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Abstract: α-crystallin is a major protein found in the mammalian eye lens that works as a molecular
chaperone by preventing the aggregation of proteins and providing tolerance to stress in the eye
lens. These functions of α-crystallin are significant for maintaining lens transparency. However,
with age and cataract formation, the concentration of α-crystallin in the eye lens cytoplasm decreases
with a corresponding increase in the membrane-bound α-crystallin, accompanied by increased light
scattering. The purpose of this review is to summarize previous and recent findings of the role of the:
(1) lens membrane components, i.e., the major phospholipids (PLs) and sphingolipids, cholesterol
(Chol), cholesterol bilayer domains (CBDs), and the integral membrane proteins aquaporin-0 (AQP0;
formally MIP26) and connexins, and (2) α-crystallin mutations and post-translational modifications
(PTMs) in the association of α-crystallin to the eye lens’s fiber cell plasma membrane, providing
thorough insights into a molecular basis of such an association. Furthermore, this review highlights
the current knowledge and need for further studies to understand the fundamental molecular
processes involved in the association of α-crystallin to the lens membrane, potentially leading to new
avenues for preventing cataract formation and progression.

Keywords: α-crystallin; fiber cell plasma membrane; lipids; cholesterol; cholesterol bilayer domains;
integral membrane protein; lipid peroxidation; mutations; post-translational modifications; cataract

1. Introduction

The eye lens’s main function is to focus light onto the retina in the back of the eye. The
eye lens is avascular, avoiding light scattering, and is in a hypoxic environment, containing
a lower level of oxygen than in any other organ in the human body (pO2 of 11 mm Hg) [1,2].
Light traveling through the human lens passes through approximately 2800 fiber cell
plasma membranes [2]. The lens’s fiber cell plasma membrane consists of three major
components: phospholipids (PLs) and sphingolipids, cholesterol (Chol), and the two major
integral membrane proteins [3–5] such as aquaporin-0 (AQP0), also known as the major
intrinsic protein 26 (MIP26, where 26 represents its location in the gel at 26 kDa) [6–8],
and connexins (Cx43, Cx46, and Cx50) [9]. Moreover, the eye lens consists of large amounts
of crystallin proteins [10–12].

Crystallins, i.e., α-, β-, and γ-crystallin, are water-soluble proteins found in a large
concentration in the vertebrate eye lens [10–12]. Crystallins account for more than 90% of
the lens proteins [10,11]. Unlike other proteins in the cell, crystallins, once synthesized,
remain in the lens for the individual’s lifetime [13]. The primary function of crystallins
is contributing to lens transparency and refractive properties [14]. α-crystallin accounts
for up to 40% of the lens proteins [10,12]. In the human lens, α-crystallin remains in the
oligomeric form comprising two types of subunits, αA- and αB-crystallin, in a roughly 3:1
molar ratio [15]. It is believed that the molar ratio of 3:1 of αA- and αB-crystallin increases
α-crystallin’s stability [16]. αA-crystallin is found only in the lens, whereas αB-crystallin
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is found in the lens and many other tissues, including the heart, nervous system, striated
muscles, and the kidney [17]. αA- and αB-crystallin consist of 173 and 175 amino acid
residues, with ~60% sequence similarity [14], and have a mass of 19.9 and 20.2 kDa, respec-
tively [18]. The oligomeric form of α-crystallin has a mass range from 300 to 900 kDa [19].
The use of combined techniques, such as electron microscopy, size exclusion chromatog-
raphy, single-particle 3D reconstruction, analytical ultracentrifugation, and dynamic light
scattering, determined the structure of the native α-crystallin to be an asymmetrical, bean-
like shape, with a dense core and filamentous [19]. Recently, detailed molecular-level
structures of the recombinant human αA-crystallin (reduced) 12-, 16-, and 20-meric assem-
blies were determined by combining cryo-electron microscopy, nuclear magnetic resonance
(NMR) spectroscopy, cross-linking/mass spectrometry, and molecular modeling [20]. Simi-
larly, a detailed molecular-level structure of the recombinant human αB-crystallin 24-mer
structure was determined by combining solid-state NMR, small-angle X-ray scattering,
and electron microscopy [21]. Figure 1a,b show the molecular-level structure of recom-
binant human αA-crystallin (reduced) 16-mer [20] and αB-crystallin 24-mer [21], respec-
tively. The concentration of α-crystallin in the center of the human lens reaches up to
450 mg/mL [22]. α-crystallin functions as a molecular chaperone [23,24], increasing the
tolerance to stress and preventing the precipitation of denatured proteins [25], whereas β-
and γ- crystallins maintain the structure and refractive properties of the lens [26]. These
functions of crystallins are significant for maintaining lens transparency and preventing
cataract formation [27].

Figure 1. (a) Pseudo-atomic model of recombinant human αA-crystallin (reduced) 16-mer assembly.
Image from the RCSB PDB (rcsb.org, accessed on: 8 April 2021) of PDB ID 6T1R [20] created with
Mol* [28]. (b) Pseudo-atomic model of recombinant human αB-crystallin 24-mer assembly. Image
from the RCSB PDB (rcsb.org, accessed on: 8 April 2021) of PDB ID 3J07 [21] created with Mol* [28].

The causes of cataract, an opaqueness in the eye lens causing blurry vision, are ag-
ing [29,30], eye injury [31,32], genetics [33,34], radiation [35–37], high myopia [38–40], smok-
ing [41], medications (e.g., statin and corticosteroid medicine to reduce Chol) [42–49], signif-
icant alcohol consumption [50–53], obesity [54,55], hypertension [56], and diabetes [57,58].
Among these causes, aging is the most common cause of cataract formation in which the
association of α-crystallin to the eye lens’s fiber cell plasma membrane increases progres-
sively [59–65]. With age and at the onset of cataract formation, water-soluble α-crystallin
slowly depletes to the insoluble aggregates [61,63,64,66–69]; however, the nature of such
insoluble aggregates is not well characterized [63,67–74]. In the human lens nucleus,
the most pronounced conversion of soluble to insoluble α-crystallin and the corresponding
conversion of soluble to insoluble high molecular weight (HMW) protein occurs after the
age of 40 [63,67,68]. α-crystallin’s aggregation is an important factor in cataract forma-
tion [18,75]. In aged human lenses, all water-insoluble crystallins are membrane-bound [61].
With age, α-crystallin is associated with other lens proteins, forming higher molecular
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weight complexes (HMWCs) [76–78]. HMWCs further associate with the fiber cell plasma
membrane [66], accompanied by light scattering and cataract formation [59,60,79]. A
longitudinal clinical study [62] performed with 45 patients (66 eyes) aged 34–79 years
using dynamic light scattering (DLS) shows that the higher levels of membrane-bound α-
crystallin, with a corresponding decrease in the unbound α-crystallin concentration in the
lens cytoplasm, are associated with nuclear cataract formation and progression. A hypoth-
esis is that membrane-bound α-crystallin contributes to the formation of nuclear cataracts
by obstructing the membrane pores and forming a barrier to diffusion [30,63,64]. Zhao
et al. [75] showed that lanosterol, an amphipathic molecule enriched in the lens, reverses
lens protein aggregation and maintains lens transparency in in-vivo dogs and dissected
rabbits’ cataractous lenses in-vitro. Based upon the in-vitro, in-vivo, and ex-vivo studies
on the mouse, Makley et al. [80] reported a class of molecules called pharmacological
chaperones (PCs), namely compound 29, that bind a specific region of αA and αB, restoring
solubility of these proteins and partially reversing their aggregation and cataract formation.
Combining results of the clinical study on humans [62] and in-vitro, in-vivo, and ex-vivo
studies on animals [75,80], we suggest that α-crystallin aggregates likely associate with
lens membranes accompanied by light scattering and cataract formation.

The precise mechanism of how α-crystallin associates with the lens membrane caus-
ing cataract formation is still under investigation. This review summarizes the current
and previous findings of the role of the lens membrane components, such as major PLs
and sphingolipids, Chol, cholesterol bilayer domains (CBDs), and the integral membrane
proteins (AQP0, also known as Major Intrinsic Protein 26 (MIP26), and connexins), on the
association of α-crystallin to the lens membrane causing cataract formation. Moreover,
we discuss the lipid peroxidation and α-crystallin mutations and post-translational modifi-
cations (PTMs) that occur with age and cataract formation. This review summarizes the
current knowledge and future studies needed for a molecular-level understanding of the
association of α-crystallin with the fiber cell plasma membrane of the eye lens causing
cataract formation and progression.

2. Binding of α-Crystallin to Lipids (Phospholipids (PLs) and Sphingolipids) of the
Eye Lens Fiber Cell Plasma Membrane

Lipid composition of eye lens membrane mainly consists of sphingolipids (sphin-
gomyelin (SM) and dihydro-SM) and PLs (phosphatidylcholine (PC), phosphatidylserine
(PS), and phosphatidylethanolamine (PE)) [81]. PLs consist of a “head” group and two
fatty acid “tails” where the head denotes the type of PLs, for example, PC, PE, and PS.
The fatty acids in the fiber cell membranes of the eye lens are predominantly palmitic
(16:0, P) and oleic (18:1-cis, O) [81–84]. The lipid composition of the lens membrane varies
between species [81,85–88]. Sphingolipids (mainly dihydro-SM) are dominant in humans,
whereas PC is dominant in short-lived animals [81]. To mimic the lipid composition
of the eye lens membrane, commonly used lipids are 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS),
and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and SM, which are
commercially available. The primary binding site of α-crystallin in the eye lens’s fiber cell
plasma membrane is intrinsic PLs and sphingolipids [89–91]. The observation of amplified
binding of α-crystallin to the lens membrane when surface proteins are stripped by trypsin
degradation [92] and using urea [66,93] further supported that the primary binding site of
α-crystallin in the eye lens’s fiber cell plasma membrane is PLs and sphingolipids.

2.1. Nature of α-Crystallin Binding to Lipids (PLs and Sphingolipids) of the Lens Membrane

Many studies probed the interaction ofα-crystallin with the lens membranes [89,90,93–97]
and lipid vesicles [89,91,93,98–102]. Cobb and Petrash [98] conjugated α-crystallin with
AlexaFluor350TM fluorescent tag and studied the interaction of α-crystallin with SM mem-
brane and PC membranes with a variety of acyl chain lengths and reported that the binding
of α-crystallin to these membranes is non-saturable and not lipid-specific. However, the
saturable binding of α-crystallin to the lipid vesicles has been reported earlier [89,91,100].
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Ifeanyi and Takemoto et al. [91] also reported that α-crystallin binds to the individual PC,
SM, and PE membrane in a saturable manner and in the same amount as with the intrinsic
lens membranes. Tang et al. [102] used fluorescent probe NBD-PE that resides near the
headgroup region of the membrane and observed saturable binding of α-crystallin in the
SM membrane. The recent electron paramagnetic resonance (EPR) studies performed with
cholesterol analog cholestane spin-label (CSL) that locate near the headgroup regions of
the membrane [99,101] reported saturable binding of α-crystallin to POPC, POPS, and SM
membranes and no binding of α-crystallin to the POPE membrane (Figure 2a). The EPR
approach demonstrated the capacity to estimate the maximum percentage of membrane
surface occupied (MMSO) by α-crystallin in different membranes where MMSO for SM
and POPS membranes is larger in comparison to the POPC membrane (Figure 2a). The
difference in the MMSO could be explained by fitting the saturation binding curve with the
equation of specific binding with the Hill coefficient (h) using GraphPad Prism (San Diego,
CA, USA), where h greater than 1 indicates that α-crystallin binds to the membrane with
positive cooperativity, h less than 1 indicates that α-crystallin binds to the membrane with
negative cooperativity, and h equal to 1 indicates that α-crystallin binds to the membrane
with no cooperativity. Interestingly, h for SM and POPS membranes is greater than 1,
whereas h for the POPC membrane is close to 1, indicating positive cooperativity for SM
and POPS membranes and no cooperativity for the POPC membrane resulting in the differ-
ence in the MMSO (Figure 2a). The h for the SM membrane is higher than for the POPS
membrane. This likely explains the larger MMSO for the SM membrane than for the POPS
membrane. The detailed chemical explanation of the cooperativity and the mechanism of
the difference in the cooperativity depending on the lipid type needs further investigation.
Tang et al. [102] used the fluorescence approach and reported that a higher amount of
α-crystallin binds to the SM membrane than with the PC membrane. If MMSO and binding
affinity (Ka) are compared with different lipid types, MMSO and Ka for different lipids are
different, indicating that binding is lipid-specific (Figure 2a).

Figure 2. The maximum percentage of membrane surface occupied (MMSO) by α-crystallin and the binding affinity (Ka) of
α-crystallin binding to the lipid (PL and sphingolipid) membranes. (a) Individual lipid membranes, i.e., POPC, SM, POPS,
and POPE* (where * represents the presence of 30 mol% POPC); (b) Two-component lipid membranes, i.e., SM/POPE,
SM/POPS, and SM/POPC in 70:30 mol%. Redrawn with permission from [99,101], Copyright 2021, with permission from
Taylor & Francis and Elsevier.

The MMSO for individual (Figure 2a) and two-component (Figure 2b) lipid mem-
branes is comparable to the percentage of α-crystallin bound to the PL vesicles reported
by Mulders et al. [96], where they labeled α-crystallin with [35S] methionine and incu-
bated it with various concentrations of egg yolk lecithin vesicles (PC vesicles) and found
~10% α-crystallin bound to vesicles. The Ka values reported in Figure 2a,b for the indi-
vidual and two-component lipid membranes are slightly different from those reported
earlier [90,96,97], because these earlier studies used lens plasma membrane, including



Membranes 2021, 11, 447 5 of 27

integral membrane proteins. The integral membrane proteins significantly influence the
α-crystallin binding to the lens membranes, as discussed in Section 4.

Even with many studies, the nature of α-crystallin interaction with lipid vesicles is
unclear. A few earlier studies indicated that the ionic interactions between α-crystallin
and lipids influence binding [96,103]. The studies on α-crystallin binding to synthetic lipid
membranes [66,93,100,102,104] and bovine lens lipid membranes [79,89,105] suggested
that α-crystallin binds to lipid membranes noncovalently. α-crystallin has hydrophobic
regions on its surface [96,106]. α-crystallin remains in the highly polydisperse oligomeric
form [11,19], with the exchange of its subunits between oligomers [19,76–78]. Cobb and
Petrash et al. [92] proposed that the interaction between α-crystallin and fiber cell plasma
membrane of the eye lens membrane is hydrophobic, which occurs between the α-crystallin
and hydrophobic fatty acid core of the membrane. A few earlier studies [90,102,107]
indicated that the hydrophobic surface of the α-crystallin influences the binding of α-
crystallin to the membranes. A study performed using the resonance energy transfer
method suggested that α-crystallin preincubated at a higher temperature (65 ◦C) binds
deep into the membrane [79], possibly due to exposure of more hydrophobic surfaces of α-
crystallin when it is preincubated at a higher temperature. Recent EPR studies [99,101,108]
and an earlier infrared spectroscopy study [109] reported that the polar headgroup of
lipids strongly affects the α-crystallin binding to the membrane. Cobb and Petrash [98]
proposed that the membrane’s surface is the only limiting factor; however, the lipid
type, headgroups, and acyl chain length or saturation do not influence the interaction
of α-crystallin with the membranes. Their conclusion is that the increase in α-crystallin
binding to the in-vivo membrane is not a result of lipid changes but is likely due to
the accumulation of high molecular weight forms of α-crystallin. The different MMSO
and Ka values obtained (Figure 2a) for the PL membranes with the same hydrophobic
fatty acid core (i.e., POPC, POPS, and POPE* membranes) imply that PL’s headgroup
size and charge, hydrogen bonding between headgroups, and PL curvature influence the
spacing between the headgroups and control the exposure of the hydrophobic core of the
membrane. This likely modulates the possible hydrophobic binding between α-crystallin
and membrane [101]. Although Cobb and Petrash [98] reported that acyl chain length
or saturation of lipids do not influence the binding of α-crystallin to lipid membranes,
the likely hydrophobic binding of α-crystallin to the lipid membranes warrants more
studies along this line of research for a deeper understanding. Since the MMSO by α-
crystallin is small for the individual lipid membranes (Figure 2a) and two-component lipid
membranes (Figure 2b), we suggest that only the hydrophobic regions exposed on the
outer surface of α-crystallin oligomers contribute to the binding. Due to the larger size of
the α-crystallin oligomer, the steric hindrance between bound α-crystallin oligomers after
certain binding is achieved may also contribute to smaller MMSO.

The lipid (PL and sphingolipid) composition in the fiber cell plasma membrane of
the eye lens changes with age and cataract [2,82,110–115], among species [81,110,111,116],
and location in the lens [4,81,82,113,117,118]. The MMSO by α-crystallin and the Ka values
are different for different lipid membranes (Figure 2a). Additionally, for two-component
lipid membranes (Figure 2b), the change in lipid composition changes the MMSO by α-
crystallin and the Ka values. Based on these data (Figure 2a,b), we suggest that the change
in lipid composition may be the translocation event that promotes the translocation of
α-crystallin from the lens cytoplasm to the fiber cell plasma membranes. This is further
supported by the observations that the binding of α-crystallin to the lens membranes
increases with age and cataract formation [59–62,64,65], as the lipid composition changes
dramatically with age and cataract [2,82,110–115].

2.2. Binding of α-Crystallin to the Lens Lipid Membrane Changes the Membrane’s Physical Properties

The association of α-crystallin to the lens lipid membrane changes the membrane’s phys-
ical properties, such as the mobility parameter and maximum splitting [99,101,108,119–122].
The mobility parameter gives the orientational and rotational dynamics of the cholesterol
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analog spin-label (CSL) in the membrane [119,121,122]. The maximum splitting is a param-
eter related to the order parameter that gives the amplitude of the wobbling motion of the
long axis of the CSL spin-label in the membrane [120–122]. Figure 3a,b show the decrease
in the mobility parameter of the individual lipid membranes (POPC, SM, and POPS) and
two-component lipid membranes (SM/POPE, SM/POPS, and SM/POPC), respectively,
in the presence of α-crystallin, indicating that those membranes become less mobile near
the headgroup regions after α-crystallin binding. Using the fluorophore NBD-PE, which
partitions near the membrane headgroup regions, Borchman and Tang [89] found a similar
decrease in the mobility of the headgroups of bovine lens lipid vesicles upon α-crystallin
binding. The higher the MMSO or the amount of α-crystallin bound to the membranes,
the greater the decrease in the mobility parameter.

Figure 3. The decrease in the mobility parameter of the lipid (PL and sphingolipid) membranes
after α-crystallin binding. (a) Individual lipid membranes, i.e., POPC, SM, POPS, and POPE* (where
* represents the presence of 30 mol% POPC). (b) Two-component lipid membranes, i.e., SM/POPE,
SM/POPS, and SM/POPE in 70:30 mol%. The mobility parameter decreases for the individual lipid
membranes (POPC, SM, and POPS) and two-component lipid membranes (SM/POPE, SM/POPS,
and SM/POPE in 70:30 mol%) with an increase in α-crystallin concentration, representing the
decrease in the mobility of the membranes near the headgroup regions due to the increase in the
binding of α-crystallin to these membranes. The mobility parameter for the POPE* membrane
does not decrease in the presence of α-crystallin, because α-crystallin does not bind to the POPE*
membrane. Redrawn with permission from [99,101], Copyright 2021, with permission from Taylor &
Francis and Elsevier.

The maximum splitting of the SM and the SM/POPE in 70:30 mol% membranes in-
creased with an increase in α-crystallin concentration [101], implying that these membranes
become more ordered near the headgroup regions after the binding of α-crystallin. It is
reported that α-crystallin binding to the protein-free membranes depends on the hydro-
carbon chain order [102]. With age, an increase in the amount of SM and a decrease in the
amount of PC has been observed [82,123]. The highest order near the surface of the SM
membrane and lowest order near the surface of the POPC membrane (Figure 4B in [101])
support the observation of increased order of the lens lipids with aging [117,124].
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Figure 4. The maximum percentage of membrane surface occupied (MMSO) by α-crystallin and the binding affinity (Ka) of
α-crystallin binding to the cholesterol/lipid (Chol/lipid) membranes at Chol/lipid mixing ratios of 0, 0.5, 1, and 1.5. (a)
Chol/POPC membranes; (b) Chol/SM* membranes, where * represents the presence of 20 mol% POPS; (c) Chol/POPS
membranes. With an increase in Chol/lipid mixing ratio for the Chol/POPC, Chol/SM*, and Chol/POPS membranes, both
the MMSO by α-crystallin and Ka decrease, indicating that Chol inhibits the binding of α-crystallin to these membranes.
Redrawn with permission from [99,101,108], Copyright 2021, with permission from Taylor & Francis and Elsevier.

3. Role of Cholesterol (Chol) on the α-Crystallin Binding to the Lens Membrane
3.1. Extremely High Chol Content Forming Cholesterol Bilayer Domains (CBDs) within the
Lens Membrane

Chol is one of the major components of the eye lens’s fiber cell plasma membrane [3–5].
Compared to other eukaryotic membranes, the eye lens’s fiber cell plasma membrane
contains extremely high Chol content [125]. The Chol/lipid molar ratio in the chicken, cow,
human, and whale’s eye lens’s fiber cell plasma membrane ranges from 1 to 10 [85,111].
Whale’s eye lens membrane has the highest Chol/lipid molar ratio of 10 [111]. Humans
have a Chol/lipid molar ratio as high as 1.8 in the cortical membranes and 4.4 in the nuclear
membranes [84,113,115,126]. The Chol/lipid molar ratio in the human eye lens membrane
increases with age [113,115,126] and decreases with the cataract formation [127].

With an increase in Chol concentration in the Chol-containing PL membranes,
Chol saturates the membrane with the formation of phospholipid cholesterol domain
(PCD) [113,127–129]. With further increase in Chol concentration, CBDs start to form,
which coexist with surrounding PCD [113,127–129]. CBDs were observed in the model
membranes [121,122,130–134], lens lipid membranes [113,118,127–129], and the intact cor-
tical as well as nuclear membranes isolated from the human donors who were 40, 46,
and 53 years old [135]. The bulk physical properties of lens lipid membranes remain
consistent and independent of changes in lipid composition due to saturating Chol con-
tent [125,136,137]. Thus, CBDs help maintain lens membrane homeostasis by providing
the buffering capacity for Chol concentration in the surrounding lipid bilayer, keeping it at
a constant saturation level. This is particularly important for human lenses because of the
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longest life span and the most pronounced age-related changes in lens lipid composition
compared to other mammalian lenses [138]. Other functions of Chol include the formation
of a hydrophobic barrier and altered rigidity across the membrane lipids [121,139,140].
When the Chol content exceeds the Chol solubility threshold, Chol crystals form, presum-
ably outside the membrane [130,141]. Since the Chol level increases with age, it exceeds the
Chol solubility threshold, with Chol crystals forming outside the lens membranes [126].

3.2. Chol and CBDs Inhibit the Binding of α-Crystallin to the Membranes Made of Eye Lens Lipids
(PLs and Sphingolipids)

The role of Chol on α-crystallin binding to the lens membrane and lipid vesicles
has not gained sufficient attention. Cobb and Petrash [98] used human recombinant
AlexaFluor350TM-conjugated α-crystallin with the PC and SM membranes with and with-
out 40 mol% Chol and reported no significant difference in the binding of α-crystallin to
PC and SM membrane with and without Chol. However, Tang et al. [102] used distearoyl-
phosphatidylcholine (DSPC), SM, and egg-phosphatidylcholine (egg-PC) membranes with
Chol/lipid weight ratio up to 1.0 (~64 mol% Chol) and performed fluorescence studies
using fluorophore NBD-PE, which resides in the polar headgroup regions of the membrane,
and reported a significant decrease in the binding of α-crystallin with the DSPC and SM
membranes with Chol. Additionally, Tang et al. [102] reported a slight increase in the
binding of α-crystallin to the egg-PC in the presence of Chol. Moreover, a few studies
reported that Chol inhibits the binding of α-crystallin to the lipid vesicles [89,91]. The
recent study [108] performed using the EPR spin-labeling method shows that an increase
in Chol content in POPC, SM*, and POPS membranes decreases the α-crystallin binding to
the membranes; however, the decrease in the binding is different for different lipid types
(Figure 4).

The EPR spin-labeling studies reported that hydrophobicity near the surface of the
Chol/POPC [122], Chol/SM [131], and Chol/POPS [132] membranes decreases with an
increase in Chol content. Interestingly, the MMSO and Ka decrease with an increase in
Chol concentration for the Chol/POPC, Chol/SM*, and Chol/POPS membranes (Figure 4).
These results indicate that interaction between α-crystallin and Chol/lipid membranes is
likely hydrophobic. The small MMSO for the Chol/lipid membranes (Figure 4) further
supports that only the hydrophobic regions exposed on the outer surface of α-crystallin
oligomers contribute to the binding, with the possibility that the steric hindrance between
bound α-crystallin oligomers after certain binding is achieved also contribute to the smaller
MMSO. The different MMSO and Ka values of different Chol/PL membranes with the same
hydrophobic core (Figure 4) imply that the likely hydrophobic binding of α-crystallin and
the Chol/PL membranes is modulated by the lipid headgroup’s size and charge, hydrogen
bonding between the lipid’s headgroups, and PL curvature. Moreover, the degree to which
the MMSO and Ka decrease differently for different Chol/lipid membranes (Figure 4) is
likely due to the strength of Chol’s interactions with the different lipids. An important
point to note is that, irrespective of the lipid type, the data (Figure 4) show that an increase
in Chol concentration decreases the MMSO and Ka, implying that Chol and CBDs play a
positive physiological role by inhibiting the binding of α-crystallin to the lens membranes
and possibly protecting against cataract formation.

If MMSO and binding affinity (Ka) are compared between different lipid types,
MMSO and Ka for different Chol/lipid membranes are different, indicating that binding
is lipid-specific (Figure 4). Several studies performed earlier in various research laborato-
ries [89,91,100] and a recent EPR study performed in our laboratory [108] reported that the
α-crystallin binding to the Chol/lipid membranes is saturable.

The Chol concentration in the fiber cell plasma membrane of the lens changes with age and
cataract [113,115,126,127,142], among species [85,111], and location in the lens [84,113,115,126].
The Chol/lipid molar ratio increases with age and decreases with cataract
formation [113,115,126,127,142]. With different Chol content among species, different
cataract onset ages have been observed. Humans have a Chol/lipid molar ratio of up
to 4 [81] and generally develop cataracts at 60 years of age [111,116], but whales have a
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Chol/lipid molar ratio of 10 and do not develop cataracts until up to 200 years of age [111].
Most probably, the high amount of Chol in a whale’s eye lens protects α-crystallin binding
with its lens membranes, protecting them from cataract formation. The Chol/lipid molar
ratio and CBDs’ size on the cortical and nuclear membranes extracted from human donors
61–70 years old were smaller in cataractous lenses than in clear lenses [127]. Moreover,
CBDs’ size increased with an increase in Chol content in the lens membrane [113]. These
previous observations [113,127], including the recent observations (Figure 4), imply that
the larger Chol/lipid molar ratio and CBDs’ size decreases the binding of α-crystallin to
the lens membranes, possibly protecting from cataract formation.

3.3. Binding of α-Crystallin to the Chol/Lipid Membrane Changes the Membrane’s Physical Properties

The mobility parameter of the lipids (Figure 5a) and Chol/lipid (Figure 5b) membranes
decrease with an increase in α-crystallin concentration, implying that these membranes
become less mobile near the headgroup regions after the α-crystallin binding. Borchman
and Tang et al. [89] also found a similar decrease in the mobility of the headgroups of
bovine lens lipid vesicles upon α-crystallin binding.

Figure 5. Mobility parameter of lipid (PL and sphingolipid) membranes with and without α-crystallin. (a) Individual
lipid membranes, i.e., POPC, SM*, POPS, and POPE* (where * represents the presence of 20 mol% POPS); (b) Chol/POPC,
Chol/SM*, Chol/POPS, and Chol/POPE* membranes with Chol/lipid mixing ratio of 0.3. The mobility parameter
decreases for the individual lipid membranes (POPC, SM*, and POPS) and Chol/lipid membranes (Chol/POPC, Chol/SM*,
and Chol/POPS) with an increase in α-crystallin concentration, indicating the decrease in the mobility of the membranes
near the headgroup regions due to the binding of α-crystallin to these membranes. The mobility parameter for the POPE*
and Chol/POPE* with Chol/POPE* mixing ratio of 0.3 membranes does not decrease in the presence of α-crystallin,
because α-crystallin does not bind to these membranes. Redrawn with permission from [99,101,108], Copyright 2021,
with permission from Taylor & Francis and Elsevier.

An increase in Chol concentration in each Chol/lipid membrane decreases the mem-
brane’s mobility near the headgroup regions and antagonizes the ability of α-crystallin to
decrease the mobility near the membrane’s headgroup regions (Figure 5).

An increase in Chol concentration in each Chol/lipid membrane increases the maxi-
mum splitting of the membrane, indicating that Chol increases the membrane’s order near
the headgroup regions [108].

3.4. Hight Chol Content and Lens Transparency

Based on our results of α-crystallin binding to the Chol/lipid membranes at different
Chol/lipid mixing ratios (Figure 4), Figure 6 shows the schematic drawing showing the
decrease in the binding of α-crystallin to the Chol/lipid membrane with an increase in
Chol concentration. The decrease in the binding of α-crystallin to the lens membranes
increases the lens transparency (Figure 6). Figure 6 shows the penetration of a small
portion of α-crystallin oligomer into the membrane. A few studies [2,66,79] reported that
denatured α-crystallin binds deep into the membrane. How much α-crystallin penetrates
the membrane and what factors affect it are open questions and need further investigation.
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Note that Figure 6 shows the binding of α-crystallin to the lipid membrane without the
integral membrane proteins, the high concentration of which remains in the lens plasma
membrane. Section 4 explains the effect of the integral membrane proteins on α-crystallin
binding to the lens plasma membrane.

Figure 6. Schematic drawing showing the decreased α-crystallin binding to the lipid membrane with increased Chol
content. An increase in Chol content saturates the membrane, forming the phospholipid cholesterol domain (PCD). With a
further increase in Chol content, cholesterol bilayer domains (CBDs) coexist with the PCD. CBDs start to form at 50, 48, 46,
and 33 mol% Chol within the PC, SM, PS, and PE membranes, respectively [130]. CBDs are shown in green color in the
schematics. The CBD’s size increases with an increase in Chol content, and at above 66 mol% Chol, Chol crystals form,
presumably outside the bilayer [113]. The current study’s findings [108] suggest that the binding of α-crystallin to the lens
lipid membrane decreases with an increase in Chol content, and no α-crystallin binds to the lipid membrane above likely
~60 mol% Chol in the membrane. The real size of the α-crystallin oligomer (red) is much larger than represented in this figure.
The decrease in the binding of α-crystallin to the Chol/lipid membranes made with increasing Chol content represents
the decrease in light scattering and increase in lens transparency. Adapted from [108], Copyright 2021, with permission
from Elsevier.

3.5. Lipid Peroxidation and Cataract Formation

Regardless of a relatively low oxygen level in the eye lens, photo and chemical
oxidation of lipids can occur and affect it [2]. The oxidation of lipids in the human lens
with age has been studied [143–147]. The major secondary product of lipid oxidation is
malondialdehyde (MDA), which increases in the human lens with age [147] and cataract
formation [143,146–152]. Both the clear and cataractous lenses consist of lipid oxidation
products [143–146,148,149,152,153]. More than 40% of the lens PLs degrade, forming
oxidation products in the human lens over the lifetime [2]. With a cataract formation,
even more amounts of PLs degrade in the human lens [2,112]. There is no turnover of
lipids in the human lens for the entire lifespan [154]. The oxidative damage in the lens
accumulates, which changes the crystallin’s structure, resulting in light scattering [111]. A
proposition is that the α-crystallin binding to the lens membrane acts as a seed for lipid
oxidation and other protein’s binding to the membrane, resulting in protein aggregation
and light scattering [79]. Many studies have proclaimed that lipid oxidation may initiate
the pathogenesis of human cataracts [143,146–152].

A hypothesis is that the oxidation of glycerophospholipids is a primary cause of
change in lipid composition over age and cataract formation [111]. With age, sphin-
golipids increase, and glycerophospholipids decrease in the human lens [112]. Moreover,
with cataract formation, the amounts of both the sphingolipids and glycerophospholipids
decrease [2,112]. However, the decrease in sphingolipids is much less in extent [112]. Lipid
oxidation is less favorable with the decrease in the number of lipid double bonds [155].
Sphingolipids are 3–4 times more saturated than glycerophospholipids [156,157]. Therefore,
sphingolipids resist oxidation more effectively than glycerophospholipids [155,158–162].
Moreover, the degree of oxidation of polyunsaturated PC is less favorable with SM in the
membrane than without SM [158], implying that lens sphingolipids hinder the oxidation of
unsaturated glycerophospholipids. Human lens membranes have a high concentration of
sphingolipids (SM plus dihydrosphingomyelin (DHSM)) [81], which provide resistance to
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oxidation and allow the lens membranes to remain clear relatively longer than in the case
of many other species [117]. In the whale’s eye lens membrane, the dominant amount of
DHSM (100% DHSM) helps provide resistance to oxidation and allows the lens membrane
to remain clear even up to 200 years of age [111].

The lipid peroxidation induces cholesterol domain formation at lower Chol content
in the Chol-containing PL membranes [163,164]. The peroxidation of polyunsaturated
PL [165] in the Chol-containing PL membranes decreases the Chol concentration at which
CBDs and Chol crystals start to form. Chol crystals form presumably outside the mem-
brane bilayer [130,141]. The formation of CBDs and Chol crystals at the lower Chol content
decreases the overall Chol content within the membrane. Furthermore, data from litera-
ture [102,108] indicate that the higher the Chol concentration in the Chol-containing lipid
membrane, the lower the α-crystallin binding to the membrane. These observations suggest
that lipid oxidation decreases the Chol content within the lens membrane, which likely
increases the binding of α-crystallin to the lens membranes and possibly promotes cataract
formation.

Lipid oxidation plays a governing role in increasing senescent membranes’ order in
many systems [166]. The oxidation has a dual effect on SM’s order [167]. The hydrocarbon
chain order of SM increased with mild oxidation and decreased with strong oxidation [167].
Other studies have reported that lipid oxidation orders the hydrophobic chains [148,168–
176]. It is not clear if the increased order of hydrophobic chains due to the lipid oxidation
correlates with the binding of α-crystallin to the membrane and cataract formation.

4. Interaction of α-Crystallin with the Lens Integral Membrane Proteins

The fiber cell plasma membrane of the eye lens consists of two major types of integral
membrane proteins, namely aquaporin-0 (AQP0), also known as major intrinsic protein
(MIP26) [6–8], and connexins (Cx43, Cx46, and Cx50) [9]. The transport and communication
between the lens’s fiber cells are allowed by the thin and gap junctions [177]. AQP0 or
MIP26, which accounts for more than 60% of the lens’s membrane protein [178], makes
water channels [179] also known as the thin junction. The combination of two tetramers of
MIP26 from the neighboring fiber cells forms a thin junction [180]. Thin junctions control the
transport of water and some neutral solutes [181]. The mutations in human MIP26 resulting
in autosomal dominant polymorphic and lamellar cataract formation [182–184] point out
the vital role of MIP26 in lens transparency. These pathological mutations in MIP26
possibly perturb water content in the lens fiber cells and affect cell-to-cell adherence [182].
Gap junctions, also known as membrane channels, are made of three kinds of connexins,
Cx43, Cx46, and Cx50 [9,185]. Cx46 is found mainly in the cortex and the outer nuclear
layers, and Cx50 is found mainly in the nuclear core [186–188]. Six connexins form a
connexon, and two connexons from neighboring cells form a gap junction. Gap junctions
control the exchange of ions and small metabolites (amino acids, glucose) between the lens
cells [185,189].

A few studies using isolated crystallins and MIP26 suggested that α-crystallin binds
to MIP26 [96,190,191]. However, a few other studies claim that α-crystallin mainly binds to
lipids [66,89–91,93,98]. Mulders et al. [96] used PL vesicles with MIP26 reconstitution and
showed that α-crystallin binding depends on the presence of MIP26. Trypsin pretreatment,
which converts MIP26 to MIP22, or preincubation of vesicles with antibodies against MIP26,
did not influence the binding of α-crystallin [96], suggesting that the amino-terminal cy-
toplasmic fragment [192] is not involved in the association. This agrees with the earlier
observation that α-crystallin is still present in protease-treated membranes, which contain
MIP22 instead of MIP26 [193]. Therefore, the possible means of α-crystallin interaction
with MIP26 is through the hydrophobic core of the MIP26, which implies that part of
α-crystallin penetrates the membrane, as suggested by Bloemendal et al. [193]. How much
part of the α-crystallin oligomer penetrates the membrane is an open question and needs
further investigation. Based on our observations of α-crystallin binding to the lipid and
Chol/lipid membranes reported in Sections 2.1 and 3.2, respectively, we suggest that the
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hydrophobic regions exposed on the outer surface of the α-crystallin oligomers penetrate
the membrane. However, denatured α-crystallin binds deep into the membrane [2,66,79].
Figure 7 shows the penetration of α-crystallin into the membrane to bind to the hydropho-
bic regions of MIP26 and lipids. The real size of the α-crystallin oligomer (red) is much
larger than represented in Figure 7. A confocal fluorescence resonance energy transfer
(FRET) microscopy study [191] using MIP26 tagged with a green fluorescence protein
(GFP) as a donor and αA-, αB-, βB2-, or γC-crystallin tagged with red fluorescence pro-
tein (RFP) as an acceptor shows that αA-, αB-, βB2-, and γC-crystallin interact with the
MIP26. However, the binding between MIP26 and both the αA- and αB-crystallin was
considerably higher [191]. αA- and αB-crystallin have greater hydrophobicity than βB2-
and γC-crystallin [194]. Therefore, considerably higher binding of αA- and αB-crystallin to
MIP26 than βB2- and γC-crystallin to MIP26 [191] supports the hydrophobic interaction
between α-crystallin and MIP26. α-crystallin undergoes various mutations and PTMs with
age and cataract formation (see Section 5). Additionally, MIP26 undergo extensive PTMs
with age [195]. There may be some PTMs in α-crystallin and/or MIP26 that increase the
association of α-crystallin with MIP26 in lens membrane, following light scattering and
cataract formation. Therefore, investigations exploring PTMs in α-crystallin and/or MIP26
responsible for the association of α-crystallin with MIP226 are crucial.

Figure 7. Schematic drawing showing an intact human lens membrane. The integral membrane proteins aquaporin-0
(AQP0) or MIP26 and connexins (Cx43, Cx46, and Cx50) remain embedded into the lens membrane. α-crystallin (red)
binds to the lipids (PLs and sphingolipids) and MIP26, most possibly via the hydrophobic core of the lipids [92] and
MIP26 [96]. The recent data for the lipids [99,101] and Chol/lipid membranes [108] suggest that hydrophobic regions
exposed on the outer surface of α-crystallin oligomers penetrate the membrane to bind to lipids and MIP26. The real size
of the α-crystallin oligomer is much larger than represented in this figure. MIP26 forms thin junctions, which control the
transport of water and some neutral solutes between lens fiber cells. Connexins form gap junctions, which control the
exchange of ions and small metabolites between the lens fiber cells. Blocking these membrane pores by α-crystallin binding
to the membranes creates a barrier to the small molecules leading to nuclear cataract development [64]. Four kinds of
lipid environments exist in the human lens membrane, such as bulk lipids (blue), boundary lipids (grey), trapped lipids
(gold), and cholesterol bilayer domains (CBDs) (green) [135,196,197]. MIP26 and connexins likely induce the boundary and
trapped lipids’ formation [8,198]. The water permeability through the thin junctions depends on its lipid environment [199].
The Chol content in the human lens membrane is extremely high, forming CBDs within the membrane [113,135]. Note that
Chol is excluded from the boundary lipids [200,201].

A study using the saturation recovery (SR) EPR method demonstrated that the oxygen
transport parameter (OTP) decreases with an increase in α-crystallin binding to the PC
membrane [99], indicating that binding of α-crystallin to the membrane forms a barrier
to oxygen transport. Although the study [99] used an individual PL membrane without
integral membrane proteins, the result helps to speculate that the binding of α-crystallin
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to the fiber cell plasma membrane of the eye lens creates a barrier, in agreement with the
barrier hypothesis proposed earlier [30,63,64]. The barrier may block the membrane pores
formed by MIP26 and connexins, producing an oxidative condition in the lens, leading to
nuclear cataract development [30,63,64].

The water permeability through the AQP0 (MIP26) decreases with increasing Chol
and SM content [199], implying that the bilayer lipid composition regulates water perme-
ability. Since the concentration of Chol and SM is high in the lens nucleus compared to
the cortex [83,84,117,202–204], AQP0 permeability would be significantly less in the lens
nucleus than in the lens cortex [199]. As the increasing Chol content decreases binding of
α-crystallin to the Chol/lipid membranes and α-crystallin binding depends on the type
of lipid in the membrane [99,101,108], the Chol content and change in lipid composition
likely modulate the binding of α-crystallin to the MIP26. However, more investigations are
necessary along this line of research.

Gap junction, which transports metabolites and ions between lens cells [189], is
vital for maintaining lens homeostasis of inner fiber cells. A study [189] using double
knockout mice characterizing lens phenotypes demonstrated that the absence of gap
junctions between lens fiber cells displayed severe cataracts resulting from cell swelling
and degeneration of inner fiber cells. This result suggests that a loss of gap junction leads to
cataract formation. This result further supports the barrier hypothesis that the association
of α-crystallin to the lens membrane may block the transport of metabolites and ions
through gap junctions, forming nuclear cataracts [30,63,64]. Whether α-crystallin directly
binds to the connexins blocking the membrane pores or not still needs investigation.

5. Mutations and Post-Translational Modifications (PTMs) of α-Crystallin,
Resulting in Association of α-Crystallin to the Fiber Cell Plasma Membranes and
Cataract Formation
5.1. Mutations in α-Crystallin That Cause Association of α-Crystallin to Lens Membranes

The studies using in-vitro assays and site-directed mutagenesis have suggested that
α-crystallin usually is stable and can tolerate the substitution of its many amino acids
in its primary structure [205,206]. Several mutations leading to cataract formation have
been reported [207–210]. A missense mutation of the arginine 116 residue to cysteine
(R116C) in αA-crystallin decreases the chaperone-like activity of α-crystallin approximately
four-fold, reduces the ability to exchange α-crystallin’s subunits four-fold, and increases
the membrane-binding capacity 10-fold [208]. Such reduced chaperone-like activity and
increased membrane-binding capacity of α-crystallin cause a zonular central nuclear
cataract [208,211]. Moreover, mutation R116C in αA-crystallin showed less binding with
actin, which is necessary for the normal differentiation of lens cells, compared to wild-type
αA-crystallin [209]. This implies that the R116C mutation causes decreased chaperone activ-
ity and increased aggregation of αA-crystallin [209]. The reverse-phase high-performance
liquid chromatography study suggested that mutation of the arginine 116 residue to histi-
dine (R116H) in αA-crystallin increased hydrophobicity of the αA-crystallin compared to
that of wild-type αA-crystallin [212]. The DTT (DL-dithiothreitol)-induced insulin aggre-
gation assay showed the loss of chaperone activity of the αA-crystallin due to R116H muta-
tion [212]. Furthermore, fast protein liquid chromatography (FPLC) purification showed
that mutation R116H to αA-crystallin increased its binding affinity to lysozyme [212].
A missense mutation of the arginine 120 to glycine (R120G) in αB-crystallin [213–215]
causes a desmin-related myopathy and congenital cataracts, because this mutation alters
protein–protein interaction, with an increase in its cytoplasmic aggregation. The analysis of
recombinant αA- and αB-crystallin containing these mutations has shown marked changes
in the α-crystallin’s chaperone function [10]. Pras et al. [216] reported that a nonsense muta-
tion of the glycine residue to alanine in αA-crystallin caused autosomal recessive cataracts
in an inbred Jewish Persian family, resulting in the formation of the premature stop codon
(W9X). Moreover, a dominant valine 124 to glutamic acid (V124E) mutation in mouse
αA-crystallin has been reported [217]. A dominant congenital posterior polar cataract in
humans caused by a mutation in the αB-crystallin gene resulted in 35 totally different
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residues at the C-terminus of the αB-crystallin gene [218]. The site-directed mutagenesis
studies showed phenylalanine 71 (F71) in αA-crystallin is necessary for its chaperone activ-
ity [219,220]. A missense mutation of F71 to leucine (i.e., F71L) in αA-crystallin decreases
the chaperone activity of αA-crystallin and induces age-related cataracts in humans [221].

Grosas and Carver et al. [210] discussed several other α-crystallin mutations leading
to cataract formation. We speculate that future investigations will discover additional
mutations leading to cataract formation and progression. The abnormal α-crystallin caused
by mutations may precipitate in the lens, cause the precipitation of other lens proteins,
and associate with the lens membranes, causing the scattering of light and cataract forma-
tion [20]. The binding of α-crystallin to the lens membranes depends on the surface area of
the hydrophobic regions exposed on the outer surface of α-crystallin oligomer [99,101,108].
Different mutations may cause distinct changes to the α-crystallin’s structure and the
surface area of the hydrophobic regions exposed on the surface of its oligomeric form. This
is why different mutations likely have a different extent of α-crystallin association with
the fiber cell plasma membrane. More research on identifying which particular mutation
of α-crystallin increases or decreases its association with the lens membrane is an open
area of investigation and may contribute to a better understanding of cataract progression
and development.

5.2. Post-Translations Modifications (PTMs) in α-Crystallin

Various studies of lens proteins have shown that PTMs may significantly affect the
chaperone-like activity of α-crystallin [222–226]. PTMs induce conformational changes in
α-crystallin, leading to possible changes in its interaction with the other proteins in the lens,
damaging its chaperone functions [227]. The changes in α-crystallin caused by PTMs likely
influence its association with the lens membranes; however, detailed studies are necessary
to understand it clearly. Most cataracts are not congenital but develop with mutations
and PTMs of α-crystallin during aging [228]. Several types of PTMs on α-crystallin have
been reported to date, e.g., deamidation [229–233], phosphorylation [223,227,231–236],
isomerization [237,238], acetylation [233,239,240], glycation [241–243], proteolytic cleav-
age [231–233,235,244,245], and oxidation [20,246–248]. Here, we discuss these common
PTMs, focusing on chemical mechanisms founding these PTMs and their implications in
decreasing the chaperone activity of α-crystallin, causing cataract formation.

5.2.1. Deamidation

Deamidation is a chemical reaction where the amide group in the side chain of the
amino acids asparagine (Asp) or glutamine (Glu) is removed or converted to carboxylic
acid. Generally, Asp changes to aspartic acid, and Glu changes to glutamic acid. The net
chemical change caused by deamidation is an addition of the water group and removal
of the ammonia group, which results in one Da mass increase. Normally, deamidation
events in lens proteins are harmful effects of aging and exposure to UV radiation [249,250].
Many different PTMs have been observed in rat lenses using proteomic analysis; however,
deamidation of Asp and Glu amino acids was the most common [26]. Deamidation of
Asp 123 of αA crystallin caused a significant decrease in its chaperon activity [229]. A
study [231] investigating the α-crystallin of the water-insoluble but urea-soluble portion
of 45-year-old normal lenses hypothesized that the deamidation of various Asp and Glu
amino acids of α-crystallin makes α-crystallin water-insoluble, following conformational
changes guiding the formation of the intramolecular disulfide bond between cysteine
(Cys) residues of αA-crystallin. Deamidation occurs in all the crystallins in the older
lenses; however, the extent of deamidation depends on individual polypeptides [251].
Deamidation of ~45% of Asp 101 in human αA-crystallin occurs in the early 30 years of
age [230]. An additional ~5% deamidation of Asp 101 in human αA-crystallin occurs
from 30 to 68 years of age [230]. Deamidation is more common in insoluble proteins than
soluble proteins from the same lenses [252], indicating that deamidation may significantly
contribute to the denaturation and aggregation of proteins. However, to what degree
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deamidation at any specific site contributes to the formation of cataracts is still an open
question [238,253].

5.2.2. Phosphorylation

Phosphorylation is a reversible PTM of proteins, where the amino acid residue is phos-
phorylated by the protein kinase with the addition of a covalently bound phosphate group.
Phosphorylation of serine 45 (Ser 45) and Ser 122 in αA-crystallin occurs, with Ser 122 phos-
phorylation being the most common [234]. Phosphorylation of Ser 19, Ser 45, and Ser 59 in
αB-crystallin occurs, with Ser 59 phosphorylation being the most common [254]. Phospho-
rylation changes the protein’s surface charge, accompanied by conformational changes,
which may change the protein–protein interaction and reduce the chaperone function [227].
Chiappori et al. [255] modeled dimers and hexamers from the 24-meric structure of αB-
crystallin (PDB id: 2YGD) and performed the molecular dynamics (MD) simulation studies
with all Ser 45/Ser 59 phosphorylated and all non-phosphorylated forms. Their simulation
studies [255] suggest that Ser 59 is a key residue for regulating the multimeric confor-
mation of αB-crystallin. Kim et al. [236] reported that in diabetic OLETF rats, increased
α-crystallin expression corresponds with increased phosphorylation on Ser 45 and Ser 59
of αB-crystallin, which negatively modulates the α-crystallin’s chaperone function. The
mono-phosphorylation of αB-crystallin decreased α-crystallin’s chaperone-like activity
by approximately 30% [223]. Phosphorylation increases with age and can affect the α-
crystallin’s chaperone function [227,256]. The phosphorylation of Ser 122 of αA-crystallin
does not occur during the aging process but is a developmentally controlled event in the
human lens [234]. Furthermore, it is reported that the phosphorylation of α-crystallin does
not change its binding to the lipid vesicles [98].

5.2.3. Isomerization

Isomerization is a process in which a molecule or a molecular fragment converts to
an isomer with a different chemical structure. Isomerization is one of the major PTMs of
proteins, which could occur spontaneously and non-enzymatically, affecting the structure
and functions of proteins. Isomerization of Asp 58, Asp 91 or Asp 92, and Asp 151 residues
in αA-crystallin may cause aggregation of proteins to HMWCs, ultimately reducing chap-
erone activity and leading to cataract formation [237]. A study [238] performed using
combined techniques, such as synthetic peptide mimics, enzyme assays, MD simulations,
and native mass spectrometry experiments, reported that isomerization of Asp 62 in αB-
crystallin alters phosphorylation of Ser 59 in αB-crystallin. Additionally, isomerization of
Asp 109 in αB-crystallin disrupted a significant salt-bridge between Asp 109 and R 120 in
αB-crystallin, introducing profound changes in protein structure [238].

5.2.4. Acetylation

Acetylation is an organic esterification reaction with acetic acid. It is a reversible
PTM, which introduces the acetyl functional group into the protein. Lysine 70 (K 70) and
K 99 in αA-crystallin and K 92 and K 166 in αB-crystallin can be acetylated in the human
lens [240]. The acetylation mimic of αA-crystallin by replacing K 70 with glutamine (K70Q)
increased this protein’s chaperone function [240]. The suggestion is that acetylation of K 70
of αA-crystallin may affect its conformation and intermolecular interactions, consequently
altering the solubility and chaperone function of αA-crystallin [233].

5.2.5. Glycation

Glycation is a covalent attachment of sugar to a protein. The common sugars that par-
ticipate in glycation are glucose, fructose, and their derivatives. The glycation of α-crystallin
was observed in the human lens and a diabetic rat [241–243], resulting in an increase in
size of the α-crystallin aggregates [243], leading to its decreased chaperone activity.
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5.2.6. Proteolytic Cleavage

Proteolytic cleavage is fundamentally the breaking of the bond between peptides
in a protein. Various sites of crystallin cleavage have been reported [250,257,258]. The
C-terminus of αA-crystallin is the most predominant age-dependent cleavage site, which
results in the loss of chaperone activity of this protein [245]. The peptides produced from the
cleavage may themselves have crucial biological significance. For example, α-crystallin’s
fragments isolated from the human lenses help crystallin aggregation in vitro [259,260].

5.2.7. Oxidation

Protein oxidation is a covalent modification of a protein caused either by the direct re-
action with reactive oxygen species (ROS) or indirect reaction with secondary by-products
of oxidative stress. ROS can lead to oxidation in both amino acid side chains and pro-
tein backbone, forming protein–protein cross-links or protein fragments [261]. In the
lens, oxidation of methionine (Met) amino acid to methionine sulfoxide or sulfone and
cysteine (Cys) to cystine occur [247,262]. The oxidative damage accumulates over time,
which occurs at higher rates in the cataractous lens [30,263] compared to normal lenses.
The metal-catalyzed oxidation of α-crystallin with H2O2 caused a significant loss of its
chaperone activity [246,264]. Disulfide bonds are sulfur–sulfur bonds that are products of
oxidative damage when the thiol (-SH) group of two cysteine amino acids are oxidized,
resulting in a net loss of two electrons to the oxidizing agent. Oxidation is an indica-
tor of age-related cataracts in the human lens, because its occurrence highly correlates
with the onset of age-related cataracts, especially in the nucleus [30,265,266]. Notably,
in young human lenses until approximately 30 years of age, ∼45% of αA-crystallin have
an intramolecular disulfide bond [232,265,267,268]. With aging, the amount of disulfide
bonds increases up to ∼90% [267], which is a significant constituent of higher molecular
weight aggregates [231,235,269], resulting in age-dependent loss of chaperone activity of
α-crystallin [20,248].

PTMs decrease the α-crystallin’s chaperone-like activity by the formation of its water-
insoluble protein aggregates [230,270]. PTMs of α-crystallin might increase the protein
aggregation and insolubilization in the lens [222,224,226]. The water-insoluble α-crystallin
in the lens may be the precursor of cataract formation. α-crystallin denatures by modifi-
cations, such as PTMs [244,250], and may bind deep into the membranes [79,98]. While
PTMs in α-crystallin show their role in cataract formation, the overall role of these PTMs in
the α-crystallin binding to the lens membranes leading to the development of cataracts is
less clear. However, there are reports that α-crystallin from older [93,96,103] and catarac-
tous lenses [95] that have undergone PTMs did not bind effectively to lens membranes.
Such observations warrant more investigations in this area. The high correlation between
PTMs in α-crystallin and cataract formation helps to speculate that PTMs likely increase
the association of α-crystallin with the lens membrane, promoting cataract progression
and development. α-crystallin interacts with membranes likely via hydrophobic inter-
actions, depending on the hydrophobic residues exposed on the surface of α-crystallin
oligomer [99,101,108]. It is very likely that different PTMs of α-crystallin alter the structure
of α-crystallin differently, changing the proportion of hydrophobic residue on the surface
of the α-crystallin oligomer, resulting in a different extent of interactions with the fiber cell
plasma membranes. The effect of PTMs of α-crystallin in the association of α-crystallin
with fiber cell plasma membrane is an open area of investigation. The detailed research in
this area leads to a deeper understanding of cataract progression and development.

6. Conclusions and Future Perspectives

α-crystallin has been the “kernel” of small heat-shock proteins in the eye lens. It plays
a significant role as a major refractive element and a molecular chaperone in the eye lens.
α-crystallin stabilizes other lens proteins against unfolding and misfolding and acts as
the first line of defense against lens proteins’ aggregation. Even with these constructive
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functions, α-crystallin binds to the fiber cell plasma membrane of the eye lens progressively
with age and cataract formation.

In this paper, we have reviewed the role of individual lens lipid components, such as
major PLs and sphingolipids, Chol, CBDs, integral membrane proteins (MIP26 and con-
nexins), as well as lipid peroxidation and α-crystallin mutations and PTMs in α-crystallin
binding to the lens membranes accompanied by light scattering and cataract formation.
The binding of α-crystallin to the lipids and Chol/lipid membranes is likely hydropho-
bic [99,101,108], which occurs between the hydrophobic regions of α-crystallin and the
hydrophobic core of the membranes. The lipid headgroup’s size and charge, hydrogen
bonding between headgroups, and lipids’ curvature likely modulate the hydrophobic
binding [101,108]. Moreover, α-crystallin binding to each lipid and Chol/lipid mem-
brane is saturable, and if compared between different lipid types, the binding is lipid-
specific [99,101,108]. The different MMSO and Ka of α-crystallin binding to the different
lipids (Figure 2) and Chol/lipid (Figure 4) membranes indicate that the change in lipid
composition strongly modulates the binding of α-crystallin to the membranes. The increase
in Chol content, with the formation of CBDs, within the Chol/lipid membranes inhibits
the binding of α-crystallin to the membranes (Figure 6). This indicates that exceedingly
high Chol content in the lens membrane plays a positive physiological role in protecting
against α-crystallin binding to lens membranes and cataract formation. Additionally, lipid
oxidation likely increases the binding of α-crystallin to the lens membranes and possibly
promotes cataract formation.

The binding of α-crystallin to the lipids and Chol/lipid membranes changes the
physical properties of the membranes [77,78,98], such as mobility parameter and maximum
splitting. Increasing α-crystallin concentration decreases the mobility parameter of both
the lipids and Chol/lipid membranes [77,78,98], meaning that those membranes become
less mobile near the headgroup regions when increasing α-crystallin binds to them. The
maximum splitting of a few of the lipid membranes significantly increases with an increase
in α-crystallin concentration [101], implying that these membranes become more ordered
near the headgroup regions due to the binding of α-crystallin. A crucial integral membrane
protein, namely AQP0 or MIP26, binds to the α-crystallin, likely through hydrophobic
binding [96], implying a high concentration of MIP26 present in the lens membrane strongly
influences the binding of α-crystallin to the lens membranes. Denatured α-crystallin
binds deep into the membrane [2,66,79]. α-crystallin binds to other lens proteins forming
higher molecular weight complexes (HMWCs), and the association of HMWCs with
lens membrane increases with age and cataract [76–78]. Moreover, various α-crystallin
mutations and PTMs correlate with cataracts [210], implying that these mutations and PTMs
likely change the structure of α-crystallin, leading to large-scale crystallin precipitation,
followed by association with the lens membranes and cataract formation.

Even with such a plethora of existing knowledge, there still exists some nescience
to fundamental questions: How does α-crystallin bind to other proteins in the lens form-
ing HMWCs? How do HMWCs associate with the fiber cell plasma membrane [66],
followed by light scattering and cataract formation [59,60,79]? Does α-crystallin have
additional regulatory roles? How do α-crystallin mutations and PTMs specifically affect
the α-crystallin structure, affecting its binding to the lens membranes? Such fundamen-
tal questions warrant detailed studies that help to explain the cause and mechanisms
of the molecular-level changes in the lens components that lead to cataract formation
and progression. As illustrated in the studies [238,255], MD simulations could provide
molecular-level information about the α-crystallin, which could form the basics to under-
stand its association to the fiber cell plasma membrane of the eye lens. However, MD
simulations may suffer from the enormous computing resources required for all-atom
simulations of the larger molecular complex of α-crystallin and lens membrane. Synergistic
approaches of both experiments (e.g., cryo-electron microscopy, NMR spectroscopy, EPR
spectroscopy, and cross-linking/mass spectrometry) and simulations are needed, which
may provide a molecular-level understanding of α-crystallin association with the lens
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membrane. A detailed understanding of the mechanism of α-crystallin association with
the fiber cell plasma membrane of the eye lens may provide avenues towards the treatment
and prevention of cataracts.
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