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Abstract

Motivation: De novo genome assembly is a challenging computational problem due to the high re-

petitive content of eukaryotic genomes and the imperfections of sequencing technologies (i.e.

sequencing errors, uneven sequencing coverage and chimeric reads). Several assembly tools are

currently available, each of which has strengths and weaknesses in dealing with the trade-off be-

tween maximizing contiguity and minimizing assembly errors (e.g. mis-joins). To obtain the best

possible assembly, it is common practice to generate multiple assemblies from several assemblers

and/or parameter settings and try to identify the highest quality assembly. Unfortunately, often

there is no assembly that both maximizes contiguity and minimizes assembly errors, so one has to

compromise one for the other.

Results: The concept of assembly reconciliation has been proposed as a way to obtain a higher

quality assembly by merging or reconciling all the available assemblies. While several reconcili-

ation methods have been introduced in the literature, we have shown in one of our recent papers

that none of them can consistently produce assemblies that are better than the assemblies

provided in input. Here we introduce Novo&Stitch, a novel method that takes advantage of optical

maps to accurately carry out assembly reconciliation (assuming that the assembled contigs are

sufficiently long to be reliably aligned to the optical maps, e.g. 50 Kbp or longer). Experimental

results demonstrate that Novo&Stitch can double the contiguity (N50) of the input assemblies

without introducing mis-joins or reducing genome completeness.

Availability and implementation: Novo&Stitch can be obtained from https://github.com/ucrbioinfo/

Novo_Stitch.

Contact: stelo@cs.ucr.edu

1 Introduction

De novo genome assembly is a fundamental problem in genomics

and computational biology. Despite significant algorithmic progress,

this problem remains challenging due to the high repetitive content

of eukaryotic genomes, short read length, uneven sequencing cover-

age, non-uniform sequencing errors and chimeric reads. Compared

to the second generation of sequencing technology, the third gener-

ation currently on the market, i.e. Pacific Biosciences (Eid et al.,

2009) and Oxford Nanopore (Clarke et al., 2009), provides longer

reads and more uniform sequencing coverage, but the sequencing

error rate is much higher (although errors are more uniformly dis-

tributed than the second generation).

Several de novo genome assembly tools are available, for both se-

cond and third generation sequencing data. Most assemblers for

second generation sequencing data rely on the de Bruijn graph (e.g.

Idury and Waterman, 1995; Peng et al., 2010; Pevzner et al., 2001;

Simpson et al., 2009; Zerbino and Birney, 2008) which allows one

to avoid the pairwise overlap step on the massive number of short

reads in input. Assemblers for third generation sequencing data

mainly use the overlap graph to store prefix-suffix overlaps between

the long (noisy) reads in input (Hernandez et al., 2008; Myers,

2005). Not only are these assembly tools fundamentally different at

the algorithmic level, but their designers have made different choices

in the tradeoff between maximizing assembly contiguity (e.g. N50)

and minimizing the probability of misassemblies (e.g. mis-joins).

Often these assembly tools have dozens of parameters that allow

one to adjust these trade-offs, but these parameters can be difficult

to optimize for a specific input dataset and target genome. As a
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result, it is common practice to generate as many assemblies as pos-

sible within the time frame of the sequencing project using different

assemblers and/or parameter settings, and try to identify the highest

quality assembly based on assembly statistics. However, it is difficult

to identify the ‘best’ assembly just from the assembly statistics. For

instance, the assembly with the highest N50 is likely to be the one

with most chimeric contigs (i.e. contigs with mis-joins).

The concept of assembly reconciliation has been proposed re-

cently as a more appealing alternative. Instead of selecting the ‘best’

assembly, assembly reconciliation tools take advantage of all the in-

dividual assemblies. They claim to produce a higher quality (consen-

sus) assembly by merging all of the available assemblies, so that the

contiguity of the assembly increases without introducing misassem-

bles. It turns out that the problem of assembly reconciliation is also

quite challenging. While several assembly reconciliation tools are

available [see, e.g. Reconciliator (Zimin et al., 2008), CISA (Lin and

Liao, 2013), GAA (Yao et al., 2012), GAM_NGS (Vicedomini

et al., 2013), GARM (Mayela Soto-Jimenez et al., 2014), MIX

(Soueidan et al., 2013), ZORRO (Argueso et al., 2009),

Metassembler (Wences and Schatz, 2015)], we have recently shown

in (Alhakami et al., 2017) that none of these tools can generate a

reconciled assembly which has consistently better contiguity and

correctness than the assemblies given in input.

Optical mapping technology allows life scientists to produce

genome-wide maps by fingerprinting long DNA molecules, typically

via nicking restriction enzymes. Linear DNA fragments are stretched

on a glass surface or in a nano-channel array, then the locations of

restriction sites are identified with the help of dyes or fluorescent

labels. While the cost of an optical map depends on the genome size,

it is not prohibitive in the overall budget of a sequencing project.

For a eukaryotic genome of about 1 Gb, the cost ranges from $5000

to $10 000. Based on our survey of the literature in the last three

years, about half of the major eukaryotic sequencing projects used

an optical map in the assembly pipeline, e.g. goat (Bickhart et al.,

2017), human (Pendleton et al., 2015), sea bass (Vij et al., 2016),

Ae.tauschii (Zimin et al., 2017), apple (Daccord et al., 2017), barley

(Mascher et al., 2017), maize (Jiao et al., 2017b), quinoa (Jarvis

et al., 2017).

In this paper, we introduce an assembly reconciliation algorithm

called Novo&Stitch that takes advantage of optical maps to accur-

ately carry out assembly reconciliation. One or more optical maps

are used to obtain coordinates for the assembled contigs, which are

then stitched based on their alignments. The availability of the optic-

al map dramatically reduces the complexity of the problem and the

possibility of introducing mis-joins. To take advantage of the optical

map, however, contigs have to be sufficiently long so that they can

be reliably aligned (e.g. 50 Kbp or longer). The source code of

Novo&Stitch can be obtained from https://github.com/ucrbioinfo/

Novo_Stitch.

2 Problem definition

In the following, we will use S ¼ fs1; s2 . . . sng to denote the set of

contigs in the genome assembly, where each contig si is a string over

the alphabet fA;C;G;Tg. Given our interest in assembly reconcili-

ation, S is going to be the union of multiple assemblies, obtained

from multiple assemblers and/or parameters settings. In other

words, S is expected to be highly redundant, i.e. each genomic loca-

tion is expected to be covered by multiple contigs (unless it is highly

repetitive). Henceforth, we assume that the contigs in S are chimera-

free (see ‘Materials and methods’ section below for details).

An optical map is composed by a set of optical molecules, each

of which is represented by an ordered set of positions for the restric-

tion enzyme sites. As described above, optical molecules are

obtained by an assembly process similar to sequence assembly, but

we will reserve the term ‘contig’ exclusively for sequenced contigs.

We will use M ¼ fo1;o2; . . . omg to denote the optical map, where

each optical molecule oj is an ordered set of integers, corresponding

to the distances in base pairs between two adjacent restriction en-

zyme sites on molecule oj. By digesting in silico the contig si using

the same restriction enzyme used to produce the optical map and

matching the ordered list of adjacent distances between sites, one

can align the contigs in S to optical map M. High quality alignments

allow some of the contigs to be anchored at specific coordinates on

the optical map. In addition, contigs can be oriented with respect to

each other. A reliable alignment requires contigs to be sufficiently

long (e.g. 50 Kbp or longer). When multiple contigs align to the

same optical molecule, an estimate of the distance between them can

be obtained. If the distance is positive, a gap is introduced and a

scaffold can be formed (Shelton et al., 2015). When the distance is

negative (i.e. contigs are overlapping), it may be possible to stitch

them.

Given our interest in merging multiple assemblies, here we focus

on the case when contigs are overlapping. A series of practical fac-

tors make the problem of stitching overlapping contigs non-trivial.

These factors include imprecisions in optical maps (e.g. mis-joins

introduced during the assembly of the optical map), inaccurate

alignment between contigs and optical molecules, and multiple

anchoring positions for the same contigs that are not consistent with

each other. As a consequence, it is appropriate to frame this problem

as an optimization problem.

As said, we are given multiple chimera-free assemblies repre-

sented by a set of contigs S, an optical map M and a set of align-

ments A ¼ fa1;1; a1;2; . . . an;mg of S to M, where ai;j is the alignment

of contig si to optical molecule oj. The problem is to stitch overlap-

ping contigs based on A and obtain a new set of longer contigs

T ¼ ft1; t2; . . . tkg such that (i) T covers the same portion of the gen-

ome covered by S, (ii) k is as small as possible and (iii) the conflicts

of T with respect to A are minimized. This optimization problem is

not rigorously defined unless one defines precisely the concept of

conflict, but this description captures the spirit of what we want to

accomplish. Even if the notion of conflict could be made precise,

this multi-objective optimization problem would be hard to solve.

Instead of solving this problem, we propose an iterative method that

accomplishes a similar objective.

3 Materials and methods

The proposed stitching method is an iterative algorithm. Each iter-

ation is composed of three phases: data reduction, stitching and

post-processing. The real example in Figure 1 will help understand-

ing the phases. In (A) eight assemblies of cowpea were concatenated

and aligned the contigs (blue) on the optical map (green) (see

‘Experimental results’ for details on these assemblies). As said, we

assume that the input assemblies are free of chimeric contigs.

Optical maps are routinely used to split chimeric contigs, which

are easy to detect because they induce alignment conflicts.

Unfortunately, since optical maps are obtained via an assembly pro-

cess similar to sequence assembly, optical molecules can also be chi-

meric. According to Jiao et al. (2017a), ‘in around 7% of the

(alignment) conflicts, the consensus map (optical map) was wrong’.

Based on our experience, mis-joins in optical molecules typically
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occur in repetitive regions of the genome, which induce long

stretches of regularly-spaced bands. For this reason, we have devel-

oped a new tool that can accurately split chimeric contigs

(unpublished).

Observe that among the eight assemblies, contigs produced by

some assemblers can extend much further than others. In the first

phase, the smallest subset of contigs that cover the same genomic re-

gion of the eight assemblies is selected (highlighted in red in the fig-

ure). In the second phase, the two MTP contigs are stitched to

produce (B). Observe that in this case the resulting 22 Mb contig is

much longer than the expected 12.5 Mb due to additional stitching

that occurred in later iterations. In the third phase, stitched contigs

are checked for consistency, then the entire process is iterated. The

pipeline of the algorithm is illustrated in Figure 2.

3.1 Phase 1: Coordinate unification, conflict resolution

and MTP
At high level, phase one has three major steps. In step 1, we align in

silico-digested chimera-free contigs to the optical map (e.g. for a

Bionano optical map, we use RefAligner), but not all alignments are

used. We only consider alignments that (i) meet a minimum confi-

dence level (typically confidence 25 in the case of RefAligner) and

(ii) do not create conflict with each other (see below for details).

Since some contigs can have high-quality conflict-free alignments to

more than one optical molecule (which could indicate alternative

overlaps), a ‘unification’ step is necessary (step 2, see below for

details). Finally in step 3, we compute the minimum tiling path

(MTP) of the contigs. Formally, let S be the initial set of contigs, and

M be the optical map. Let A ¼ fa1;1; a1;2; . . . an;mg be the set of high-

quality conflict-free alignments of S to M, where ai;j is the alignment

of contig si to optical molecule oj. Let R ¼ fr1; r2; . . . rkg be the set

of intervals of M covered by the contigs S through the set of align-

ments A. A minimum tiling path of S is the smallest set P � S such

that P covers every interval in R.

3.1.1 Selecting conflict-free alignments

Our algorithm for reducing false alignments relies on a conflict

graph. The conflict graph is an undirected hypergraph in which each

vertex represents an alignment, and each hyperedge connects four

vertices when the corresponding four alignments conflict with each

other. Nodes of the hypergraph are weighted by the confidence of

the alignments. Let us call ai;p; ai;q; aj;p; aj;q the alignments of contig

p and q on optical molecule i and j, respectively. We say that ai;p;

ai;q; aj;p; aj;q is a conflict if any of them have an orientation conflict

or a coordinate conflict. An orientation conflict occurs when the ori-

entations of ai;p and aj;p, and the orientations of ai;q and aj;q are nei-

ther both 50–30 nor both 30–50 (depending on whether i and j are

from the same strand of the genome or not). A coordinate conflict

occurs when the distance between ai;p and aj;p is significantly differ-

ent from the distance between ai;q and aj;q. When four alignments

have a conflict, at least one must be a false alignment. We model the

Fig. 1. (A) Contigs (blue) of eight assemblies mapped to one optical molecule (green); minimum tiling path contigs are highlighted in red; (B) final stitched contig,

at the end of the iterative stitching process (observe that the final contig spans a genomic region longer than the two MTP contigs)
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problem of removing false alignments as a weighted vertex cover

problem on the conflict hypergraph.

Since the weighted vertex cover problem on hypergraph is NP-

hard, we use an approximation algorithm. We formulate weighted

vertex cover as an integer program, as follows

minimize
X

i2V

wixi

subject to xi þ xj þ xk þ xl � 1 8 hyperedges ði; j; k; lÞ 2 E

xi 2 f0;1g 8 vertices i 2 V

where V and E are the vertex set and hyperedge set of the conflict

hypergraph, respectively.

In order to solve the integer program we relax it to a linear pro-

gram, and solve the linear program by standard software packages

(e.g. GLPK or CPLEX). The solution of the linear program is trans-

formed into an integer solution as follows. We sort each variable

xi > 1=4 in decreasing order and we add the corresponding vertex

to the solution if the new vertex covers at least one hyperedge

that was not covered previously. This greedy algorithm is a

4-approximation algorithm (see below), which is the best known

approximation achievable in polynomial time for hypergraph with

hyperedges of constant size (Cardinal et al., 2012).

Theorem 1. The LP-based greedy algorithm for the weighted ver-

tex cover on hypergraph gives an approximation ratio of 4.

PROOF. Let C be a vertex cover. Consider a hyperedge

ði; j;k; lÞ 2 E. Since xi þ xj þ xk þ xl � 1, either xi � 1 or xj � 1 or

xk � 1 or xl � 1. Therefore, ði; j; k; lÞ is covered. If C� is an optimum

vertex cover, then wðCÞ � 4wðC�Þ because

wðC�Þ �
X

i2V

wix
�
i �

X

i2S

wix
�
i �

1

4

X

i2S

wi �
1

4

X

i2C

wi ¼
wðCÞ

4

First inequality: LP is a relaxation of ILP. Second inequality:

S � V. Third inequality: x�i � 1=4 for all i 2 S. Fourth inequality:

C � S. h

Details of the approximation algorithm are shown in Algorithm 1.

In Novo&Stitch, the conflict graph is first divided into connected

components. The approximation algorithm is run on connected com-

ponents with more than twenty vertices. For components with at

most twenty nodes, we run the exhaustive (optimal) algorithm.

3.1.2 Unifying coordinates and computing the MTP

Our algorithms for computing the MTP and coordinate unification

use the association graph between optical molecules and contigs.

The association graph is an undirected graph in which each vertex

represents an optical molecule and an edge indicates that the two

molecules share at least one contig aligned to both of them.

The weight of edge (oi, oj) between molecule oi and oj is obtained

from the confidences of the alignments of all common contigs,

that is 1=
P

s2Si\Sj
ðconfðs;oiÞ þ confðs;ojÞÞ where Si and Sj are the

sets of contigs aligned to oi and oj, respectively, and confðs;oÞ is the

confidence score provided by RefAligner between contig s and

molecule o. The confidence score represents the quality of the align-

ment (higher is better). For the MTP and unification step, we do not

use association graph directly, rather the minimum spanning forest

(MSF) of the association graph. By construction, MSF identifies the

most reliable alignments (i.e. highest total confidence) between con-

tigs and optical molecules.

We first unify the coordinates of all contigs with respect to the

optical molecules they are aligned to using the MSF of A, as follows.

We traverse each MST, starting from the vertex that represents the

molecule that has the highest total alignment confidence score (for

the contigs aligned to it). That node becomes the root of the MST

and it defines the origin of the coordinate system. As we traverse

the MST, we assign the coordinates of each contig on a molecule

based on average position of all the common contigs. Specifically,

the position of molecule x with respect to molecule r is ð1=jCjÞ
P

c2C

ðmidðx; cÞ �midðr; cÞÞ where C is the set of contigs aligned to both r

and x, and midðm; cÞ gives the middle points of contig c’s alignment

on molecule m.

Once the unification process is complete, we rebuild the associ-

ation graph using the updated coordinates. At this stage we also re-

move contigs which are completely contained in other contigs, since

they will not be used in the stitching. In order to compute the MTP

we build another graph, called the overlap graph. The overlap graph

O is an unweighted directed acyclic graph (DAG) in which vertices

represent contigs and directed edges indicate overlaps between the

corresponding contigs (oriented left to right along the coordinates

induced by the alignment). Each optical molecule induces an overlap

(sub)graph for the contigs aligned to it, but since a contig can align

to multiple optical molecules, some of the overlap subgraphs can

be connected. In order to efficiently connect the subgraphs in O, we

use the MSF of A. Recall that by construction the nodes (which are

optical molecules) in the same MST of A share common contigs.

We process each minimum spanning tree in A, as we did above.

As we traverse the MST we connect the corresponding subgraphs in

O. Edges are added to O only if no cycles are introduced.

Once the overlap graph is finalized, we compute the MTP on

each connected component of the graph. In the ideal case, each con-

nected component Oi of O (which is a DAG by construction) is

expected to have exactly one source and one sink because the gen-

ome is one-dimensional and the chain of overlaps is expected to

have exactly one leftmost contig (source of the DAG) and exactly

one rightmost contig (sink). When a connected component Oi has

one source s and one sink t, the MTP problem reduces to finding the

path from s to t with the smallest number of vertices. In practice

however, Oi may have a set OS of sources and a set OT of sinks. A

simple example explains why this could happen. Assume three stag-

gered contigs A, B, C of the same length which overlap two disjoint

optical molecules: the first molecule overlaps A, B, C in their pre-

fixes, while the second molecule overlap only B, C on their suffixes.

Algorithm 1 Greedy algorithm for weighted vertex cover

problem on hypergraph

1: procedure LP_Round_Greedy(V, E)

2: Compute the optimum solution x� to LP relaxation (2).

3: S ¼ fi 2 V : x�i � 1=4g
4: C ¼1
5: E

0 ¼ E

6: for i 2 S do

7: ifnew¼False

8: for e 2 E
0

do

9: if i 2 e then

10: ifnew¼True

11: remove e from E
0

12: if ifnew¼True then

13: add i to C " pick i, if it appears in at least one

new superedges

14: return C
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One should expect the overlap DAG to be A! B! C. But now as-

sume that the quality of the alignment of B with the first molecule is

poor, so in the first molecule we get A! C, in the second molecule

we get B! C. When we merge them, we end up with a DAG with

two sources. When either jOSj > 1 or jOT j > 1, the MTP problem

requires finding the smallest subgraph Pi of Oi such that for any

source-sink pair ðs; tÞ; s 2 OS; t 2 OT in which t is reachable from s

in Oi, t is also reachable from s in Pi. We call this problem the small-

est sub-DAG problem, defined as follow.

Definition 2 (Smallest SubDAG). Input: A connected directed

acyclic graph G ¼ ðV;EÞ, with source set S, and sink set T. Output:

A subgraph G0 ¼ ðV 0;E0Þ of G such that (i) G0 is a connected

directed acyclic graph, (ii) S � V 0 (iii) T � V 0, (iv) jV 0j is the smallest

among all the subgraphs satisfying (i–iii).

Theorem 3. Smallest SubDAG is NP-hard.

PROOF. We show that Set Cover � P Smallest SubDAG. Let hU;Ci
be an instance of Set Cover, where U is the universe of sets and C

represents the collection of sets. Given hU;Ci we build an instance

hG ¼ ðV;EÞ; S;Ti of Smallest SubDAG as follows. For each element

in U, build a vertex in V and in T. For each set in C, build a vertex in

V. Let S ¼ fsg and add s to V. For each set c in C and each element e

in U, if e belongs to c, build an edge in E from the vertex correspond-

ing to c to the vertex corresponding to e. For each set c in C, build an

edge in E from s to the vertex corresponding to c. The equivalence

between these two problems is obvious.

h

Given the hardness of the Smallest SubDAG problem, we pro-

pose a greedy heuristic. First, we find the shortest path from each

source to each sink. The shortest path among all these paths is

chosen as the initial path. Then, the source and sink vertices not cov-

ered by the chosen path are added to the solution iteratively by cal-

culating the shortest path between them to the current sub-DAG.

Details of this greedy algorithm are shown in Algorithm 2.

3.2 Phase 2 and 3: Contig stitching and post-processing
In phase 2 we first compute the sequence alignments for MTP con-

tigs that are overlapping according to coordinates obtained in phase

1. For each pair of overlapping contigs, we determine the best align-

ment between the corresponding sequences. If the best alignment is

(i) above a certain length and (ii) of sufficient quality (e-value), and

(iii) consistent with the optical map coordinates, the stitching is car-

ried out. When stitching two aligned contigs c1 and c2, both c1 and

c2 are composed of three parts, left overhang l1, l2, right overhang

r1, r2 and common region (aligned region) m1, m2. The new stitched

contig d is formed by the concatenation of (i) the longest between l1
and l2 (ii) either m1, m2 depending which one is closer to the 50 of its

respective contig and (iii) the longest between r1 and r2. If c2 is

stitched with c1, neither c1 or c2 will be used for stitching with the

other contig in this iteration. Contig d could be stitched to other

contigs in later iterations.

In Phase 3, we check the correctness of the stitching by aligning

the two original contigs to the new stitched contig. The difficulty of

this step stems from the possible fragmentation of alignments.

Sequence alignment tools (e.g. Blast) can generate a large set of

alignments, many of which are not informative. To determine the

best overall alignment, we find the subset of mutually compatible

alignments (from the set of all alignments) which has the longest

total length. We say that two alignments are compatible if their

overlap is smaller than a given fraction of the shorter alignment.

Definition 4 (Optimal set of mutually compatible alignments).

Input: A list A of n alignments and their lengths, and a compatibility

matrix C in which C½i; j� ¼True if alignment i is compatible

with alignment j. Output: A subset A0 of A in which (i) for any

pair of alignments a;b 2 A0; C½a; b� ¼True and (ii) the total length

of the alignments in A0 is the largest among all the subsets of A

satisfying (i).

To solve this problem, we use a dynamic programming algo-

rithm. All alignments are first sorted by their starting positions. Let

S½i� be the total length of the alignments selected from A½1 . . . i� that

includes alignment A½i�. First we initialize S½1� to the length of first

alignment. The rest of the dynamic programming vector can be filled

using the following recurrence relation:

S½i� ¼ L½i� þ max
j¼1...i�1

fS½j� : C½i; j� ¼ Trueg

Details of this dynamic programming algorithm are described in

Algorithm 3. The time complexity of this dynamic programming al-

gorithm is Oðn2Þ. To speed it up, we remove alignments shorter

than a given threshold to reduce the value of n.

After the optimal set of compatible alignments is computed, we

determine the fraction of the two original overlapping contigs

mapped to the stitched contig. If the fraction is below a predefined

threshold, the stitching is cancelled.

Phase 1, 2 and 3 are repeated iteratively until no further stitching

takes place. Recall that when we unify the coordinates, we compute

the average position of all common contigs. When a contig appears

in multiple fragments, it can affect the coordinates of other contigs,

which in turn can change the detection of overlapping contigs.

When we stitch contigs, the coordinates of several contigs can

change, which can reveal overlaps that were not detected before.

That is why we use an iterative strategy: later iterations can ‘make

up’ for stitches that were missed in earlier iterations.

The final assembly produced in output is the MTP of the latest

stitched assembly.

Algorithm 2 Greedy algorithm for Smallest SubDAG problem

1: procedure GA(G ¼ ðV;EÞ; S;T)

2: current_set  S [ T

3: subgraph  G

4: for s in S and t in T do

5: path  BFS(G, s, t) " compute the shortest path in G

from s to t

6: if no_vertices(path)<no_vertices(subgraph) then

7: subgraph, s�; t�  path, s, t

8: current_set  current_set �fs�; t�g
9: while current_set 6¼1 do

10: path*  G

11: for x in current_set do

12: for y in subgraph do

13: if x 2 S then " x is a source

14: path  BFS(G, x, y)

15: else " x is a sink

16: path  BFS(G, y, x)

17: if no_vertices(path)<no_vertices(path*) then

18: path*, x*  path, x

19: current_set, subgraph  current_set �x�, subgraph [
path*

20: return subgraph
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4 Experimental results

We tested Novo&Stitch on multiple PacBio assemblies of (i) cowpea

(Vigna unguiculata) and (ii) Phytophthora infestans. Both sequenc-

ing projects are currently underway at UC Riverside. Cowpea is a

legume crop that is resilient to hot and drought-prone climates. This

legume is the primary source of protein in sub-Saharan Africa and

other parts of the developing world. P.infestans is responsible for the

late blight diseases of tomato and potato. It was the major culprit

for the European potato famines of the 19th century. Worldwide the

disease causes around $6 billion of damage to crops each year.

We considered running Novo&Stitch on the assemblies provided

for the Assemblathon 2 competition (Bradnam et al., 2013) in which

optical maps were used to evaluate the quality of the assemblies.

Unfortunately, the authors of (Bradnam et al., 2013) could not lo-

cate the optical maps. We also considered comparing the results of

Novo&Stitch against published assembly reconciliation tools, e.g.

CISA (Lin and Liao, 2013), GAA (Yao et al., 2012), GAM_NGS

(Vicedomini et al., 2013), GARM (Mayela Soto-Jimenez et al.,

2014), MIX (Soueidan et al., 2013), ZORRO (Argueso et al., 2009),

Metassembler (Wences and Schatz, 2015). However, (1) we have

shown in Alhakami et al. (2017) that none of these tools can gener-

ate assemblies that are consistently better than the assemblies pro-

vided in input, and (2) the comparison would not be entirely fair

because these tools do not take advantage of the optical map.

4.1 Experimental results on cowpea assemblies
Cowpea (Vigna unguiculata) is a diploid with a chromosome num-

ber 2n¼22 and an estimated genome size of 620 Mb. The genome

has very low heterozygosity; in practice it can be considered haploid.

We sequenced an elite African variety (IT97K-499-35) using single-

molecule real-time sequencing (Pacific Biosciences RSII). A total of

87 SMRT cells yielded about 6 M reads for a total of 56.84 Gbp

(91.7� genome equivalent). To test Novo&Stitch we generated sev-

eral assemblies with a mix of parameters, polishing qualities and as-

sembly tools. We used Canu (Berlin et al., 2015; Koren et al., 2017),

Falcon (Chin et al., 2016) and ABruijn (Lin et al., 2016) to generate

eight assemblies. Canu was run with different parameters to gener-

ate six of the eight assemblies (parameters shown in Table 1).

Canu1, Canu2 and Canu6 were polished with Quiver. Chimeric con-

tigs were detected and split using a tool currently under development

in our lab (unpublished). Our tool can also detect mis-joins in the

optical maps. This step could have been carried out manually, by

inspecting the alignments of contigs against the optical map via

IrysView. The final eight assemblies were inspected visually to en-

sure that they were indeed chimera-free.

The basic statistics for the eight assemblies are provided in

Table 2. In addition to standard contiguity statistics [N50 (length

for which the set of contigs of that length or longer accounts for at

least half of the assembly size), L50 (minimum number of contigs

accounting for at least half of the assembly), NG50 (length for

which the set of contigs of that length or longer accounts for at least

half of the 620Mb genome) and LG50 (minimum number of contigs

accounting for at least half of the 620Mb genome)], total assembled

size and contig length distributions, we evaluated the assemblies

using several other independent metrics. We mapped (i) about 129K

cowpea WGS contigs assembled from short reads (Mu~noz-

Amatriaı́n et al., 2017; assembly v.0.03), (ii) about 200 M 2� 100

paired-end Illumina reads generated at UCR in 2014 and (iii) tran-

scripts assembled from RNA-Seq short reads. In Table 2 we report

the percentage of DNA sequenced mapped with BWA with a min-

imum MapQ of 30. Finally, we compared the assemblies against the

high-density genetic map available from (Mu~noz-Amatriaı́n et al.,

2017). To evaluate possible chimeric contigs, we BLASTed 121 bp-

long design sequence for the 51 128 genome-wide SNPs described in

(Mu~noz-Amatriaı́n et al., 2017) against each assembly, then we

identified which contigs had SNPs mapped to them, and what link-

age group (chromosome) of the genetic map those mapped SNPs

belonged to. Chimeric contigs are revealed when their mapped SNPs

belong to more than one linkage group. The last line of Table 2

reports the total size of contigs in each assembly for which (i) they

have at least one SNPs mapped to it and (ii) all SNPs belong to the

same linkage group (i.e. likely to be non-chimeric). Observe in

Table 2 that there is no single assembly that is the ‘best’ in each row.

Canu6 has the highest N50 and the lowest L50, but Canu2 has the

longest contig. Canu1 has the highest NG50. ABruijn has the small-

est number of contigs.

Novo&Stitch was run on the eight assemblies in Table 2 using

two Bionano Genomics optical maps, the first obtained using the

BspQI nicking enzyme (which recognizes ‘GCTCTTC’), and the se-

cond obtained with the BssSI nicking enzyme (‘CACGAG’). The

BspQI optical map had 508 assembled optical molecules with a mol-

ecule N50 of 1.62 Mb and a total length of 622.21 Mb. The BssSI

optical map had 743 assembled optical molecules with a molecule

N50 of 1.02 Mb and a total length of 577.76 Mb. Both optical

maps were assembled at UC Davis using the Bionano assembler.

For each optical map we used two sets of parameters, called ‘strict’

Table 1. Parameter choices for Canu v1.3

CANU assembly cMS cMEE cOC Quiver

1 Low Default Default �

2 Low Default 100 �

3 High Default Default

4 High 0.15 100

5 Normal 0.15 100

6 High Default 100 �

Note: Column cMS reports the value of corMhapSensitivity, cMEE

reports corMaxEvidenceErate, cOC reports corOutCoverage. Three of

these assemblies were polished with Quiver.

Algorithm 3 Dynamic programming algorithm for optimal set

of compatible alignments

1: procedure Compatible(A, L, C)

2: A0; S½1�;Last½1�  1;L½1�;NULL

3: for i 2 to n do

4: S½i�; j�  L½i�; 0
5: for j 1 to i – 1 do

6: if C½i; j� ¼ True then

7: if S½i� < S½j� þ L½i� then

8: S½i�; j�  S½j� þ L½i�; j
9: Last½i�  j�

10: S�  0; pos�  0

11: for i 1 to n do

12: if S½i� > S� then

13: S�; pos�  S½i�; i
14: i pos�

15: while i 6¼ NULL do

16: A0; i A0 [ A½i�;Last½i�
17: return A0
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(-a 3000 -b 0.1 -c 10000 -d 0.5 -e 0.9 -h 25 -r 0.2) and

‘loose’ (-a 0 -b 0.2 -c 5000 -d 0.5 -e 0.8 -h 25 -r 0.2).

Please refer to the README at https://github.com/ucrbioinfo/

Novo_Stitch for details about these parameters. For convenience, in

first column of Table 3, we copied the best statistics across the eight

assemblies in Table 2. Note that no individual assembly, however,

has these statistics. Observe in Table 3 that Novo&Stitch almost

doubled the N50, reduced the L50 from 29 to 19, increased the

number of contigs �10 Mb from 9 to 17–18. Mapping statistics

remained unaltered, as well as the agreement with the genetic map.

Taken all together, these statistics indicate that Novo&Stitch pro-

duced a much more contiguous assembly, with no more chimeric

contigs than the best of the eight input assemblies. On this dataset

Novo&Stitch converges in two-three iterations and takes only a few

hours on our 32-core server.

4.2 Experimental results on P.infestans assemblies
We sequenced a strain of P.infestans from California called ‘1306’.

Strain 1306 is a diploid (other P.infestans strains are triploid or an-

euploid), has 11–14 chromosomes and an estimated genome size of

220 Mb. P.infestans has a much higher rates of heterozygosity

compared to V.unguiculata, thus the former has a more challenging

genome to assemble. P.infestans 1306 was sequenced using single-

molecule real-time sequencing (Pacific Biosciences RSII). A total of

17 SMRT cells yielded about 3.1 M reads for a total of 24.87 Gbp

(113� genome equivalent). We tested Novo&Stitch on six assem-

blies of P.infestans. We generated two assemblies with Canu v1.5,

one on the entire dataset (Canufull, 113� coverage) and one on

PacBio reads longer than 10Kb (Canu10K, 80.9� coverage). We

generated three assemblies with ABruijn v0.4 on three datasets,

namely (i) PacBio reads longer than 10Kb (ABruijn10K, k¼17,

Table 2. Assembly statistics of eight assemblies for cowpea; all reads/transcripts/BAC assemblies were mapped with BWA, MapQ�30; num-

ber in boldface are the best statistics (min or max) across assemblies; for # contigs �100kbp and � 1Mbp it is not obvious whether to report

min or max

Canu1 Canu2 ABruijn Falcon Canu3 Canu4 Canu5 Canu6

Contig N50 (bp) 4 859 617 4 498 063 1 896 002 2 869 362 3 280 469 2 797 949 2 666 731 5 340 274

Contig L50 30 32 74 49 42 51 55 29

Contig NG50 (bp) 3 767 556 3 417 577 1 330 435 1 737 012 2 431 239 1 949 515 2 068 575 3 451 071

Contig LG50 43 45 119 73 63 73 77 42

Total assembled (bp) 506 154 442 516 817 613 478 230 679 511 933 729 503 187 311 516 537 734 515 949 175 507 773 747

# contigs 894 928 538 1820 1038 1110 1140 897

# contigs �100kbp 220 288 437 404 299 354 334 278

# contigs �1Mbp 104 107 151 118 128 142 145 103

# contigs �10Mbp 7 8 0 1 2 2 0 9

Longest contig (bp) 18 473 372 18 498 533 8 846 014 10 554 495 14 090 735 14 331 160 9 775 097 17 211 165

WGS contigs �500bp,

% mapped (129K)

98.27412% 98.77014% 88.30652% 97.84959% 98.30618% 98.25853% 98.23673% 98.73930%

UCR2014 reads, % properly

paired (202M)

92.59433% 92.64181% 92.30106% 91.95107% 92.52969% 92.63057% 92.62330% 92.59763%

UCR2014 reads,

% mapped (202M)

64.35764% 63.50279% 64.21367% 59.49035% 64.38425% 63.00587% 63.22414% 62.84466%

Assembled transcripts,

% mapped (157K)

92.60644% 94.83972% 94.95582% 94.16235% 92.65416% 92.52276% 92.46959% 94.85657%

Total length with 100%

consistent LG (bp)

331 956 528 338 556 993 379 029 914 312 593 019 356 505 616 349 534 672 347 586 448 425 812 490

Table 3. Assembly statistics of Novo&Stitch on the eight cowpea assemblies using either the BspQI or the BssSI optical map, ‘best of 8’ is a

copy the best statistics (boldface) among the eight assemblies in Table 2—no individual assembly, however, has these statistics; see text

about strict and loose parameters; all DNA sequences were mapped with BWA, MapQ�30

Best of 8 BspQI (loose) BspQI (strict) BssSI (loose) BssSI (strict)

Contig N50 (bp) 4 859 617 9 944 851 9 944 851 9 584 779 9 584 779

Contig L50 29 19 19 19 19

Contig NG50 (bp) 3 767 556 9 944 851 8 187 172 7 956 155 7 826 863

Contig LG50 42 19 24 24 24

Total assembled (bp) 516 817 613 522 393 141 523 526 657 520 162 831 523 249 509

# contigs 538 791 798 791 798

# contigs �100kbp N/A 211 218 211 218

# contigs �1Mbp N/A 72 72 66 69

# contigs �10Mbp 9 18 18 17 17

Longest contig (bp) 18 498 533 21 980 320 21 980 320 22 385 362 22 385 362

WGS contigs �500bp, % mapped (129K) 98.77014% 97.77496% 97.79009% 97.40359% 97.02018%

UCR2014 reads, % properly paired (202M) 92.64181% 92.57437% 92.58778% 92.47305% 92.50176%

UCR2014 reads, % mapped (202M) 64.38425% 62.20807% 62.11027% 61.82553% 61.63417%

Assembled transcripts, % mapped (157K) 94.95582% 93.93669% 93.90570% 94.01125% 93.46803%

% contigs with 100% consistent LG 425 812 490 429 367 225 430 234 966 423 454 837 434 621 644
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80.9� coverage), (ii) all PacBio reads corrected by Canu

(ABruijncorr, k¼17, 75.4� coverage) and (iii) all PacBio reads cor-

rected and trimmed by Canu (ABruijntrim, k¼17, 73.6� coverage).

One assembly was produced with Falcon on the whole dataset by

the UC Davis core facility. We detected and split chimeric contigs

using Chimericognizer, a tool currently under development (unpub-

lished). We ensured that the six assemblies were free of chimeric

contigs by visually inspecting the alignments.

Novo&Stitch was run on the six assemblies in Table 4 using a

Bionano Genomics optical map. To evaluate the quality of these

assemblies, we mapped about 47 M miSeq reads and 202 M

Dovetail read using BWA. We also mapped a fraction of those reads

using Blast, which does not penalize the mapping quality in case of

alignment of a read to multiple locations. The last two columns re-

port the statistics of Novo&Stitch using strict and loose parameters.

Observe again how Novo&Stitch significantly improved the con-

tiguity of the assembly (N50, L50, longest contig, etc.) while main-

taining mapping statistics similar to the six input assemblies.

5 Conclusions

We presented a new assembly reconciliation tool called

Novo&Stitch for improving the contiguity of de novo genome

assemblies using optical maps. Novo&Stitch leverages the align-

ments of contigs from multiple input assemblies to an optical map to

detect overlaps between contigs and drive the stitching process. A re-

quirement of Novo&Stitch is that assembled contigs have to be suf-

ficiently long (e.g. 50 Kbp or longer) in order to be reliably aligned

to the optical maps. This requirement is not very limiting for assem-

blies based on 3rd generation sequencing data, but it can be for

Illumina-based assemblies. Experimental results on V.unguiculata

and P.infestans clearly demonstrates that the addition of the optical

map can significantly improve the contiguity of genome assemblies.

The optical map can be used again on the improved stitched assem-

bly to create scaffolds.
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