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Almost all nucleated cells secrete extracellular vesicles (EVs) that are heterogeneous

spheroid patterned or round shape particles ranging from 30 to 200 nm in size. Recent

preclinical and clinical studies have shown that endothelial progenitor cell-derived

EVs (EPC-EVs) have a beneficial therapeutic effect in various diseases, including

cardiovascular diseases and kidney, and lung disorders. Moreover, some animal studies

have shown that EPC-EVs selectively accumulate at the injury site with a specific

mechanism of binding along with angiogenic and restorative effects that are superior to

those of their ancestors. This review article highlights current advances in the biogenesis,

delivery route, and long-term storage methods of EPC-EVs and their favorable effects

such as anti-inflammatory, angiogenic, and tissue protection in various diseases. Finally,

we review the possibility of therapeutic application of EPC-EVs in the clinic.

Keywords: extracellular vesicles, endothelial progenitor cells, exosomes, miR (microRNA), clinical application of

EPC exosomes

INTRODUCTION

Endothelial progenitor cells (EPCs) have been widely used to treat cardiovascular ischemic diseases
since their discovery in 1997 (1). Initial clinical trials, in parallel with preclinical studies, raised
hopes of cures for life-threatening ischemic diseases (2). In subsequent studies, EPC biology was
further investigated and it was found that after long-term culture of between 15 and 21 days,
cobblestone-shaped colonies emerged, called blood endothelial outgrowth cells (3). The phenotypes
of these cells are similar to those of the adult endothelial cells and have a greater proliferative
rate (3); Yoder‘s group (4) found similar cells from umbilical cord blood cells (4). Clinical studies
have demonstrated that the origin of EPC is bone marrow, and considering pathological triggers,
these cells migrate to damaged tissues and physically contribute to facilitating vasculature (3, 5–7).
However, several groups are concerned about the existence of EPCs based on mouse data (8). In
addition, the culture of EPCs in diverse systems, different methodologies, and various “misleading
terms” has led to confusion in EPC biology and application. To this end, a recent consensus
attempted to standardize EPC nomenclature based on cellular phenotypes and biological functions
(9). A consensus statement on EPC nomenclature and culture standardization may facilitate
progress toward the use of EPC-derived extracellular vesicle (EPC-EV) therapy. Depending on the
sequence of appearance in culture, Hur et al. (10) reported two types of EPCs. The first were termed
early EPCs or myeloid angiogenic cells that were positive for CD45, CD14, and CD31 markers, and
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mainly worked via paracrine mechanisms, such as growth
factors and EVs (10, 11). The second cell population, named
late-EPC or endothelial colony-forming cells (ECFCs), usually
appeared in culture at 2 to 3 weeks after cell culturing, and
had similar phenotypes as endothelial cells, and enhanced
neovascularization in ischemic tissues (10, 12). Recent studies
have demonstrated that ECFCs secrete EVs that are crucial for
organ restoration (13–15).

Almost all nucleated cells secrete extracellular vesicles cargo
which deliveries nucleic acid and proteins to the recipient cells.
The International Society for Extracellular Vesicles consensus
recommendation on nomenclature endorses to use “extracellular
vesicles” as a generic term for a lipid bilayer particle released from
the cell and cannot replicate. Moreover, it has a broader meaning
which can cover subtypes like exosomes and microvesicles
as well. Depending on the physical size range, EVs divide
small (<100 nm), medium (<200 nm), or large (>200 nm), and
usually express CD63+, CD81+, Annexin A5, etc., surface
markers (16). The small EVs are generated within endosomes
as intraluminal vesicles and this complex EVs biogenesis occurs
by endosomal sorting complex required for transport (ESCRT)
sortingmachineries involvement (17).Whereas, medium or large
EVs originate by an outward budding at the plasma membrane
(Figure 1) (18). There are several methods to isolate secreted
EVs such as classical differential centrifugation, density gradient
centrifugation, size-exclusion chromatography, ultrafiltration,
immunocapture, precipitation, and tangential flow filtration,
etc. (Figure 1) (16). Each EV isolation strategy or its working
principle along with their advantages and disadvantages was
reviewed previously (19).

A seminal study showed that EPCs secrete microvesicles, and
the latter activate an angiogenic program in endothelial cells
via horizontal transfer of mRNA (20). Subsequently, preclinical
studies showed that EPC-EVs have superior therapeutic effects on
various ischemic diseases (Figure 2) (21–23). In the last decade,
numerous studies on EPC-EVs have shed light on EV biogenesis,
uptake, and mechanism of action (24–27). This review highlights
recent advances in the biogenesis, biological functions, route of
delivery, and long-term storage of EPC-EVs. Finally, we describe
potential translation to the clinic and regions of application in the
context of various ischemic and inflammatory diseases.

EPCS VS. EPC-EVS

Recently, it has been reported that therapeutic cell
transplantation-related effects for cardiovascular diseases
are a result of paracrine mechanisms and not from direct cell
contribution to damaged organs (28). Regardless of the target
delivery technique, the long-term engraftment of cells is limited;
hence, the striking short-term improvement in ischemic organ
function after cell transplantation is mainly associated with
paracrine trophic factors such as EVs (29). It has been shown
that early EPC populations are contaminated with hematopoietic
cell subsets, such as monocytes (30), and the latter secrete
various nanoparticles. In contrast, late EPCs have specific
phenotypes and biological functions similar to endothelial cells,

and secrete angiomiRs-shuttled EVs, which are a key genetic
material for neovascularization of ischemic tissues (14, 31, 32).
Dozens of preclinical studies have demonstrated EPC-EV effects
that are superior to those of the ancestor (33). EVs possess
numerous advantages over cell-based therapies in the context of
regenerative medicine in terms of (1) cargo delivery of various
favorable miRs responsible for angiogenesis, fibrosis, and cell
proliferation; (2) potential for “off the shelf ” availability and
respective for repetitive transplantation; (3) cell-free biological
products that may be utilized as drug carrier systems in the
pharmaceutical industry, and finally (4) generally reduced
immunogenicity owing to which allogenic transplantation is
an additional benefit. The abovementioned benefits are crucial
for treating either acute or chronic diseases. The latter listed
major advantages of the EVs are linked to less immunogenic
than their parental cells because of the lower abundance of
transmembrane proteins such as MHC complexes on their
surface (34). Unlike live cells, EVs have a long shelf life and may
be transported and stored for long periods (see the section on
long-term preservation and storage of EVs). In the representative
Venn diagram (Figure 3) (transcriptome data from previous
publication PMID: 28631889), we summarize the similarities
and differences between ECFC-derived microRNAs (miRs) and
ECFC-EV-derived miRs (35). It can be clearly seen that the
majority of parent cell-derived miRs (ECFC-miRs) can be found
in ECFC-EV-derived miRs, suggesting a similar transcriptome
profile along with the mechanism of action (Figure 3). A
previous study showed that the therapeutic potential of EPC-
EVs is superior in terms of enhancing neovascularization
and recovery in a murine hind limb ischemia model (12).
The mechanism of activation of the angiogenic program in
quiescent endothelial cells is linked by horizontal transfer
of genetic materials such as angiomiR, RNA, and proteins
(12, 13). Of note, ischemia itself is a trigger for angiogenesis.
However, angiogenesis-qualified angiomiRs accelerate not only
angiogenesis but also proliferative and anti-apoptotic effects
(Figure 4). Collectively, well-packed EPC-EVs have a great
advantage in preserving ischemic tissue from injury, and future
studies are warranted to define the beneficial effects of EPC-EVs.

EPC-EVS IN CARDIOVASCULAR DISEASES

Cardiovascular diseases are the leading cause of mortality
and morbidity in the globe (36). It has been shown that
therapeutic neoangiogenesis with EPCs is a promising strategy
for treating advanced cardiovascular diseases and preventing
major adverse events (37). Similar transcriptome profiles of
EPC-derived EVs to the EPCs facilitate therapeutic application
EPC-EVs in CVD. Yue et al. (38) demonstrated that EPC-
derived exosome treatment enhanced left ventricle cardiac
function, reduced cell apoptosis, diminishedmyocardial scar size,
and promoted post-myocardial infarction neovascularization.
Previous studies have shown that sonic hedgehog modified
progenitor cells (CD34+) actively secrete exosome cargo
and carry various reparative molecules to cure the ischemic
myocardium (39, 40). EPC-EVs regulate cardioprotection by
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FIGURE 1 | Graphical abstract.

orchestrating cell angiogenesis, migration and adhesion, cell
proliferation, and cell differentiation processes (Figure 5). Target
gene expression analysis of EPC-EV-derived miR revealed
that heart regeneration and protection enriched functional
gene upregulation (Figure 5). Cardioprotective properties of
EPC-derived EV is associated with miR-218-5p and miR-363-
3p overexpression. The latter facilitated cardiac function via
enhanced neoangiogenesis and inhibited myocardial fibrosis
(41). Moreover, EPC-EVs treatment promoted mesenchymal-
endothelial transition and along with protective effect to
myocardial infarcted tissues (42). Recently, Chen et al. (33)
showed that using EPC-EVs and encapsulation with a hydrogel
could increase biological activity for up to 3 weeks through
sustained release. Furthermore, the injected hydrogel system
for sustained EPC-EV delivery into the ischemic myocardium
augmented hemodynamics via increased vessel density in the
peri-infarcted area along with reduction in myocardial scar
formation. Interestingly, the regenerative efficacy of hydrogen-
encapsulated EPC-EVs is not inferior to that of the parent cells or
EPCs (33). Repetitive systemic transplantation of EVs is a simple
delivery option. We have recently shown that systemic repetitive
transplantation of EVs derived from regeneration-associated cells

in a rat model of myocardial IR injury significantly enhanced
cardiac functions, such as ejection fraction, and preserved mitral
regurgitation. In addition, we could not observe anti-donor
immune responses even when EV transplantation was performed
in allogeneic settings.

Taken together, EPC-EVs have anti-inflammatory and anti-
fibrotic properties and may enhance angiogenesis in the
ischemic myocardium.

EPC-EVS IN ACUTE LUNG INJURY AND
ACUTE RESPIRATORY DISTRESS
SYNDROME (ALI/ARDS) PATHOLOGY

Systematic reviews have demonstrated that the mortality rate in
ALI/ARDS is between 36 and 44% and is usually induced by
various etiologies such as sepsis, pneumonia, and severe traumas
(43). The high mortality rate in ALI/ARDS facilitates various
“cell-free” therapeutic EVs, including EPC-EVs. Emerging
data shows that EPC-EV administration markedly reduced
lipopolysaccharide-induced lung inflammation compared to that
in the control groups, indicating a strong anti-inflammatory
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FIGURE 2 | Extracellular vesicles biogenesis and isolation methods. UCF, ultracentrifuge; dUCF, density gradient centrifugation, size-exclusion chromatography.

effect of EVs. Histological examination of the EPC-EV-
administered group showed limited alveolar edema and lung
neutrophil infiltration, and reduced cytokine/chemokine levels
in the bronchoalveolar lavage fluid (44). Mechanistically, EPC-
EV contains abundant miRNA-126, and overexpression of
miRNA-126-3p can target phosphoinositide-3-kinase regulatory
subunit 2, whereas overexpression of miRNA-126-5p inhibits
the inflammatory alarmin high mobility group box 1 (HMGB1)
and the permeability factor vascular endothelial growth factor
(VEGF) α (44). Wu et al. (45) reported different mechanistic
insights into EPC exosome-mediated transfer of miR-126 to
endothelial cells such as the selective expression of SPRED1
and the enhancement of RAF/ERK signaling pathways that
were primarily responsible for restoring the acute-injured lung.
In summary, EPC-EVs have a beneficial effect in improving
ALI/ARDS outcomes, and further studies are necessary to define
optimal and targeted EV delivery methods to the site of injury.

EPC-EVS IN SEPSIS

Sepsis is a systemic inflammation induced mainly by
microorganisms, leading to organ dysfunction. Recent studies

have highlighted that EPC transplantation has a beneficial effect
on animal models of sepsis (46, 47). Mechanistically, various
pro-inflammatory cytokines induced by pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) in peripheral blood cause vascular injury
and increase permeability (47). Consequently, in response to
vascular injury, EPCs mobilize in an SDF1a-dependent manner
and directly recruit to the injury site and differentiate into
mature endothelial cells (47, 48). Fan et al. (46) demonstrated
that EPCs and SDF1a administration synergistically improves
survival in septic animals via enhanced miR-126 and miR-
125b expression, which is believed to play key roles in the
maintenance of endothelial cell function and inflammation.
Later, they demonstrated that the protective effect of EPCs on
the microvasculature after sepsis occurs via exosome-mediated
transfer of miRs such as miR-126-3p and 5p (49). EPC-EVs
miR-126-5p and 3p suppressed DAMP-induced HMGB1 and
vascular cell adhesion molecule 1 (VCAM1) levels, whereas
inhibition of miR-126-5p and 3p through transfection with miR-
126-5p and 3p inhibitors disrupted the beneficial effect of EPC
exosomes. Thus, EPC-EVs prevent adverse septic complications
via miR-126 delivery (49).
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FIGURE 3 | Endothelial colony forming cell (ECFC)-derived microRNAs (miRs) vs. ECFC-extracellular vesicle (EV)-derived miRs. As shown in the Venn diagram, the

majority of the top upregulated human miRs of both ECFC-derived and ECFC-EVs-derived miRs comprise similar miRs. This provides evidence that EPCs work via

paracrine factors in organ regeneration. This miR sequence data was generated from PMID: 28631889.

EPC-EVS IN ACUTE KIDNEY DISEASES

Ischemia/reperfusion is a major cause of acute kidney injury
(AKI) in humans, and is associated with tubular cell necrosis
and endothelial cell dysfunction or loss. Growing evidence
has shown that the therapeutic potential of EPC-EVs is
superior in terms of acute kidney disease. Vinas et al.
(15) used ECFC-derived EVs in an acute kidney injury
mouse model and showed that miR-486-5p enriched ECFC
exosomes significantly reduced ischemia-induced kidney injury.
Histologically, exosome treatment decreased the infiltration of
neutrophils along with diminished apoptosis and caspase-3
activation.Moreover, administration of exosomes to acute kidney
injury-induced animals caused potent protection against kidney
injury after 24 h, as evidenced by normalization of plasma
creatinine and blood urea nitrogen to the same level as that in
the healthy control. Mechanistically, miR-486-5p enriched ECFC
exosomes target to reduce the phosphatase and tensin homolog,
and stimulate the Akt phosphorylation pathway for ischemic
tissue preservation (15). Cantaluppi et al. (13) demonstrated
that EPC-EVs carrying miR-126 and miR-296 protect against
experimental acute renal IRI, as evidenced by a significant
decrease in serum creatinine and blood urea nitrogen levels
and improvement in histological signs of microvascular and

tubular injury. It is well-known that EPC-EVs exert miR-126
and have strong angiogenic and anti-apoptotic potential (23). In
another study, EPC-EV transplantation rescued an experimental
model of anti-Thy1.1-induced glomerulonephritis via inhibition
of antibody- and complement-mediated injury of mesangial
cells (50). In a review article, Sun et al. (51) summarized
that stem/progenitor cell-derived EVs, including EPC-EVs, have
beneficial effects such as anti-inflammatory, anti-apoptotic, anti-
fibrotic, and may also promote renal cancer progression. In
summary, EPC-EVs were shown to have a strong renoprotective
effect in an acute kidney injury model, and future studies are
warranted to extend their application to chronic kidney diseases.

EPC-EVS IN BONE AND CONNECTIVE
TISSUE REPAIR

Accumulating evidence demonstrates that EPCs have beneficial
effects on bone regeneration by secreting trophic and paracrine
factors (52, 53). Pang et al. (54) showed that EPCs modulate
the survival, migration, and differentiation potential of osteoclast
precursors through the VEGFR-2, CXCR4, Smad2/3, Akt, ERK1,
and p38 MAPK pathways (Figure 6). Interestingly, target genes
of highly expressed EPC-EVmiRs yielded several significant bone
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FIGURE 4 | As shown in the flow chart that highly expressed ECFC-EC-derived miRs biological targets were predicted in silico. The most significantly enriched

functional annotation were Angiogenesis, vasculogenesis, and lymphangiogenesis. This miR sequence data was generated from PMID: 28631889. MicroRNA target

genes were predicted using IPA with information from TargetScan, miRecords, and TarBase databases.

FIGURE 5 | Flow chart depicts highly expressed ECFC-EC-derived miRs biological targets that were predicted in silico. The significantly enriched functional

annotation was associated with heart tissue repair. This miR sequence data was generated from PMID: 28631889. MicroRNA target genes were predicted using IPA

with information from TargetScan, miRecords, and TarBase databases.
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FIGURE 6 | Highly expressed ECFC-EC-derived miRs biological targets were predicted, and the most significantly enriched functional annotations were cell migration

and cell cycle. This miR sequence data was generated from PMID: 28631889. MicroRNA target genes were predicted using IPA with information from TargetScan,

miRecords, and TarBase databases.

FIGURE 7 | Bioinformatics analysis showed that significantly enriched functional annotation related to bone and connective tissue regeneration. This miR sequence

data was generated from PMID: 28631889. MicroRNA target genes were predicted using IPA with information from TargetScan, miRecords, and TarBase databases.

and osteoblast differentiation-enriched functional categories
(Figure 7). Through in silico experiments, Qin et al. (55) showed
that EPC-EVs regulate the osteoblastic differentiation of bone
marrow-derived mesenchymal stromal cells by inhibiting the
expression of osteogenic genes and increasing proliferation.
This suggests that EPC-EVs are able to control osteogenesis
and have beneficial effects on connective tissue development,
such as fibroblasts and chondrocytes (Figure 7). A preclinical
study showed that EPC-EVs have a strong therapeutic effect
on distraction osteogenesis by stimulating angiogenesis and
osteogenesis (56). The aforementioned therapeutic advantage of

EPC-EVs in bone and connective tissue regeneration expands its
application to cure various skeletal muscle diseases.

ANGIOGENIC PROPERTIES OF EPC-EVS

Recent studies have shed light on the biological activity and
function of EPC-Ev-derived miRs in various in vitro and in vivo
models. Dellet et al. (35) demonstrated the high expression levels
of 15 miRs identified in ECFC and ECFC-derived EVs such as
miR-10a/b, miR-21-5p, miR-30a-5p, miR-126-5p, let-7 families,
and miR151a-3p (Figure 3 and Table 1). We further investigated
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TABLE 1 | EPC-derived angio-miR.

miRs Mechanism of action Target diseases EVs or Exo origin Ref #

miR-126-3p VEGF-A, IL-3, IL-10, IGF-1,

ANG1, ANG2, and SPRED1

Enhanced biological function of EPC from

patients with ICM.

Knocking down miR-126-3p from EPC

abolished their angiogenic activity

EPC-derived EVs (23, 57)

miR-126-5p DLK1 Prevents atherosclerotic lesion formation

via DLK1 suppression

EC (35, 58)

miR-10b VEGF and HOX Promotes tumor growth via enhanced

angiogenesis

Circulating EPC,

EC

(35, 59, 60)

let-7b

let-7f-2-5p

let-7f-1-5p

let-7i-5p

Proangiogenic paracrine factors

and IL-10 and IL-12

ECFC-derived EVs vastly contain various

let-7 miR and modulate ischemia-induced

angiogenesis.

Tumor-associated macrophages

phenotypes were changed

upon downregulation

ECFC (35, 61–64)

miR-486-5p PTEN and Akt pathway Delivery of ECFC exosomes reduces

ischemic kidney injury via transfer of

miR-486-5p targeting PTEN

ECFC (15, 35)

miR-296-5p HGS, VEGFR2, PDGF-b, and

inhibiting DLL4 and Notch1

Augmented primary human brain

microvascular endothelial cells angiogenic

property

Angiogenic EC (65)

miR-150 c-Myb MiR-150 significantly promoted the

migration and tube formation ability of

EPCs in vitro and enhanced EPCs’

homing, organization, and resolution ability

in vivo

EPC (66)

EPC, endothelial progenitor cells; Exo, exosomes; EC, endothelial cells; ECFC, endothelial colony-forming cells; ICM, ischemic cardiomyopathy.

the angiogenic/vasculogenic properties of EPC-EV-derived miRs
in silico. As shown in Figure 4, the EPC-EVs-derived miR
targets are expressed on angiogenesis- and vasculogenesis-related
genes. The majority of the neovasculogenesis phenomenon is
coupled with cardiovascular system development and function
(Figure 4). Plummder et al. (59) reported that EPC-derived
miR-10b and miR-196b overexpression activates VEGF, and
the latter enhances breast tumor vasculature. Interestingly,
downregulation of miR-10b and miR-196b significantly inhibited
tumor angiogenesis in mice, indicating a strong angiogenic
potential. miR-126-5p andmiR-126-3p overexpression promoted
EPC migration and tube-like structure formation in ischemic
cardiomyopathy patients in vitro (57). Moreover, transplantation
of miR-126-3p-overexpressing EPCs into a rat model of MI
showed left ventricular hemodynamic functions along with
histological improvements (57). Mathiyalagan et al. (23) also
demonstrated that silencing miR-126-3p from CD34 cell-derived
exosomes abolished their angiogenic activity and beneficial
function both in vitro and in vivo. Furthermore, injection of
CD34 cell-derived exosomes increased miR-126-3p levels in
mouse ischemic limbs but did not affect the endogenous synthesis
of miR-126-3p, indicating a direct transfer of functional miR-
126-3p to the ischemic tissue (23).

DELIVERY ROUTES OF EPC-EVS

Systemic Infusion vs. Local Injection
Previous cell therapy trials have reported that the efficacy of
cell therapy is limited by poor engraftment of cells or that

engrafted cells disappear several months after transplantation,
suggesting a paracrine-based effect on the tissues. Depending on
the disease state and location, EV transplantation routes may
differ. Classical intravenous transplantation of EPC-EVs has been
widely used in preclinical and clinical studies (12, 67) (Table 2).
Several beneficial functions of systemic transplantation are listed,
including (i) no requirement for special sophisticated delivery
techniques, (ii) the immunomodulatory effect of EPC-EVs, and
(iii) option for repetitive transplantation that is advantageous
for local delivery. Sometimes, the desired results cannot be
obtained after one injection of EVs; consequently, repetitive
systemic transplantation via the vein is needed, whereas in several
diseases, local transplantation is not allowed for this technique.
Recently, Yi et al. (27) reviewed 29 publications on the route
of administration in preclinical studies and showed that the
intravenous route was selected in ∼80% of exosome injections,
and the remaining exosome delivery routes were intraperitoneal,
oral, or local. For instance, an ongoing phase one clinical
trial (NCT04327635) on safety evaluation of intracoronary
infusion of EV in patients with acute myocardial infarction
performs within 20min after stent placement or post-dilation
(whichever is last) (Table 2). This kind of delivery methodology
is widely used in previous/also current cell transplantation
trials into stent placement or post-dilation vessels to enhance
the treatment of damaged organs. Another completed clinical
trial (NCT04134676) primary outcome revealed that stem
cell-conditioned media-derived EVs therapeutic potential is
promising in terms of chronic ulcer size reduction, edema
decrease, and presence of granulation signs (Table 2). These
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TABLE 2 | Clinical trials on therapeutic applications of extracellular vehicles (EVs).

Study Title Status Location EVs or Exo origin ClinicalTrials.gov identifier

Antiplatelet therapy effect on extracellular vesicles in

acute myocardial infarction (AFFECT EV), Phase 4

Completed Warsaw, Poland and

Amsterdam,

Netherland

Extracellular vesicles

from endothelial cells,

leukocytes, and

platelets

NCT02931045

Safety evaluation of intracoronary infusion of

extracellular vesicles in patients with AMI, Phase 1

Not yet recruiting Commercial study of

drug called PEP

Unknown NCT04327635

Safety and efficacy of allogenic mesenchymal stem

cells derived exosome on disability of patients with

acute ischemic stroke: a randomized, single-blind,

placebo-controlled, Phase 1, 2 Trial

Active/recruiting Tehran, Iran Allogenic mesenchymal

stem cells-derived

exosome enriched by

miR-124

NCT03384433

Effect of plasma derived exosomes on cutaneous

wound healing

Active/recruiting Kumamoto, Japan Autologous

plasma-derived

exosomes

NCT02565264

Therapeutic potential of stem cell conditioned

medium on chronic ulcer wounds: pilot study in

human, Phase 1

Completed Banten, Indonesia Stem cell conditioned

media-derived EVs

NCT04134676

Effect of saxagliptin and dapagliflozin on endothelial

progenitor cell in patients with type 2 diabetes

mellitus

Recruiting District of Columbia,

United States

Exosomes released

from kidney podocyte

NCT03660683

Autologous serum-derived EV for venous trophic

lesions not responsive to conventional treatments

(SER-VES-HEAL)

Recruiting Turin, Italy Autologous

extracellular vesicles

from serum

NCT04652531

macroscopic findings were reported 2 weeks after local delivery
of EVs via gel.

In most cases, intravenously transplanted EVs accumulate in
the liver, lung, spleen, and kidney (27). For target organ delivery,
it has been shown that the local tissue inflammatory environment
and activation of receptors and ligands (adhesionmolecules) play
essential roles in EV uptake. This information is valuable for
in vivo biodistribution of exosomes and the control of dose and
potential side effects.

LOCAL SUSTAINED DELIVERY SYSTEM

To achieve better results, a targeted delivery system with
sustained release to damaged organs may be required. Chen et al.
(33) demonstrated that the injection of EPC-EVs incorporated
with shear-thinning gel into the border zone of myocardial
infarction improved the hemodynamic function of the heart. The
average steady EPC-EV release from the gel continued for over
21 days. This EV delivery strategy may enhance EV retention by
damaged tissue owing to the sustained release and has potential
for active use in trophic ulcer treatment.

MECHANISM OF UPTAKE AND ACTION OF
EPC-EVS

The mechanism of EV internalization into recipient or acceptor
cells is crucial in terms of intercellular communication. Several
EV internalization mechanisms have been presented previously
in the scientific literature, such as direct uptake followed by
fusion, phagocytosis, and macropinocytosis by the recipient
cell membrane (25). Indirect EV uptake mechanisms are

sophisticated and work through other pathways, such as the
clathrin-dependent and clathrin-independent pathways and
lipid raft-mediated, caveolin-mediated, and cell surface protein-
mediated endocytosis (24, 25, 68). In addition, recent reports
revealed that tissue microenvironment pH is a crucial factor
for EV uptake and secretion (69); for instance, in a rodent
myocardial ischemia injurymodel, MSC-EVs internalization into
ischemic cardiomyocytes was enhanced compared to that in the
non-ischemic counterparts, indicating a low pH condition as the
likely mechanism (69, 70). Another factor that is common for
the preferential accumulation of EPCs and hematopoietic cells in
ischemic tissue is the SDF-1/CXCR4 system (71–73). Recently,
Viñas et al. (14) showed that CXCR4/SDF-1α interaction plays
an essential role in EPC-derived exosome uptake in a mouse
acute kidney ischemia-reperfusion injury model. Interestingly,
EPC-EVs selectively targeted the ischemic kidney tissues.
Hence, transplanted EPC-EVs were detected 30min to 4 h
after reperfusion only within the proximal tubules, glomeruli,
and endothelial cells. However, this preferential internalization
into the ischemic kidney was interrupted when exosomes were
pre-incubated with the CXCR4 inhibitor plerixafor, suggesting
CXCR4/SDF-1 α-dependent EPC-EV uptake in ischemic tissues.
Taken together, EPC-EVs internalize to the target cells of the
CXCR4/SDF-1α system under ischemic conditions, similar to
EPCs, although other EPC-EV internalization mechanisms are
essential for non-ischemic diseases.

LONG-TERM PRESERVATION AND
STORAGE OF EVS

One of the major challenges for the prolonged clinical
applicability of EVs is the establishment of proper and
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reproducible preservation and storage conditions without
compromising their therapeutic potential. Several studies
have shown that different methods of storage, chemical
compounds, and temperature range optimization are crucial
before translation to the clinic (74–76). Recently, Wu et al. (77)
evaluated the effect of storage temperature by storing EVs at
4 ◦C, −20 ◦C, and −80 ◦C for up to 28 days and comparing
them to fresh EVs. In comparison to fresh EVs, 1 month of
storage at 4 ◦C and −20 ◦C changed the size distribution,
decreased the quantity and content, and affected cellular uptake
and biodistribution of EVs; however, storage at −80 ◦C did not
show such effects. The authors concluded that storage at 4 ◦C
or −20 ◦C is suitable for short-term preservation, whereas −80
◦C would be preferable for long-term preservation of EVs for
therapeutic applications (77). Jin et al. (78) reported that EVs
are stable under the conditions of 4 ◦C (for 24, 72, and 168 h),
at room temperature (for 6, 12, 24, and 48 h), and repeated
freeze-thaw (from one to five times).

Moreover, the assessment of DNA content and functionality
in EVs was stable in a changing environment over repeated
freeze-thaw cycles (78). Freeze-drying or lyophilization seems
to be the most reliable method for preserving EVs (76). The
common stabilizers used in lyophilization are disaccharides such
as glucose, lactose, sucrose, and trehalose. A comparative study
of EV storage at 4 ◦C or −80 ◦C and freeze-drying showed
that lyophilization preserves size and enzyme activity which are
indicators of EV stability (79). In summary, for long-term EV
storage, preferable conditions are deep freezing, such as at −80
◦C or below, whereas 4 ◦C may be acceptable for short-term use.
For advanced EV applications, it is preferable to store EV using
lyophilization methods to optimize the biological function and
therapeutic potential of EVs.

FUTURE PERSPECTIVES AND
CONCLUSION

Intensive research on endothelial progenitor cells and translation
to the clinic for various cardiovascular ischemia diseases has
increased our understanding of their therapeutic mechanisms
(e.g., paracrine mechanism-based action) and biological function

(80–82). EPC-EVs may be considered as a primary candidate
for use against certain ischemic diseases, owing to their strong
angiogenic, anti-fibrosis, and immunomodulatory properties (12,
20, 21, 23, 33, 57, 59, 80, 82–86) and safety in clinical settings
(Table 2). However, there are hurdles to overcome before EPC-
EVs can be applied as therapies such as standardization of
classification and nomenclature of EPCs and focusing on the
question of which EPCs should be used (9, 87). In addition,
depending on the origin, such as tissue-derived or circulating
EPCs, EPC-EVs cargo may contain/comprise various genetic
materials that could influence the clinical outcome and should
be carefully considered before therapy. Another aspect that needs
to be addressed is EPC culturing conditions, including the effect
of culture media, ischemia preconditioning, and composition
of EVs, all of which must be investigated precisely using large
animal disease models. The development of optimized and

scalable isolation of pure, clinical-grade EPC-EVs for off-the-
shelf therapy use will increase their significance. To date, most
EV-based studies have used intravenous bolus injection methods,
although the choice of the EV delivery route depends on the
location of the disease.

Nevertheless, completed and ongoing clinical trials (Table 2),
as well as numerous preclinical studies (38, 42, 44, 45, 86, 88),
indicate that EPC-EV therapy is feasible and that EVs are safe
and well-tolerated.
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