26a-5p/EZH2 (E), let-7b-5p/CASP3 (F), miR-195-5p/PPP2R1A (G), miR-29a-3p/
COL1A1 (H), miR-29a-3p/COL1A2 (I), miR-195-5p/CUL2 (J), miR-29a-3p/COL3A1 (K), and miR-29a-3p/COL5A1 (L) pairs in breast cancer.
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Screening of VEGFA and EZH2 as TwoMost
Potential Targets in the DNMT3B-Related
miRNA–mRNA Network
Furthermore, survival analysis for the 10 target genes involving in the
established DNMT3B-related miRNA–mRNA network was
performed using the Kaplan–Meier plotter. As shown in
Figure 7A, only high expression of two genes, including VEGFA
and EZH2, indicated unfavorable overall survival of breast cancer
patients. For relapse-free survival, breast cancer patients with higher
expression of VEGFA, EZH2, CASP3, WWP1, CUL2, and COL3A1
had poorer prognosis (Figure 7A). By combination of overall survival
and relapse-free survival, we found that only VEGFA and EZH2were
commonly appeared in significant OS gene set and RFS gene set. The
corresponding survival plots of VEGFA and EZH2 are presented in
Figure 7B. Moreover, expression correlation analysis suggested that
DNMT3B was markedly positively associated with VEGFA and
EZH2 in breast cancer (Figures 7C,D). Conclusively, VEGFA and
EZH2 may be the most potential targets in the DNMT3B-related
miRNA–mRNA network in breast cancer.

DISCUSSION

During the past decade, with advancement of RNA direct
sequencing technique, the emerging roles of RNA m5C
modification in tumorigenesis have been reported (Xue et al.,
2020). As mentioned earlier, to date, a total of 13 m5C regulators
were found. In general, this research aimed to identify one or
more potential members among these m5C regulators in
modulating initiation and progression of breast cancer by
performing a series of bioinformatic analyses (Figure 8).

First of all, the expression landscape and prognostic values of m5C
regulators in breast cancer were overviewed by using multiple
databases. DNMT3B and ALYREF might be the most potential
functional m5C regulators and promising biomarkers in breast
cancer. Multiple studies showed that DNMT3B acted as an

oncogene in tumorigenesis, including acute myeloid leukemia
(Wong et al., 2019), gastric cancer (Li et al., 2016), bladder cancer
(Liu et al., 2020), and prostate cancer (Zhu et al., 2020). For ALYREF,
researches related to the function and mechanism of ALYREF in
human cancers remain absent.Next, ROCcurve analysis forDNMT3B
andALYREF revealed their significant diagnostic roles in breast cancer.

It has been widely acknowledged that the miRNA–mRNA
regulatory axis has inseparable connection with onset and
progression of human malignancies, involving breast cancer (He
et al., 2019; Yao et al., 2019; Gao et al., 2020; Lü et al., 2020).
Therefore, we further explored the potential miRNA–mRNA
regulatory axis contributing to explanation for m5C regulators-
mediated oncogenic roles in breast cancer. A total of 178
candidate miRNAs binding to DNMT3B or ALYREF were
predicted by bioinformatic analysis. Subsequently, by combining
expression and survival analyses, five potential miRNAs (including
let-7b-5p, miR-195-5p, miR-29a-3p, miR-26a-5p, and miR-26b-5p)
have been screened, which were significantly downregulated in
breast cancer and their low expression indicated poor prognosis
of patients with breast cancer. These miRNAs have been reported to
function as tumor suppressive miRNAs in breast cancer. For
example, Al-Harbi et al. (2018)showed that let-7b-5p inhibited
the cancer-promoting effects of breast cancer-associated
fibroblasts through IL-8 suppression ; Marques et al. (2018)
suggested that miR-195-5p served as a tumor suppressor in
invasive breast cancer ); Zhao et al. (2017) found that miR-29a-
3p suppressedMCF-7 cell growth by decreasing expression of tumor
necrosis factor receptor 1. miR-26a-5p was also confirmed to inhibit
breast cancer cell growth by suppression of RNF6 expression (Huang
et al., 2019); miR-26b-5p played a suppressive role in inhibiting
proliferation of breast cancer cells by negatively regulating CDK8 (Li
et al., 2014). These reports together with our previous analytic results
indicate that the five miRNAs might play crucial effects in m5C
regulators-related functions in breast cancer. Moreover, an miRNA-
associated signature composed by the five miRNAs also presented a
significant predictive effect for prognosis of breast cancer.

Next, the potential downstreammolecular mechanism of the five
miRNAs was explored by a series of in silico analyses. Pathway
enrichment analysis revealed that the targets of the five miRNAs
weremarkedly enriched inmultiple cancer-related pathways, such as
the glypican pathway (Castillo et al., 2016; Guereño et al., 2020) and
VEGF and VEGFR signaling networks (Zhang et al., 2020). After
conducting PPI network establishment and analysis, PTEN,
CCND1, VEGFA, CDC42, and EZH2 were screened as the top
five hub genes. Further analysis revealed that VEGFA and EZH2
were negatively correlatedwith their respective upstreammiRNAs in
breast cancer and were significantly overexpressed in breast cancer
compared with normal breast controls and indicated poor prognosis
of patients with breast cancer. Taken all these results into
consideration, VEGFA and EZH2 might be the most potential
targets involved in the established m5C regulators-associated
miRNA–mRNA network in breast cancer.

In total, we constructed a potential m5C regulator-associated
miRNA–mRNA axis in breast cancer, which probes a
comprehensive molecular explanation of breast carcinogenesis and
provides important clues for seeking promising therapeutics targets
and biomarkers in breast cancer. However, these findings were only

FIGURE 6 | Construction of a potential DNMT3B-associated
miRNA–mRNA network in breast cancer.
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obtained from pure bioinformatics research and should be further
validated by much more basic experiments and clinical trials in the
future.

MATERIALS AND METHODS

Oncomine Analysis
The expression of m5C regulators in breast cancer was determined
using differential expression analysis provided by Oncomine
(https://www.oncomine.org/), which is a cancer microarray
database and integrated data-mining platform (Rhodes et al.,

2004; Rhodes et al., 2007). Fold change (FC) > 1.5, p-value < 0.
05, and a gene rank in the top 10% were set as the thresholds for
selecting the datasets. In addition, the expression levels of DNMT3B
and ALYREF across different cancer types were studied.

Kaplan–Meier Plotter Analysis
The Kaplan–Meier plotter (http://kmplot.com/analysis), capable
of accessing the effect of 54,000 genes on survival in more than 20
cancer types, was employed to assess the prognostic values of
genes andmiRNAs in breast cancer (Györffy et al., 2010; Lou et al.
, 2020). Log rank p-value < 0.05 was considered as statistically
significant.

FIGURE 7 | Identification of VEGFA and EZH2 as the most potential downstream target genes in the established DNMT3B-associated miRNA–mRNA network.
Overall survival (A) and relapse-free survival (B) analyses for 10 genes of interest in breast cancer. (B) Prognostic values of VEGFA and EZH2 in breast cancer determined
by the Kaplan–Meier plotter. DNMT3B expression was significantly positively correlated with the expression of VEGFA (C) or EZH2 (D) in breast cancer assessed by
GEPIA.
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Human Protein Atlas Analysis
The HPA database (http://www.proteinatlas.org/), a tool for
exploring proteomic biomarker, was utilized to analyze the
protein level of DNMT3B and ALYREF in breast cancer and
normal breast tissues (Pontén et al., 2011).

UALCAN Analysis
UALCAN (http://ualcan.path.uab.edu/index.html), a portal for
facilitating tumor subgroup gene expression, survival analysis,
and correlation analysis, was used to determine the expression of
DNMT3B and ALYREF in breast cancer based on different
molecular subtypes. The statistical difference was also
automatically analyzed by UALCAN. p-value < 0.05 was
regarded as statistically significant.

Receiver Operator Characteristic Curve
Analysis
As we previously described, the ROC curve was introduced to
assess the diagnostic abilities of DNMT3B and ALYREF to
distinguish breast cancer samples from normal breast samples
using TCGA expression data (Wang W et al., 2020). p-value <
0.05 was regarded as statistically significant.

starBase Analysis
starBase (http://starbase.sysu.edu.cn/), a database for exploring
microRNA–mRNA interaction maps from Argonaute CLIP-Seq
and Degradome-Seq data, was employed to predict the upstream
miRNAs that could potentially bind to DNMT3B or ALYREF.

The expression levels of predicted miRNAs and hub genes in
breast cancer were also detected by starBase. starBase was also
used to analyze the expression correlation of miRNA-target gene
pairs. p-value < 0.05 was regarded as statistically significant.

OncomiR Analysis
The OncomiR database (http://www.oncomir.org/cgi-bin/dbSearch.
cgi), an online resource for exploring miRNA dysregulation in pan
cancer, was utilized to evaluate the predictive value of five miRNAs
signatures in breast cancer (Wong et al., 2018). TCGA breast cancer
expression and survival data were employed to perform this analysis.
After entering the five miRNAs’ names into the website, survival
analysis was automatically conducted, and the formula of miRNA
prognostic signature was also directly obtained by OncomiR.

FunRich Analysis
FunRich (http://www.funrich.org/) is a tool mainly used for
functional enrichment and interaction network analysis of
genes and proteins (Pathan and Keerthikumar, 2017), which
was introduced to perform functional annotation and pathway
enrichment for the target genes in this study.

String Analysis
The protein–protein interaction (PPI) network analysis for target
genes was performed by the STRING database (https://string-db.
org/cgi/input.pl). This PPI network could be directly downloaded
from the STRING database. Among all the protein–protein
interactions, only those with score more than 0.4 were
included for hub gene screening.

FIGURE 8 | Flow chart of this study.
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Target Gene Prediction
The target genes of five potential miRNAs were predicted by a
total of seven target gene prediction programs, involving PITA,
RNA22, miRmap, microT, miRanda, PicTar, and TargetScan. To
obtain more accurate analytic results, only target genes appeared
inmore than five target gene prediction databases were selected as
the candidate target genes of miRNAs.

Statistics Analysis
The statistics analyses in this study were automatically calculated
by the online databases or tools as mentioned earlier. Continuous
variables in normal distribution should be described as mean ±
standard deviation (SD). Variance homogeneous and normal
distributed continuous variables were compared by student
t-test; otherwise, the Mann–Whitney U-test or Kruskal–Wallis
H-test was used. p-value < 0.05 or log rank p-value < 0.05 was
regarded as statistically significant.
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