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Crystal structure of the N-myristoylated
lipopeptide-bound MHC class I complex
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Bunzo Mikami10 & Masahiko Sugita1,2

The covalent conjugation of a 14-carbon saturated fatty acid (myristic acid) to the

amino-terminal glycine residue is critical for some viral proteins to function. This protein

lipidation modification, termed N-myristoylation, is targeted by host cytotoxic T lymphocytes

(CTLs) that specifically recognize N-myristoylated short peptides; however, the molecular

mechanisms underlying lipopeptide antigen (Ag) presentation remain elusive. Here we

show that a primate major histocompatibility complex (MHC) class I-encoded protein is

capable of binding N-myristoylated 5-mer peptides and presenting them to specific CTLs. A

high-resolution X-ray crystallographic analysis of the MHC class I:lipopeptide complex reveals

an Ag-binding groove that is elaborately constructed to bind N-myristoylated short peptides

rather than prototypic 9-mer peptides. The identification of lipopeptide-specific, MHC class

I-restricted CTLs indicates that the widely accepted concept of MHC class I-mediated

presentation of long peptides to CTLs may need some modifications to incorporate a novel

MHC class I function of lipopeptide Ag presentation.
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R
esearch carried out over the past three decades has
unravelled the molecular and structural bases of
cell-mediated immunity, resulting in the establishment

of a central paradigm for antigen (Ag) presentation in which
major histocompatibility complex (MHC) class I and class II
molecules bind peptide Ags and present them to CD8þ and
CD4þ T cells, respectively, bearing clonotypic ab T-cell
receptors (TCRs)1. The repertoire of Ags targeted by ab T cells
has been further expanded to include lipid Ags, such as fatty acids
and glycolipids, which are captured and presented by non-MHC-
encoded group 1 CD1 molecules2. These two arms of the adaptive
immune system, one directed against peptides and the other
against lipids, may function cooperatively for effective host
defense against microbial infections. Indeed, both peptide-specific
and lipid-specific cytotoxic T lymphocytes (CTLs) have been
identified as having the potential to eliminate Mycobacterium
tuberculosis-infected cells3.

Unlike bacteria, viruses do not produce their own lipids;
however, some viral proteins are lipid modified by using the
host cellular machinery4–6. For example, human and simian
immunodeficiency viruses (HIV and SIV) borrow host-derived
N-myristoyltransferase and its substrate myristoyl-CoA, to
couple a 14-carbon saturated fatty acid (myristic acid) to the
N-terminal glycine residue of the Nef protein. This
lipidation process, referred to as N-myristoylation, is essential
for the Nef protein to downregulate the cell surface expression
of MHC class I molecules, thereby inhibiting the efficient
induction of virus-specific CTLs7,8. On the other hand,
the findings of our recent studies have indicated that the
adaptive immune system is equipped with CTLs capable of
sensing the lipid modification reaction of the Nef protein9,10. The
rhesus macaque CD8þ CTL line 2N5.1 specifically recognizes the
N-myristoylated 5-mer peptide (C14-Gly-Gly-Ala-Ile-Ser;
C14nef5) derived from the SIV Nef protein. Furthermore,
N-myristoylated Nef peptide-specific T cells were found to
expand significantly in the peripheral blood of SIV-infected
monkeys and the plasma viral load in the infected monkeys
correlated reciprocally with the number of circulating
lipopeptide-specific T cells. These findings suggest that
besides peptides (presented by MHC class I) and lipids
(presented by group 1 CD1), lipopeptides may comprise a
novel chemical class of Ags targeted by CTLs with implications in
the host defense against viral infection; however, the identity of
the lipopeptide Ag-presenting molecules currently remains
unknown.

In the present study, we show that the classical MHC class
I-encoded protein Mamu-B*098 captures C14nef5 and interacts
with specific TCRs, thereby supporting the recognition of
C14nef5 by 2N5.1 T cells. The capacity of the Mamu-B*098
protein to function as a lipopeptide Ag-presenting molecule is
further substantiated by a high-resolution X-ray crystallographic
analysis of the trimeric complex of B*098 heavy chains,
b2-microglobulin (b2m) and C14nef5. The myristoyl group of
the lipopeptide is accommodated in the relatively large B pocket
lined with hydrophobic amino acid residues and the
carboxy-terminal serine residue is anchored at the small F pocket
via multiple hydrogen bonds, leaving the second and fourth
amino acid residues exposed externally. Furthermore, a conduit
between A and B pockets in Mamu-B*098 is spatially
disconnected, making the A pocket isolated and unoccupied.
These structural features have not been recognized previously for
other MHC class I molecules that bind prototypic 9-mer peptides.
Taken together, these results suggest that MHC class I molecules
may have evolved to include those binding N-myristoylated short
peptides, thereby assisting CTLs to specifically sense the
N-myristoylation of viral proteins.

Results
Identification of a lipopeptide Ag-presenting molecule. The
recognition of C14nef5 by 2N5.1 requires the presence of
irradiated peripheral blood mononuclear cells (PBMCs)9, which
suggests that PBMCs express a molecule capable of binding
C14nef5 and presenting it to 2N5.1. To obtain an insight into its
molecular identity, we generated several hundred monoclonal
antibodies that recognized rhesus PBMCs and tested their abilities
to block the presentation of C14nef5 to 2N5.1. Two blocking
monoclonal antibodies, MB217 and MB226, were isolated
(Supplementary Fig. 1a) and a series of biochemical and cellular
analyses revealed that MB217 specifically recognized rhesus b2m,
whereas MB226 reacted broadly with rhesus MHC class I
molecules (Supplementary Fig. 1b–e). As b2m-associated MHC
class I molecules may restrict the recognition of C14nef5 by
2N5.1, we isolated an array of rhesus MHC (Mamu) class I
complementary DNA clones from a donor with the potential to
present C14nef5 to 2N5.1 and transfected each cDNA clone into
the monkey kidney epithelial cell line LLC-MK2. The ability of
the cell transfectants to present C14nef5 to 2N5.1 was then
examined. None of the cell transfectants exhibited the Ag
presentation capacity, except those expressing Mamu-B*098,
which stimulated 2N5.1 cells to produce interferon-g (IFN-g) in
the presence of C14nef5, but not in its absence (Fig. 1a). These
results strongly suggested that the Mamu-B*098 protein may
function as a lipopeptide Ag-presenting molecule.

To address this possibility directly, cell-free assays were
performed with a soluble recombinant Mamu-B*098 protein.
Using a biolayer interferometry technique, the physical interactions
between C14nef5 and a layer of immobilized protein on the
biosensor tip were demonstrated for Mamu-B*098 but not for the
control protein Mamu-A*02 (Fig. 1b). Furthermore, plate-coated
Mamu-B*098, but not Mamu-A*02, was sufficient for stimulating
2N5.1 to produce IFN-g in response to C14nef5 (Fig. 1c). The non-
antigenic mutant, C14-GGAAS, in which the fourth isoleucine
residue was replaced by alanine, bound to B*098 (Fig. 1b) but
failed to stimulate 2N5.1 even in the presence of Mamu-B*098
(Fig. 1c), suggesting that the isoleucine residue served as a T-cell
epitopic determinant. Furthermore, surface plasmon resonance
(SPR)-binding experiments revealed that a soluble TCR ab dimer
derived from 2N5.1 interacted with C14nef5-loaded, but not with
C14-GGAAS-loaded, Mamu-B*098, with an affinity that was
similar to that for peptide-specific TCR–MHC interactions
(Fig. 1d)11. Taken together, these results provide compelling
evidence that the Mamu-B*098 protein functions as a lipopeptide
Ag-presenting molecule capable of binding C14nef5 and
presenting it to T cells bearing specific ab TCRs.

Structure of Mamu-B*098. The amino acid sequence of
Mamu-B*098 is very similar to those of conventional MHC
class I molecules, such as Mamu-B*17 in rhesus macaques and
HLA-B27 in humans, which mediate the presentation of 8- to
10-mer peptides to T cells (Fig. 1e), and provides no reasonable
insight into how the MHC class I protein binds N-myristoylated
5-mer peptides that are structurally and chemically distinct from
prototypic MHC class I-presented peptides.

To elucidate the molecular basis underlying lipopeptide Ag
presentation, we sought to clarify the high-resolution X-ray
crystal structure of the Mamu-B*098:C14nef5 complex. The
ectodomain of the Mamu-B*098 heavy chain and rhesus b2m
were produced in Escherichia coli as inclusion bodies and the
purified recombinant proteins were refolded in the presence of
C14nef5. In our initial attempts, proper refolding occurred
inefficiently, which was most probably due to aberrant disulfide
bond formation involving a cysteine residue at position 167
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(Fig. 1e, shown with an open arrowhead). The introduction of the
cysteine to serine mutation at this position resulted in improved
refolding efficiency. This mutation affected neither the overall

secondary structure nor the ability of Mamu-B*098 to present
C14nef5 to 2N5.1 (data not shown). Thus, the amino acid
substitution mutant of Mamu-B*098 was used for crystallization.
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Mamu-B*1701 GS--HSMKYFYTS--VSRPGRGEPRFISVGYVDDTQFVRFDSDAESPREEPRAPWVEQE-GPEYWEEATRRAKEAAQTHRENLRTALRYYNQSE-A 90
HLA- B*2709 GS--HSMRYFHTS--VSRPGRGEPRFITVGYVDDTLFVRFDSDAASPREEPRAPWIEQE-GPEYWDRETQICKAKAQTDREDLRTLLRYYNQSE-A 90
Human CD1a ADGLKEPLSFHVTWIASFYNHSWKQNLVSGWLSDLQTHTWDSNSSTI--VFLCPWSRGNFSNEEWKELETLFRIR--TIR-SFEGIRRYAHELQFE 91

Mamu-B*098 GSHTLQTMSGCDLGPDGRLLRGYYQQAYDGRDYIALNEDLRSWTAA----DEAAQNTQRKWEAAGVAEQWRAYLEGECLECLRRYLENGKETLQRA 182
Mamu-B*1701 GSHTIQKMYGCDLGPDGRLLRGYHQSAYDGKDYIALNGDLRSWTAA----DMAAQNTQRKWEGNRYAERFRAYLEGECLEWLRRYLENGKETLQRA 182
HLA- B*2709 GSHTLQNMYGCDVGPDGRLLRGYHQHAYDGKDYIALNEDLSSWTAA----DTAAQITQRKWEAARVAEQLRAYLEGECVEWLRRYLENGKETLQRA 182
Human CD1a YPFEIQVTGGCELH-SGKVSGSFLQLAYQGSDFVSFQNN--SWLPYPVAGNMAKHFCKVLNQNQHENDITHNLLSDTCPRFILGLLDAGKAHLQRQ 184

Mamu-B*098 EPPKTHVTHHPVSD-HEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPGGDGTFQKWGAVVVPSGEEQRYTCHVQHEGLP-EPLTLRW 274
Mamu-B*1701 DPPKTHVTHHPVSD-HEATLRCWALGFYPAEITLTWQRDGEEQTQDTEFVETRPGGDGTFQKWGAVVVPSGEEQRYTCHVQHEGLP-EPLTLRW 274
HLA- B*2709 DPPKTHVTHHPISD-HEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDRTFQKWAAVVVPSGEEQRYTCHVQHEGLP-KPLTLRW 274
Human CD1a VKPEAWLSHGPSPGPGHLQLVCHVSGFYPKPVWVMWMR-GEQEQQGTQRGDILPSADGTWYLRATLEVAAGEAADLSCRVKHSSLEGQDIVLYW 277

Figure 1 | Identification of Mamu-B*098 as a lipopeptide Ag-presenting molecule. (a) LLC-MK2 cells transfected with each of the rhesus MHC class I

genes were tested for their ability to present C14nef5 to 2N5.1. Only LLC-MK2 cells expressing Mamu-B*098 stimulated 2N5.1 to produce IFN-g in the

presence of C14nef5. PBMCs obtained from a donor with the potential to present C14nef5 to 2N5.1 were used as a positive control. Experiments were

performed in triplicate. Mean values with s.e.m. are shown. (b) The binding of lipopeptide Ags to recombinant b2m-linked Mamu-B*098 and Mamu-A*02

proteins was monitored by biolayer interferometry. Representative data from three independent experiments are shown. Mamu-A*02, a rhesus MHC class

I allele known to bind 9-mer peptides, was used as a negative control. (c) Plate-coated MHC class I molecules were tested for their ability to present

lipopeptide Ags to 2N5.1. The Ag-specific T-cell response was assessed by measuring the amount of IFN-g released into the culture medium. Mean values

with s.e.m. are shown. (d) The high-affinity interaction of the 2N5.1 TCR with C14nef5-loaded Mamu-B*098 was demonstrated by SPR-binding assays,

whereas no interaction was detected with C14-GGAAS-loaded and unloaded Mamu-B*098 molecules, as well as YY9 peptide-loaded Mamu-A*02

molecules. The original data (coloured as indicated) are depicted with the curve fit (grey) overlaid. The steady-state affinity plot (inset) is also shown.

Three independent experiments were performed and mean equilibrium-dissociation constant (KD) values ±s.d. are shown. (e) Amino acid sequences of

Mamu-B*098, HLA-B*27:09, Mamu-B*17:01 and human CD1a are shown. The a1 and a2 domains of Mamu-B*098 exhibit 81.1%, 80.6% and 20.6%

sequence homology to the corresponding domains of HLA-B27, Mamu-B*17 and human CD1a, respectively. Solid and open triangles indicate paired and

unpaired cysteine residues, respectively. The residue for N-glycosylation is indicated with an asterisk.
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We determined the crystal structure of the Mamu-
B*098:C14nef5 complex at a resolution of 1.76 Å (Table 1 and
Supplementary Fig. 2). The overall structure of Mamu-B*098 was
almost indistinguishable from that of other MHC class I
molecules, which were characterized by two semisymmetrical
domains, a1 and a2, which formed a b-sheet platform topped by
two semiparallel a-helices (Fig. 2a)12. The a1/a2-fold of Mamu-
B*098 exhibited a high degree of structural similarity with those
of HLA-B27 and Mamu-B*17 with root-mean-square deviations
(r.m.s.d.) of 0.76 and 0.82 Å, respectively13,14, and the groove
width, as measured by the distance between the opposing a1 and
a2 helices, was similar among the MHC-B molecules (Fig. 2b).
Continuous electron density corresponding to C14nef5 was
observed in the Ag-binding groove, thus providing direct
evidence for the capacity of Mamu-B*098 to bind the
lipopeptide Ag (Fig. 2c).

As for other MHC class I molecules, six pocket structures,
designated A through F, were identified in the Ag-binding groove
of Mamu-B*098 (Fig. 2d). The myristoyl group and C-terminal
serine residue (Ser5) were buried deeply in the groove and
interacted primarily with the B pocket and F pocket, respectively,
forcing the central three residues of the peptide chain, in
particular Gly2 and Ile4, to protrude out of the groove and into
the solvent (Fig. 2c,e). These structural features were consistent
with the prediction deduced from the T-cell assays10.

Accommodation of the myristoyl group in the B pocket. The
acyl chain of C14nef5 did not gain access to the A pocket and was
packed in a U-shaped configuration in the B pocket, which was
lined with an array of hydrophobic or non-charged amino acid
residues, including Tyr7, Phe22, Val24, Met45, Gln63, Val67,
Ala70 and Phe74 (Fig. 3a). Numerous intermolecular van der

Waals (VDW) forces and those established within the acyl chain
supported its stable accommodation within the pocket
(Supplementary Fig. 3 and Table 1). Besides its hydrophobic
properties and low electrostatic potential (Supplementary Fig. 4),
the Mamu-B*098 B pocket was also marked by its ample
cavity (250 Å3), which was roughly 1.5-fold larger than that of
the corresponding B pockets of other known MHC class I
molecules (Fig. 3b). The side chains of His9, Lys70 and Tyr99
of HLA-B27, as well as those of Tyr9, Lys97 and Tyr99 of
Mamu-B*17, protruded into the cavity; however, the amino acid
residues at these positions (Ser9, Ala70, Thr97 and Ser99) were all
small in Mamu-B*098, allowing the folded myristoyl group to fit
in the B pocket (Fig. 3b).

The myristoyl group made a sharp U-turn instead of extending
into the A pocket, thereby leaving the A pocket unoccupied, and
the view from the A pocket towards the B pocket pointed to a
highly constricted conduit between the two pockets (Fig. 3c, left
panel). The bulky side chain of Gln63, as well as the side chains of
Tyr7 and Tyr159, which were conserved among human and
rhesus MHC class I molecules, protruded into the channel.
Furthermore, the salt bridge that was established between
Arg66 and Glu163 overhung the channel, making the opening
as narrow as 4� 4 Å2, a size that hardly allowed any peptide
chains to pass through15. As a comparison, HLA-B27 had a bulky
amino acid residue (Glu) at position 63, but lacked a salt bridge
between positions 66 and 163 (Fig. 3c, middle panel), whereas
Mamu-B*17 retained the salt bridge, but lacked the bulky residue
at position 63 (right panel), thereby sustaining a structure that
allowed the N-terminal residue of 9-mer peptides to gain access
to the A pocket. The bulky side chains of Gln63 and Arg66 in
Mamu-B*098 also contributed to the sidewall of the B pocket
and established VDW interactions with the myristoyl group
of bound lipopeptides (Fig. 3a and Supplementary Table 1).
These structural features have not been reported in previously
studied 9-mer peptide-presenting MHC class I alleles12 and we
assumed that it may be difficult for Mamu-B*098 to bind
conventional 9-mer peptides in a similar manner to that of other
known MHC class I molecules.

Accommodation of the C-terminal residue in the F pocket. The
C-terminal Ser residue (Ser5) of C14nef5 was anchored at the
F pocket, which was smaller in size primarily due to the bulky
side chain of Gln116 reducing the depth of the pocket (Fig. 4a).
Thus, the C-terminal residue potentially accommodated in the
F pocket is likely to be a relatively small amino acid residue, such
as serine or threonine, constituting the N-myristoylation motif16,
rather than the bulky amino acid residues found in most MHC
class I-presented 9-mer peptides17. The main chain of Ser5 of
C14nef5 was stabilized by a network of hydrogen bonds,
involving Ser77, Asn80, Tyr84, Thr143 and Lys146, which is
commonly found in peptide-bound MHC class I molecules12–14,
whereas the side chain of Ser5 established a hydrogen bond with
Gln116 (Fig. 4b).

Spatial configuration of the bound lipopeptide. Besides Ser5,
the main chain of Ile4 of C14nef5 was stabilized by a hydrogen
bond with Trp147 and the carbonyl oxygen of Ala3 made
water-mediated hydrogen bonds with Tyr114 and Gln116
(Fig. 4b, right panel). As a result of these specific interactions, the
spatial configuration of the three C-terminal amino acid residues
(Ala3, Ile4 and Ser5) of C14nef5 bound to Mamu-B*098 was
nearly identical to that of the corresponding residues of
conventional 8- to 10-mer peptides bound to known MHC class I
molecules (Fig. 5). In contrast, Gly1 of C14nef5 deviated
significantly below the level of the corresponding amino acid

Table 1 | Data collection and refinement statistics (molecular
replacement).

Mamu-B*098:C14nef5

Data collection
Space group P1
Cell dimensions

a, b, c (Å) 46.40, 85.18, 127.99
a, b, g (�) 89.20, 79.57, 90.02

Resolution (Å) 50–1.76 (1.79–1.76)
Rmerge 0.042 (0.532)
I/sI 30.9 (2.2)
Completeness (%) 95.9 (78.1)
Redundancy 2.61 (2.5)

Refinement
Resolution (Å) 1.76 (1.78–1.76)
No reflections 182443 (4351)
Rwork/ Rfree (%) 19.5 (30.3)/22.8 (31.9)
No atoms

Protein 12621
MYR/EDO/TRS/zinc/chlorine 60/260/16/18/3
Water 810

B-factors (Å2)
Protein 33.2
C14nef5 49.9
Water 36.6

R.m.s. d.
Bond lengths (Å) 0.008
Bond angles (�) 1.11

EDO, 1,2-ethanediol; MYR, myristic acid; R.m.s.d., root-mean-square deviation; TRS, 2-Amino-2-
hydroxymethyl-propane-1,3-diol.
Data were collected from a single crystal.
*The Highest resolution shell is shown in parentheses.
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residue (Fig. 5b, bottom panel). As the N-myristoylated Gly1 and
C-terminal Ser5 residues were both buried deeply in the groove
(Fig. 3c, right panel), this superimposed image also pointed to the
primary role of the elevated middle three amino acid residues, in
particular Gly2 and Ile4 with their side chains directed upwards,
as T-cell epitopes.

Discussion
The biology of MHC class I molecules represents one of the
central foci for modern immunology research. Key findings
obtained by pioneering studies, including the milestone discovery
of the X-ray crystallographic structure of the ligand-bound
HLA-A2 molecule, have established that MHC class I molecules
bind 8- to 10-mer peptides and present them to specific
CTLs18,19. The present study has provided functional and
structural evidence to show that MHC class I molecules have
evolved to include those that bind N-myristoylated short peptides
and present them to specific CTLs. Therefore, the fixed concept of
MHC class I-mediated presentation of long peptides to CTLs may
need some modifications to incorporate a novel MHC class I
function of lipopeptide Ag presentation.

The overall structure of Mamu-B*098 and the presence of six
pockets in the Ag-binding groove were inherent in MHC class I
molecules, whereas the large hydrophobic B pocket, small
F pocket and the partially collapsed A pocket distinguished it
from other MHC class I molecules that are known to bind long
peptides. The myristoyl group of the lipopeptide adopted a
U-shaped configuration and fit perfectly with the extended
B pocket. Furthermore, inter- and intramolecular VDW forces
established throughout the acyl chain synergistically reinforced its
stable binding to the B pocket. These structural features suggested
that the B pocket of Mamu-B*098 was optimally constructed, to

accommodate a myristic acid, thereby providing reasonable
explanations as to why the analogues of C14nef5, with either
shorter (C6nef5 and C10nef5) or longer (C18nef5 and C22nef5)
acyl chains, exhibit reduced or no antigenic activities10. Human
CD1a molecules are known to bind the mycobactin-like
lipopeptide JH-02215 by accommodating the acyl chain linked
to the side chain of lysine in the A’ pocket (Supplementary
Fig. 5a)20; however, the A’ pocket of CD1a and the B pocket of
Mamu-B*098 differ significantly in their shape, size and position
(Supplementary Fig. 5b). Indeed, amino acid residues that were
predicted to establish the network of VDW interactions between
CD1a and the acyl chain of JH-02215 do not appear to correlate
with those of the interactions between Mamu-B*098 and the acyl
chain of C14nef5 (Supplementary Fig. 5c). It remains to be
addressed as to whether T cells may exist that specifically
recognize C14nef5 in the context of CD1 molecules.

The F pocket of Mamu-B*098 also appears to be favourably
used for binding N-myristoylated short peptides by taking
advantage of the presence of the conserved small amino acid
residue, either serine or threonine, at the C terminus of
lipopeptides16. Most MHC class I-presented 9-mer peptides
contain a bulky hydrophobic amino acid residue at the C
terminus that is anchored at the F pocket; however, such common
C-terminal residues may have been excluded from the small
F pocket of Mamu-B*098. C14nef5 and its Ser to Thr mutant
sustain virtually identical antigenic activities9, suggesting that the
F pocket of Mamu-B*098 accommodates threonine and serine as
well. As the myristoyl group and C-terminal serine/threonine are
critical elements commonly found in proteins that undergo
N-myristoylation21, Mamu-B*098 may have the potential to bind
various naturally occurring N-myristoylated 5-mer peptides.

To the best of our knowledge, the spatially disconnected
conduit between the A and B pockets of Mamu-B*098 has not
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Figure 2 | The overall structure of the Mamu-B*098 complex. (a) Two views of the trimer complex of the ectodomain of Mamu-B*098 heavy chains

(blue), b2m (orange) and C14nef5 (yellow) are shown. (b) Superimposed images of the a1 and a2 domains of Mamu-B*098 (blue) with those of

MHC class I and MHC class I-like molecules (orange) are shown. (c) C14nef5 binding to Mamu-B*098 is demonstrated by a 2Fo-Fc map (green mesh)

contoured at 0.8s (left). The bound lipopeptide accommodated in the semi-transparent Ag-binding cavity is shown (right). (d) The surface of the
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been observed for any conventional 9-mer peptide-presenting
MHC class I molecules. The A pocket typically contributes
to stabilizing the binding of peptides by establishing a network of
hydrogen bonds between their N-terminal amide group and the
highly conserved tyrosine residues at positions 7 and 171 of MHC
class I molecules12. Therefore, the lack of easy access to the A
pocket indicates that Mamu-B*098 may be unable to bind
conventional 9-mer peptides in a similar manner to that of
known MHC class I molecules. Taken together, these structural
features suggest that the Ag-binding groove of Mamu-B*098 has
evolved to specifically bind N-myristoylated 5-mer peptides
rather than conventional long peptides.

A soluble TCR ab dimer derived from 2N5.1 interacted with
C14nef5-loaded Mamu-B*098 molecules with a similar affinity
to that for peptide-specific TCR–MHC interactions (Fig. 1d).
Epitopic determinants for peptide-specific, MHC class I-restricted
TCRs often involve as many as six or seven amino acid
residues1,22,23. In contrast, the superimposed images of C14nef5
and conventional long peptides (Fig. 5a) indicated that the short
stretch of C14nef5 amino acid residues (Gly2, Ala3 and Ile4) was

only exposed externally with the potential to interact directly with
specific TCRs. Furthermore, the three consecutive amino acid
residues flanked by the conserved N-terminal glycine and
C-terminal serine/threonine residues are unable to be randomly
selected for protein N-myristoylation to occur naturally in cells24,
suggesting that the diversity generated within this region may be
more limited than that achieved in MHC class I-presented
9-mer peptides. Given that N-myristoylation occurs for viral
and self proteins, this predicts the highly stringent negative
selection executed in the thymus for the elimination of self
lipopeptide-specific T cells; otherwise, autoimmune disorders
may develop, as is occasionally observed in patients with viral
infections25,26.

Despite such potential risks, the MHC class I-restricted CTL
response that specifically senses the N-myristoylation of viral
proteins may be beneficial to host defenses against viral
infections. The N-myristoylation of the Nef protein is critical
for anchoring it at the plasma membrane, thereby assisting its
immunosuppressive activity. The N-myristoylated Nef protein
was previously shown to downregulate the surface expression of
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MHC class I molecules, resulting in the inefficient induction of
CTL responses to viral proteins27. The results of the present study
indicated that this well-known evasive mechanism executed by
HIV and SIV was simultaneously counterbalanced by the host
immune system through eliciting CTL responses that precisely
detected the N-myristoylation event of the Nef protein. As for a
fraction of MHC class I molecules, including HLA-C proteins28,
preliminary studies have suggested that the surface expression of
Mamu-B*098 is not downregulated in Nef-expressing HeLa cells.
Furthermore, cDNA clones with exon 6 selectively spliced out
have been isolated from primary cells, which encode the
Mamu-B*098 protein with the deletion of a long stretch of
amino acid residues in the cytoplasmic domain, including
tyrosine at position 320. As this residue is essential for
Nef-mediated downregulation to occur29, we predicted that
the surface expression of the truncated form of Mamu-B*098
may be unaffected by the Nef protein. Taken together, these
findings point to a finely tuned balance achieved by the
immunosuppressive activity of the N-myristoylated Nef protein
and MHC class I-restricted CTLs capable of sensing the
N-myristoylation event. Besides HIV and SIV, pathogenic
viruses produce N-myristoylated proteins, which are often
critical for pathogenesis30–32. The N-terminal amino acid
residues constituting the N-myristoylation motif are hard for
viruses to mutate without affecting protein function33,34.
Therefore, N-myristoylated short peptide-presenting MHC class
I alleles may be of evolutional significance.

Methods
Generation of monoclonal antibodies. The rhesus macaques (Macaca mulatta)
used in this study were treated humanely in accordance with institutional
regulations, and the experimental protocols were approved by the Committee for
Experimental Use of Non-human Primates at the Institute for Virus Research and
at the Primate Research Institute, Kyoto University. Rhesus macaque monocytes

were isolated from PBMCs using MACS MicroBeads (Miltenyi Biotec, Bergisch
Gladbach, Germany) conjugated with cross-reactive anti-human CD14 Abs. After
immunizing BALB/c mice with these monocytes, spleen cells were obtained and
fused with SP2/0 myeloma cells using the standard polyethylene glycol method35.
Culture supernatants of the hybridoma clones were tested at a dilution of 1:1 for
their reactivity to rhesus macaque monocytes by flow cytometry and positive clones
were subjected to T-cell assays to assess blocking activities.

Isolation of MHC class I genes. Total RNA was extracted from rhesus macaque
monocytes using the RNeasy mini kit (Qiagen, Hilden, Germany) and first-strand
cDNA was synthesized from 3 mg of RNA using the SMART cDNA Library
Construction kit (Clontech, Palo Alto, CA), followed by a treatment with RNaseH
(Invitrogen, Carlsbad, CA). DNA samples were incubated with 0.1 nmol of a
biotinylated oligo-probe (50-GAG GCC ACC CTG AGG TGC TGG GCC CTG-30 ,
specific for the conserved MHC class I a3 domain) for 5 min at 95 �C and then for
2 h at 55 �C, and probe-bound DNAs were captured by an incubation for 1 h at
room temperature with 150 mg of Streptavidin–Dynabeads (Invitrogen). After
magnetic separation, DNA was used as a template for PCR amplification. PCR was
performed with the Advantage2 DNA polymerase (Clontech) according to the
manufacturer’s instructions. The DNA samples were treated sequentially with
proteinase K and SfiI, followed by cloning into the pEXP-Lib vector (Clontech).
Each of the isolated DNA clones was transfected into the rhesus macaque kidney
epithelial cell line LLC-MK2 using the Lipofectamine 2000 reagent (Invitrogen)
and the cell transfectants were used as Ag-presenting cells in T-cells assays with
2N5.1 as responder cells36.

Generation of the C14nef5-loaded Mamu-B*098 complex. Recombinant
proteins were prepared as described previously with some modifications37.
Briefly, DNA constructs encoding the ectodomain of Mamu-B*098 (from Gly1 to
Pro276 with the unpaired Cys167 mutated to Ser and a Met-Ala added to the
N terminus) and rhesus b2m (from Ile1 to Met99 with a Met-Ala added to the N
terminus) were synthesized and cloned into pLM1. The expression plasmids were
introduced into the E. coli Rosetta 2 (DE3) pLysS strain (Novagen, Madison, WI)
and colonies were inoculated into a Terrific Broth supplemented with 50 mg ml� 1

ampicillin. Isopropyl-b-D-thiogalactoside was added to the culture at a final
concentration of 0.5 mM when the OD600 value of the culture reached 0.5. After an
additional 6-h culture, bacteria were harvested and lysed in a buffer containing
50 mM Tris-HCl pH 8.0, 1 mM EDTA, 0.1% NaN3, 10 mM dithiothreitol (DTT),
100 mM NaCl, 1% Triton X-100, 1% deoxycholate and 5 mM MgCl2, followed by a
treatment with DNase I. After 6 h of stirring, the samples were centrifuged and the
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pellets were washed twice with a wash buffer containing 50 mM Tris-HCl pH 8.0,
1 mM EDTA, 0.1% NaN3, 1 mM DTT, 100 mM NaCl and 0.5% Triton X-100, and
once with a rinse buffer containing 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 0.1%
NaN3 and 1 mM DTT. The purified inclusion bodies were then dissolved in a
buffer containing 25 mM MES pH 6.0, 10 mM EDTA, 6 M Guanidine-HCl and
1 mM DTT, and insoluble material was removed by centrifugation. The
supernatant was treated with 50 mM DTT for 3 h at 37 �C and aliquots were stored
at � 80 �C until use.

To obtain a trimer complex of B*098 heavy chains, b2m and C14nef5, the
solubilized Mamu-B*098 heavy chains (33 mg) and b2m (12 mg) were refolded by
rapid dilution in 1 litre of refolding buffer (100 mM Tris-HCl pH 8.3, 500 mM
L-arginine, 2 mM EDTA, 0.5 mM oxidized glutathione and 5 mM reduced
glutathione) containing 5 mg of C14nef5. After 48 h of continuous stirring at 10 �C,
the samples were dialysed at 10 �C once against 4 l of 100 mM urea and twice
against 4 l of 10 mM Tris-HCl pH 8.0. The refolded proteins were concentrated
with DEAE-650M (Toyopearl, Tokyo, Japan) and subjected to HiLoad 16/600
Superdex 200 pg (GE Healthcare, Milwaukee, WI) size-exclusion chromatography
and monoQ (GE Healthcare) anion exchange chromatography. The structural
integrity of the protein complex was confirmed by native PAGE, circular dichroism
spectra and enzyme-linked immunosorbent assay with conformation-dependent
monoclonal antibodies to MHC class I (MB226) and b2m (MB217).

Crystallization and structure determination. Crystals were formed at 20 �C by
mixing 1 ml of a 10-mg ml� 1 protein solution and 1 ml of a mother liquid
containing 100 mM Tris-HCl pH 7.2, 2 mM zinc chloride and 13% PEG 6000,
which was then cryoprotected in 20% ethylene glycol. Diffraction data were
collected at 100 K (in a cold nitrogen gas stream) on a Rigaku Saturn A200
charge-coupled device detector (Rigaku/MSC, Woodlands, TX), using synchrotron
radiation with a wavelength of 1.0 Å, at the BL26B1 station, SPring-8, Hyogo,
Japan38. The resulting data set was processed, merged and scaled using HKL-2000
(HKL Research, Charlottesville, VA)39. The complex structure was solved by
molecular replacement with Mamu-B*17 (PDB code 3RWJ) as a search model, as
implemented in the CCP4i software suite40. The model was refined using the
REFMAC5 (ref. 41) and PHENIX42 software packages. The structure was
visualized and rebuilt using COOT 0.8.1 (ref. 43) and further modified on
s-weighted (2|Fo|—|Fc|) and (|Fo|—|Fc|) electron density maps. Zinc ions were
carefully placed onto the structure by calculating its abnormal dispersion. Repeated
processes of rebuilding and refinement resulted in Rwork/Rfree values of 19.5 and
22.8% with 98.7% of residues being in favoured regions and 0.1% of residues being
in outliers in a Ramachandran plot implemented in COOT. The four Mamu-
B*098:C14nef5 complexes in the asymmetric unit were nearly identical (average
r.m.s.d. of 0.37 Å over 276 Ca atoms) and the structure of one representative
complex composed of chains D, E and F was described. Crystallographic images
were produced using PyMOL (DeLano Scientific, San Carlos, CA).

The accessible surface area (Fig. 2e) and molecular contacts between C14nef5
and Mamu-B*098 (Supplementary Table 1) were analysed using CCP4i. The sizes
of pocket B (composed of amino acid residues 7, 9, 22, 24, 45, 63, 66, 67, 70, 74, 97
and 99) and pocket F (composed of amino acid residues 77, 80, 81, 84, 95, 116, 117,
118, 123, 124, 143, 146 and 147) were calculated using the CASTp web server
(http://cast.engr.uic.edu)44 with a probe radius of 1.4 Å (Figs 3b and 4a,
respectively). The r.m.s.d. values over all the Ca atoms in the a1 and a2 domains
after the superimposition of Mamu-B*098 with HLA-B27 (1K5N), Mamu-B17
(3RWG), HLA-A2 (3MRE), HLA-E (3BZE), HLA-G (3KYO), MR1 (4L4T), HFE
(1A6Z) and CD1a_ENREF_38 (4X6F) were calculated (Fig. 2b). The spatial
configuration of C14nef5 bound to Mamu-B*098 was compared with that of
peptides bound to HLA-A1 (3BO8), HLA-A2 (3MRE), HLA-A3 (3RL1), HLA-A11
(1X7Q), HLA-A68 (4HX1), HLA-B8 (4QRS), HLA-B15 (1XR9), HLA-B27 (1K5N),
HLA-B39 (4O2C), HLA-B44 (1M6O), HLA-B51 (1E27), HLA-B53 (1A1M),
HLA-B57 (2BVP) and HLA-Cw4 (1QQD) (Fig. 5a). The VDW forces were
estimated by a fragment molecular orbital calculation using the PAICS programme
(Supplementary Fig. 3)45–47. Electrostatic potential was calculated using the
eF-surf server (http://ef-site.hgc.jp/eF-surf/; Supplementary Fig. 4)48.

Generation of b2 m-linked MHC class I proteins. Single-chain MHC proteins in
which b2m was linked via a Gly-Ser linker (GGGGSGGSGSGGGSS) to the ecto-
domain of either Mamu-B*098 or Mamu-A*02, followed by a biotinylation sequence
peptide (LHHILDAQKMVWNHR), were also expressed in E. coli and were purified
in a similar manner to the trimer complex of Mamu-B*098, b2m and C14nef5.
The b2m-linked Mamu-B*098 protein was refolded without C14nef5, whereas the
b2m-linked Mamu-A*02 protein was refolded in the presence of the YY9 peptide
(YTSGPGIRY). These recombinant proteins (3 mg) were biotinylated by being
incubated for 12 h at 20 �C with 2mg of BirA enzyme (Sigma-Aldrich, St Louis, MO)
in a biotinylation buffer containing 100 mM Tris-HCl pH 8.0, 5 mM MgCl2, 4.5 mM
ATP and 4 mM D-biotin, and were purified by size-exclusion chromatography.

Generation of a soluble TCR dimer. TCR dimers were generated by the disulfide-
linked TCR method49. DNA constructs encoding the extracellular domains of
2N5.1-derived TCRa (from Gln1 to Gly200 with Thr158 mutated to Cys) and TCRb
(from Gln1 to Asp242 with Ser169 mutated to Cys) were cloned into pET-21c(þ ),
and the expression plasmids were expressed in E. coli as described above. Purified
TCRa (15 mg) and TCRb (16 mg) proteins were combined in 500 ml of a buffer
containing 100 mM Tris-HCl pH 8.1, 400 mM L-arginine, 2 mM EDTA, 5 M urea,
3.7 mM cystamine and 6.6 mM cysteamine, and then incubated for 24 h at 10 �C
with continuous stirring. The samples were dialysed three times against 4 l of 10 mM
Tris-HCl pH 8.0 and purified as described above. A non-reducing SDS–PAGE
analysis confirmed disulfide bond formation between the TCRa and TCRb chains.

T-cell assays. Streptavidin-coated 96-well plates (Thermo Scientific, Hudson, NH)
were overlaid with 10 mg of the biotinylated b2m-linked Mamu-B*098 and Mamu-
A*02 proteins, and lipopeptide Ags (1mg) were loaded by an overnight incubation
at 37 �C. The wells were then washed extensively and T cells (5� 104 per well) were
added. After a 24-h incubation at 37 �C, aliquots of the culture supernatants were
collected and the amount of IFN-g released into the medium was measured by a
human/monkey IFN-g enzyme-linked immunosorbent assay kit (Mabtech, Nacka
Strand, Sweden).

Biolayer interferometry and SPR-binding assays. The binding of ligands to
MHC class I molecules was analysed using the Octet RED96 system equipped with a
streptavidin-conjugated biosensor (Pall ForteBio, Menlo Park, CA) according to the
manufacturer’s instructions. Biotinylated b2m-linked Mamu-B*098 and Mamu-
A*02 proteins were immobilized on the sensor tip surface with a signal magnitude of
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Figure 5 | Spatial configuration of MHC class I-presented C14nef5 and

conventional peptides. (a) A stereo view of C14nef5 (thick yellow sticks)

bound to Mamu-B*098 overlaid with an array of representative 9-mer

peptides (thin lines) bound to MHC class I molecules is shown. (b) The

space coordinates of the main chain of MHC class I-bound peptides were

determined for 280 registered MHC class I:peptide complexes and the
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axis and parallel to the line connecting the centres of two a-helixes) and z

axis (vertical to the x axis and y axis) are shown with open circles. Error

bars indicate s.d. The space coordinates of Mamu-B*098-bound C14nef5

were also determined and are shown with closed circles. It is worth noting

that the three C-terminal residues (Ala3, Ile4 and Ser5) of C14nef5 and

corresponding amino acid residues of conventional peptides exhibited a

similar spatial configuration, whereas the two N-terminal residues (Gly1 and

Gly2) of C14nef5 deviated in the y- and z axes from the position of the

corresponding residues of conventional peptides.
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B5.0 nm. The sensors were treated with 10mg ml� 1 biocytin for quenching,
followed by incubation with lipopeptides (10mM) in an assay buffer (20 mM
Tris-HCl pH 7.5, 150 mM NaCl and 2% dimethylsulfoxide). After 45 min, the sen-
sors were placed in the assay buffer without lipopeptides and incubated for an
additional 30 min. Assays were performed at 30 �C. SPR-binding assays were per-
formed to assess TCR interactions using the Biacore 3000 (GE Healthcare) according
to the manufacturer’s instructions. Lipopeptide Ag-loaded MHC molecules were
immobilized on the sensor chip SA and then incubated at 30 �C with serially diluted
2N5.1 TCR proteins for 90 s (for association), followed by an incubation at 30 �C in
an analyte-free assay buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl and 1 mM
MgCl2) for 120 s (for dissociation). After reference subtraction, binding signals were
analysed using the BIAevaluation 3.1 software. The equilibrium-dissociation con-
stant (KD) was obtained by a global curve fitting method.
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