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Inhibiting actions inappropriate for the behavioral context, or inhibitory control, is essential
for survival and involves both reactively stopping the current prepared action and
proactively adjusting behavioral tendencies to increase future performance. A powerful
paradigm widely used in basic and clinical research to study inhibitory control is the stop
signal task (SST). Recent years have seen a surging interest in translating the SST to
rodents to study the neural mechanisms underlying inhibitory control. However, significant
differences in task designs and behavioral strategies between rodent and primate studies
have made it difficult to directly compare the two literatures. In this study, we developed
a rodent-appropriate SST and characterized both reactive and proactive control in rats.
For reactive inhibitory control, we found that, unlike in primates, incorrect stop trials in
rodents result from two independent types of errors: an initial failure-to-stop error or,
after successful stopping, a subsequent failure-to-wait error. Conflating failure-to-stop and
failure-to-wait errors systematically overestimates the covert latency of reactive inhibition,
the stop signal reaction time (SSRT). To correctly estimate SSRT, we developed and
validated a new method that provides an unbiased SSRT estimate independent of the
ability to wait. For proactive inhibitory control, we found that rodents adjust both their
reaction time and the ability to stop following failure-to-wait errors and successful stop
trials, but not after failure-to-stop errors. Together, these results establish a valid rodent
model that utilizes proactive and reactive inhibitory control strategies similar to primates,
and highlight the importance of dissociating initial stopping from subsequent waiting in
studying mechanisms of inhibitory control using rodents.
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INTRODUCTION
Inhibitory control, or the ability to inhibit actions inappropriate
for the context, is essential for meeting the shifting demands of
complex environments (Logan et al., 1997). Successful inhibitory
control can be achieved through both proactive and reactive con-
trol strategies, respectively involving preparation to stop prior
to stimulus onset and stimulus-driven processing at stimulus
onset (Li et al., 2006a; Aron, 2011). One important paradigm to
study inhibitory control is the stop signal task (SST). In the SST,
subjects need to rapidly cancel a prepotent behavioral response
when the go signal is occasionally followed by a stop signal. The
SST is uniquely powerful in that it allows for the quantitative
estimation of the latency of reactive inhibition, the stop signal
reaction time (SSRT) (Logan and Cowan, 1984; Logan et al.,
1984). Subjects also employ proactive inhibition in the SST to
adjust response speed following errors or stop trials (Emeric et al.,
2007; Verbruggen and Logan, 2009; Bissett and Logan, 2012).
Understanding the neural mechanisms of inhibitory control is
critical because elevated SSRT is a widely observed feature of
cognitive impairment across many neuropsychiatric disorders,
including Parkinson’s disease (Gauggel et al., 2004; Mirabella
et al., 2011), attention-deficit hyperactivity disorder (McAlonan

et al., 2009), and normal cognitive aging (Andrés et al., 2008;
Coxon et al., 2012; Hu et al., 2013).

Recent years have seen a surging interest in rodent versions of
the SST (Eagle and Robbins, 2003a; Bryden et al., 2012; Leventhal
et al., 2012) to leverage the advantages of rodent models, such as
lesion, pharmacology and recording. However, important differ-
ences exist between current rodent and primate SSTs and pose a
major challenge in comparing the two literatures. For example,
while primates typically need to cancel the initiation of an action,
rodents are commonly required to inhibit an ongoing movement
(Eagle and Robbins, 2003a; Bari et al., 2011; Bryden et al., 2012;
Beuk et al., 2014). Furthermore, while primate SSTs typically
use multiple stop signal delays (SSDs), the intervals between go
and stop signal onset, many rodent tasks employ only a single
SSD (Leventhal et al., 2012; Schmidt et al., 2013), encourag-
ing rats to adopt an alternative timing strategy in anticipation
of the highly predictable stop signal. Finally, the implications
of different behavioral strategies between rodents and primates,
such as differing baseline response biases, on estimating SSRT
have not been systematically investigated (Robinson et al., 2009).
Reconciling these differences is an essential step toward establish-
ing the rat as a valid model to study inhibitory control.
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The goal of this current study was to examine whether
rats exhibit proactive and reactive inhibitory control as com-
monly described in primates in a novel rodent-appropriate SST.
Specifically, we investigated how rats cancel the initiation of a
rapid nosepoke port exit response while incorporating multiple
SSDs within each session. We found that, in addition to errors of
stopping, rats often commit independent errors of waiting. The
conflation of these two types of errors using current estimation
methods systematically overestimates SSRT. This led us to develop
and validate a novel method to estimate SSRT independent of
the ability to wait. We also investigated how recent trial history
leads to proactive adjustments of subsequent reaction time and
the ability to stop.

METHODS
SUBJECTS
Ten male Long-Evans rats (Charles River, NC), weighing
250–350 g at the start of the experiment, were trained in this
study. Animals were housed individually in a temperature- and
humidity-controlled vivarium on a 12L:12D cycle (lights on at
0700). Animals were provided ad libitum access to water and food
restricted to 85% of their free-feeding weight to motivate behav-
ioral training. Subjects were trained in one daily 90 min session.
Six of these animals underwent stereotaxic surgery for implan-
tation of chronic recording electrodes for a separate study. All
experimental procedures were conducted in accordance with the
National Institutes of Health (NIH) Guide for the Care and Use
of Laboratory Animals and approved by the National Institute on
Aging Animal Care and Use Committee.

APPARATUS
Plexiglas operant chambers (11′′L × 8 ¼′′W × 13′′H), custom-
built by Med Associates Inc. (St. Albans, VT) were contained in
sound-attenuating cubicles (ENV-018MD) each with an exhaust
fan that helped mask external noise. Each chamber was equipped
with one photo-beam lick-o-meter reward port (CT-ENV-251L-
P) located in the center of the front panel, with its sipper tube
7.5 cm above the grid floor. Two infrared (IR) sensors were
positioned to detect reward port entry and sipper tube lick-
ing, respectively. Diluted liquid sweetened condensed milk (2:1
water:milk) was used as reward and delivered through a custom-
built multi-barrel sipper tube. The delivery system was controlled
by pressurized air and each solenoid opening (10 ms) was cal-
ibrated to deliver a 10 μl drop of fluid. The reward port was
flanked by two nosepoke ports (ENV-114M), located 6.6 cm to
each side and 5.9 cm above the grid floor. Each nosepoke port
was equipped with one IR sensor to detect port entry. Only the
right nosepoke port was used in behavioral training as the fixa-
tion port, while the left nosepoke port was inactive but remained
available for exploration.

Each chamber was equipped with two ceiling-mounted speak-
ers (ENV-224BM) to deliver auditory stimuli, and two stimulus
lights (ENV-221) positioned above the reward port in the front
panel. Behavior training protocols were controlled by Med-PC
software (Version IV), which stored all event timestamps at 2 ms
resolution. All behavioral sessions were recorded via overhead
video cameras and data were stored offline for later analysis.

BEHAVIORAL SHAPING
Fast response to the go signal
Rats were initially trained to respond to a 6 kHz tone (2 s, 80 dB)
in the operant chamber to receive 3 drops of reward (30 μl) in the
reward port, delivered starting at the 3rd lick. Only trials with the
three licks within a 3 s reward window were considered success-
ful and rewarded. Subsequently, rats were shaped to nosepoke in
the fixation port and maintain fixation until tone presentation.
Early fixation port exit before tone onset resulted in no reward
delivery. The delay between fixation port entry and tone onset,
or foreperiod, was adaptively increased until rats could reliably
maintain fixation for 800 ms in anticipation of the tone. After that
point, four different foreperiods (350, 500, 650, and 800 ms) were
used, varied pseudo-randomly across trials, to minimize tempo-
ral expectation of stimulus onset. The inter-trial interval (ITI) was
1–3 s, and not signaled to the rat. Premature fixation port entry
and premature licking during ITI both reset the ITI timer. A cut-
off of 500 ms reaction time (RT), the latency between tone onset
and fixation port exit, was also imposed such that RTs longer than
the 500 ms were not rewarded. Animals were held at this stage
for 10–14 sessions to encourage fast responding to the tone, until
90% of RTs were faster than 500 ms.

Withhold response to the light signal
After rats were trained to respond as fast as possible to the 6 kHz
go signal, they were trained to associate a light signal with reward
if they responded after the light offset but not before. The over-
all organization of the task was the same as the previous shaping
phase, except that the 6 kHz tone was replaced by illumination
of a white central panel light in each trial, which will later serve
as the stop signal in the SST. Fixation port exit responses during
light illumination led to forfeiture of reward, and only responses
after light offset led to 3 drops of reward (30 μl). The duration
of light illumination was initially set at 350 ms, such that some
fixation port exit responses were slow enough to be rewarded. To
provide an explicit feedback to animals that they had waited long
enough in the fixation port and that reward was available, waiting
for the duration of the light was coupled with an audible solenoid
click similar to the click associated with reward delivery. The light
duration was then adaptively increased until animals could reli-
ably wait for 500 ms light illumination (10–14 sessions). After
that, rats received several refresher tone-alone sessions before
transitioning to the SST.

STOP SIGNAL TASK (SST)
The general organization of the SST, including ITI, nosepoke
port fixation, foreperiod and reward delivery, was the same as
the two behavioral shaping phases. In the SST, the 6 kHz go
signal was presented on all trials, and on 1/3 of the trials the
go signal was followed by the light stop signal after a variable
stop signal delay (SSD) (Figure 1). In the tone-alone trials (2/3),
or Go trials, animals were required to make fast go responses
(RT < 500 ms) to receive reward, the same contingency as in
the shaping phase. In the Stop trials (1/3), reward contingency
was dictated by the stop light as in the shaping phase, such
that reward was available only if wait time (WT), the latency
between stop signal onset to fixation port exit, was longer than
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FIGURE 1 | Schematic of the rodent Stop Signal Task (SST). Rats began
each trial by inserting their nose into a fixation port. After maintaining fixation
for a variable foreperiod, a tone was presented. Two-thirds of trials were Go
trials, in which the tone was presented alone and the trial was rewarded if
reaction time (RT, latency between tone onset and fixation port exit) was

faster than 500 ms. One-third of trials were Stop trials, in which the tone was
followed by a Stop light and the trial was rewarded if wait time (WT, latency
between light onset and fixation port exit) was longer than 500 ms. The delay
between the Go tone and Stop light, the Stop Signal Delay (SSD), varied
between trials.

the 500 ms hold duration. The same amount of reward (30 μl)
was delivered in both fast Go trials and successful Stop tri-
als. Five SSDs were determined before the start of each session
based on performance in the previous session, and the SSD
was chosen pseudorandomly from these five SSDs on each trial.
Every session included a 0 ms SSD such that the tone and light
were presented simultaneously. The remaining four SSDs were
evenly spaced in 40 ms steps and adjusted by experimenters
between sessions to ensure approximately 50% failed stop
trials.

In Stop trials where rats already made the fixation port exit
response before the onset of stop signal (RT < SSD), we chose
to omit the stop signal and rewarded the animal for the go
response in order to encourage fast responses to the go sig-
nal. While animals subjectively perceived these “converted” Stop
trials as Go trials, these trials were treated as failure-to-stop
errors in our analysis to ensure that the stochastic go process
was sampled equally in both Go and Stop trials. This is impor-
tant because these converted trials tended to have very fast RTs:
classifying these trials as Go trials would result in a dispropor-
tionately fast Go trial RT distribution and slow Stop trial RT
distribution from essentially transferring the fastest Stop trials
to Go trials. The effect of such a misclassification would be to
bias the Go RT distribution leftward (i.e., faster) and under-
estimate the percentage of failure-to-stop errors, resulting in the
under-estimation of SSRT (i.e., faster SSRT). Note that, because
converted trial RTs were faster than the SSD, classifying these
trials as failure-to-stop errors resulted in negative values when
aligned to the Stop signal (Figure 4). These converted Stop trials
were not included when determining the percentage of attempted
reward collection in failure-to-stop errors (Figure 3B) and in the
analysis of proactive inhibitory control (Figure 7), where only
trials with stop signal presentation were included. Previous stud-
ies in rodents have treated these trials similarly by omitting stop

signal presentation and rewarding fast go responses (Eagle and
Robbins, 2003a; Beuk et al., 2014), with the exception of one
study which did not address these trials directly (Schmidt et al.,
2013).

DATA ANALYSIS
Data analysis included only sessions with (1) 50 or more
Stop trials; (2) greater than 25% failed Stop trials; and (3)
fewer than 25% Go trials with RTs exceeding the 500 ms
cutoff (n = 257/507 sessions, 49% sessions excluded). Of all
excluded sessions, 48% occurred in the initial 1/3 of train-
ing days, while only 10% were from the last 1/3 of training
days. Data were analyzed using custom-written MATLAB scripts
and reported as mean ± s.e.m. All comparisons were con-
ducted on a per subject basis (n = 10) except for the correla-
tion analysis (n = 257 sessions). Post-hoc comparison of means
was conducted using paired t-tests with Bonferroni’s correc-
tion for multiple comparisons (α/n, where α = 0.05 and n
is the number of pairwise comparisons conducted). Analysis
of error rates and RTs was conducted using repeated mea-
sures ANOVA (Figure 3). Correlations (Figures 5C,D, 6B,C)
were conducted using Pearson’s r. SSRT estimates from simu-
lated data (100 iterations, Figure 5B) were randomly grouped
into 10 10-iteration blocks and compared using repeated
measures ANOVA (Method × Percent failure-to-wait Error
Included) and planned post-hoc t-tests corrected for multi-
ple comparisons. Empirical SSRT data (Figure 6A) were com-
pared using paired t-tests corrected for multiple comparisons.
Comparisons of proactive RT adjustments (Figures 7A,B) were
conducted by paired or independent samples t-tests as appro-
priate. In addition, median-normalized RT on G1 and G2 tri-
als (Figure 7B) were compared using One-Way ANOVA and
planned post-hoc t-tests with Bonferroni’s correction for multiple
comparisons.
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A NEW METHOD OF ESTIMATING SSRT INDEPENDENT OF
FAILURE-TO-WAIT ERRORS
Our new method aims to estimate SSRT by directly compar-
ing RT distributions in Stop trials and Go trials in order to
determine the time point at which the stop signal begins to
slow down RTs relative to Go trial RTs (Figure 4). The idea
that SSRT estimates the relatively fixed latency for the brain
to process the stop signal and cancel the planned go response
(Logan et al., 1984) predicts that RTs faster than this fixed
latency should be statistically indistinguishable on Stop and
Go trials, while RTs longer than this fixed latency should be
much slower on Stop than Go trials. By directly comparing
Go and Stop trial RT distributions, SSRT should correspond
to the earliest time point that Go and Stop trial RT distri-
butions diverge and Stop trial RTs begin to significantly slow
down.

This method was implemented in the following four steps:
First, we drew n (where n is the number of stop trials) ran-
dom samples (without replacement) from the approximately 2n
Go trials in a session, and subtracted from these n sampled Go
trial RTs the SSDs associated with Stop trials. This procedure
created a new RT distribution such that Go trial RTs were re-
aligned to would-be stop signals in order to compare with the
Stop trial RT distribution also aligned to the onset of Stop sig-
nal (Figure 4A). Second, this sampling procedure was repeated
10,000 times to construct a conservative 99.9% (0.05–99.95%)
confidence interval (CI) of the cumulative re-aligned Go trial
RT distribution (Figure 4A). Third, we determined the earliest
time point in the sorted Stop trial cumulative RT distribution
at which RTs began to significantly slow down relative to the
99.9% CI (Figures 4A,B). To guard against false positive discov-
ery from noisy Stop trial RT distributions, significant slowing of
the Stop trial cumulative RT distribution should be present in at
least ∼0.15n consecutive Stop trials. This identified time point
provided a WT cutoff that optimally separated failure-to-stop
errors (which were statistically indistinguishable from Go trial
RTs) from failure-to-wait errors (Figure 4A). This WT cutoff also
determined the proportion of failure-to-stop errors, p(failure-to-
stop), among all Stop trials in a session (Figure 4B). Fourth, the
WT cutoff identified in the last step represented a conservative
upper bound of the SSRT estimate, which was determined not
only by the true SSRT but also affected by the number of Stop
trials (n) and the chosen confidence interval (99.9%). To pro-
vide an unbiased estimate of the SSRT, we took the mean of
the re-aligned cumulative Go trial RT distributions as the best
estimate of re-aligned cumulative Go trial RT distribution, and
determined the time point in this distribution that corresponded
to the probability p(failure-to-stop) (Figure 4C). This time point
was defined as the SSRT estimate because, according to the inde-
pendent race model, the go process in p(failure-to-stop)∗n trials
would complete faster than SSRT and therefore escape inhibition.
This procedure is conceptually equivalent to the commonly used
integration method of SSRT estimation, where the time point in
the Go trial RT distribution (relative to go signal onset) corre-
sponding to p(failure-to-stop) is assumed to equal (SSD + SSRT).
Thus, our method extended the integration method of SSRT esti-
mation to RT distributions aligned to both actual and would-be

stop signal onset. We therefore refer to this new method as the
“modified integration method.”

This new method requires a few assumptions: First, Go trial
RTs are generated by a stochastic go process that randomly draws
from a static probability distribution represented by the observed
Go trial RTs. It does not assume the shape of the RT distribution.
Second, Stop trial RTs are generated by the same stochastic go pro-
cess in competition with a stop process that begins to influence
RT at the latency SSRT after stop signal onset. This assumption is
validated by our empirical observation that the cumulative Stop
trial RT distribution and the re-aligned Go trial RT distribution
completely overlapped up until 130–150 ms after stop signal onset
(Figures 4A,D). Note that, to ensure this assumption is met in
practice, Go and Stop trials should represent independent and
comparable sets of trials in the SST such that the stochastic go
process is sampled equally in the two trial sets. Third, this method
assumes that SSRT is independent of SSD so that data from all
SSDs can be pooled together. This is not a stringent assumption
because this method can be used to estimate SSRT for each SSD
separately, but the fewer number of trials per SSD will dilute its
power and make the estimate noisier. Fourth, this method does
not assume that the Stop signal will necessarily slow down RTs.
The method is in fact capable of detecting both significant RT
speeding and slowing, but empirically we only observed signifi-
cant RT slowing following the stop signal. This method also does
not assume how the Stop signal will affect RT distributions after
SSRT, it only works to detect the initial divergence between Go
and Stop RT distributions. As a result, two animals can have the
same SSRT estimate but one shows complete inhibition of behav-
ioral responses after SSRT while the other shows a significant
proportion of failure-to-wait errors.

MEDIAN AND INTEGRATION METHODS OF SSRT ESTIMATION
Both the median and integration methods require a binary clas-
sification of stop trials based on whether or not stopping was
successful. This binary classification is needed to calculate the
proportion of failure-to-stop errors, p(failure-to-stop), per SSD.
The median method estimates SSRT by first fitting the inhibi-
tion function, SSD vs. p(failure-to-stop), commonly with logistic
regression, to determine the SSD50 associated with p(failure-to-
stop) = 0.5. SSRT is then estimated as the difference between
the median Go trial RT (RT50) and SSD50. For sessions in which
p(failure-to-stop) = 0.5 fell outside of the range of observed
p(failure-to-stop), we did not provide a SSRT estimate to avoid
errors in extrapolation. The integration method, on the other
hand, estimates SSRT first for each SSD and then averages all
estimates to produce the final SSRT estimate. For a particular
SSD, e.g. SSD100 ms, the integration method finds p(failure-to-
stop)100 msth percentile in the Go trial RT distribution, RT100 ms,
and estimates SSRT as RT100 ms − SSD100 ms.

Critical to both methods is how stop trials are classified into
binary outcomes, which is equivalent to setting a WT cutoff in
Stop trials. Conventionally, successful stopping in rats is indexed
by whether or not they obtained reward in each Stop trial, which
is equivalent to setting the WT cutoff as the entire duration
of the required hold period (500 ms). We explored varying the
WT cutoff at different points of the hold period, as well as
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an ideal WT cutoff that perfectly distinguishes failure-to-stop
errors from failure-to-wait errors in the RT simulation bench-
mark test (Figure 5). We also explored, with observed RTs in the
SST (Figure 6), setting the WT cutoff as the conservative upper
bound of the SSRT estimate determined in the third step of our
method.

RT SIMULATION BENCHMARK TEST
To directly compare our new method of SSRT estimation with the
two commonly used methods—median and integration methods,
we simulated RT distributions in the SST using the independent
race model with the SSRT fixed at 150 ms (Figure 5A). For each
of the 100 simulation runs, we simulated 300 Go trials and 150
Stop trials. These 100 runs were blocked in 10 blocks of 10 model
iterations each for statistical comparison. The go process was sim-
ulated by randomly drawing from a distribution equivalent to
the mean of Go trial RT distributions across all sessions (from
Figure 2A). The stop process was simulated by randomly draw-
ing from one of 5 SSDs (0, 65, 105, 145, 185 ms) plus the duration
of the preset SSRT (150 ms). Go trial RTs were determined only

FIGURE 2 | Stop trial RTs are bimodally distributed. (A) Mean RT
distributions in Go (black) and Stop (red) trials. Thin lines represent the
mean RT distribution for individual animals (n = 10). Stop trial RTs were
bimodally distributed, with the fast RT peak largely overlapping with Go trial
RTs. (B) Mean WT distributions in Stop trials. Thin lines represent the mean
WT distribution for individual animals (n = 10). Vertical black dashed lines
indicate onset and offset of the stop signal and correspond to the duration
of the hold period. WTs were bimodally distributed, with the fast WT peak
abruptly truncated within 150–200 ms after Stop signal onset. The color
shadings indicate three types of Stop trials: failure-to-stop error (red),
failure-to-wait error (blue) and stop success with reward (green). (C) Mean
RT distributions in 95 sessions with the same SSDs for Go (black) and Stop
(colored) trials. Stop trials were plotted separately for each SSD. This
example illustrates that the relative proportion of the two RT peaks is a
function of SSD. (D) WT distributions from the same Stop trials in (C) show
that the fast WT peak is truncated at the same time point after stop signal
onset irrespective of SSD.

by the go process, while Stop trial RTs were determined by an
independent race between the go and stop processes. If the stop
process completed earlier than the go process, WT was then sim-
ulated by randomly drawing from a distribution corresponding
to the second peak of the bimodal Stop trial WT distribution in
Figure 2B. The WT distribution in Figure 2B was truncated at the
trough between the two RT peaks (225 ms), and the area under
the second peak was normalized to one. This second peak of
the bimodal WT distribution corresponds to Stop trials that rats
had successfully cancelled the planned go response, and may or
may not have waited for the entire hold period to receive reward.
Therefore, the ideal WT cutoff that perfectly separated failure-
to-stop and failure-to-wait errors in this simulation was 225 ms.
This simulation provided a close approximation of the empiri-
cally observed RT distributions in both Go and Stop trials, as well
as the proportion of the two types of Stop trial errors. We used
the simulated RTs to compare the accuracy and precision of SSRT
estimation by all three methods against the preset SSRT (150 ms).

ANALYSIS OF PROACTIVE INHIBITION
Proactive response adjustments were identified by comparing RTs
on two Go trials (G1, G2) before and after a Go trial (G1-G-G2), a
failure-to-stop trial (G1-F-G2), a failure-to-wait trial (G1-W-G2),
or a successful stop trial (G1-S-G2). Only sessions with at least
five trials for each of these four types of trial sequences were
included in analyses (n = 184/257 sessions). The RT difference
between G2 and G1 was reported as percent change in RT to quan-
tify response adjustments (Beuk et al., 2014). In addition, G1 and
G2 RTs were normalized to the median Go trial RT in order to
examine absolute RT changes. Statistical comparisons were per-
formed only between G1-G2 trials (Figure 7B). Intermediate (G,
F, W, or S) trials were shown only for visualization and were not
included in statistical analyses.

To investigate whether the frequency of Stop trials in recent
trial history affects subsequent go response speed as well as stop
success probability (Emeric et al., 2007; Ide et al., 2013), we iden-
tified sequences of seven trials that ended with a Go trial or a Stop
trial (Figure 8). We classified trial sequences into different cate-
gories based on the number of stop trials in trials 1–6. For trial
sequences ending with a Go trial, we normalized RTs in trial 7
associated with each trial sequence category by the session-wide
median Go RT. A significant deviation of the median-normalized
RT from 1 indicates a systematic fluctuation of RT based on
recent trial history. For trial sequences ending with a Stop trial,
we calculated the probability for each stop trial outcome—failure-
to-stop, failure-to-wait and successful stop—in trial 7 associated
with each trial sequence category. We determined whether the
probability of stop success in each trial sequence category devi-
ated from the session-wide stop performance after taking into
account the contribution of SSDs. This was achieved by first
determining the probability of each stop trial outcome associ-
ated with each SSD for the entire session, and then estimating
predicted stop trial outcome probabilities in each trial sequence
category based on the observed distribution of SSDs. The dif-
ference between the observed and predicted stop trial outcomes
[�p(Stop)] represents the influence of recent Stop trial frequency
on subsequent stop performance beyond what would be expected
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given the observed distribution of SSDs for that trial sequence cat-
egory. Both median-normalized RTs and �p(Stop) were averaged
across sessions within an animal to obtain estimates for each ani-
mal at each trial sequence category. Pearson correlation between
normalized RTs and �p(Stop) was used to infer the coupling
between these measures of proactive response adjustments.

Because some sequences of trials, especially those with very
many (5–6) Stop trials, are uncommon, we only analyzed trial
sequence categories with at least 5 sequences in a session.
Furthermore, a trial sequence category in a session must have at
least 5 sequences ending with a Go trial and 5 sequences ending
with a Stop trial. To ensure a robust estimate, we further lim-
ited our analysis to trial sequence categories that were observed
in at least 10% of sessions to minimize noise associated with very
infrequent trial sequences containing many stop trials in a row.
For this analysis, converted stop trials in trials 1–6 were consid-
ered as Go trials because the stop signal was not presented (i.e.,
for the animal, these trials were effectively Go trials). However,
converted stop trials in trial 7 were considered as failure-to-stop
errors to accurately estimate the entire range of stop trial out-
comes. In addition, we did not constrain the order of trials in
each sequence, only the number and types of trials. For instance, a
trial sequence of Go-Stop-Go-Stop-Go-Stop-Go and Go-Go-Go-
Stop-Stop-Stop-Go would both be similarly classified as having
three stop trials preceding a Go trial.

ANALYSIS OF TRIAL SEQUENCE RANDOMIZATION
To better understand whether the pseudorandom trial sequences
used in our experiment contained any embedded trial history
dependency that might be exploited by rats, we compared the
observed trial sequences with ideal pseudorandom trial sequences
generated using MATLAB. Specifically, the pseudorandom trial
sequences in our experiment were generated using the Med-PC
function RANDD, which randomly draws from a pre-assigned
12-trial sequence containing 8 Go trials and 4 Stop trials with-
out replacement. Simulated pseudorandom trial sequences were
similarly generated using the MATLAB function randperm. Trial
history dependency was analyzed using the autocorrelation coef-
ficient (with MATLAB function xcorr) and by assigning Go trials
as 1 and Stop trials as 0 in both observed and simulated trial
sequences.

RESULTS
To develop a rodent-appropriate version of the SST, we incor-
porated two key elements in the primate SST that have not
been consistently incorporated in other rodent SSTs: stopping
the preparation of an action instead of stopping an ongoing
movement (Eagle and Robbins, 2003a,b; Bari et al., 2011; Beuk
et al., 2014), and the inclusion of multiple SSDs within a session
(Eagle and Robbins, 2003a,b; Leventhal et al., 2012; Schmidt et al.,
2013). Specifically, each trial was initiated by rats inserting their
nose into a fixation port and waiting for an auditory go signal
(Figure 1). On Go trials (67%), the go signal was presented alone
and rats were rewarded in an adjacent port if the reaction time
(RT), i.e., the latency between go signal onset and fixation port
exit, was within 500 ms. On Stop trials (33%), the go signal was
followed by a visual stop signal after a stop signal delay (SSD)

randomly chosen from 5 possible latencies. In these trials, rats
were rewarded only if the WT, i.e., the latency between stop signal
onset and fixation port exit, was longer than 500 ms. Exiting the
fixation port before the end of the hold period (WT < 500 ms)
resulted in forfeit of reward. Successful performance in stop tri-
als required rats to cancel the planned go response and maintain
fixation for the entire hold period.

We first examined reactive inhibitory control in rats. Ten Long
Evans rats were trained in the SST and were able to complete on
average 354.08 ± 4.18 Go and 177.01 ± 2.10 Stop trials within
a 90-min daily session (mean ± s.e.m. n = 257 sessions). Rats
modulated fixation port exit RT based on trial type, making
slower responses on Stop than Go trials [Go: 287.27 ± 18.27 ms,
Stop: 431.04 ± 24.13 ms, t(9) = −17.04, p = 4.0 × 10−58]. Closer
examination of RT distributions shows that, unlike Go trial RTs,
Stop trial RTs were bimodally distributed (Figure 2). The first and
fast mode of Stop trial RTs closely overlapped with the Go trial RT
distribution (Figures 2A,C), occurred well before the end of hold
period, and were therefore considered as errors and not rewarded.
This fast mode of Stop trial RT was abruptly truncated about 100–
200 ms after the onset of the stop signal, which reflects a pause
in behavioral response (Figures 2B,D). This was followed by the
second and slower mode of Stop trial responses, with WTs cen-
tered on the end of the hold period (Figures 2B,D). A significant
proportion of this second, slower mode of Stop trial responses
occurred before the end of the 500 ms hold period and therefore
were considered as errors and not rewarded. The consistent pat-
tern of bimodal stop trial RT distributions across animals shows
that two types of Stop trial errors are categorically different.

We hypothesized that the first type of Stop trial error corre-
sponded to trials in which animals failed to stop the planned go
response, and therefore the RTs were highly similar to Go trial
RTs. We refer to this type of error as failure-to-stop (FS). We
further hypothesized that the second type of error arose after ani-
mals had successfully stopped the initial go response, but failed
to wait for the entire duration of the 500 ms hold period. We
refer to this type of error as failure-to-wait (FW). According to
this hypothesis, failure-to-stop errors in this task are analogous
to non-cancelled trials in human and primate SST studies, while
failure-to-wait errors would represent successful stopping but a
failure of post-stopping related processing, suggesting the two
error types may rely on separate neural mechanisms.

To test if the two types of Stop trial errors were indepen-
dent of each other, we investigated whether the proportion and
speed of each type of error changed as a function of SSD, and
whether animals attempted to collect reward following each type
of error. We found that longer SSDs were associated with higher
percentages of failure-to-stop error [overall mean p(failure-
to-stop) = 0.41 ± 0.03, main effect of SSD: F(4, 36) = 175.14,
p = 5.0 × 10−24, repeated measures ANOVA] (Figure 3A, see
also Figures 2C,D). Furthermore, rats only attempted to col-
lect reward in 33.44 ± 4.76% of these trials and were less
likely to try to collect reward at longer SSDs [main effect
of SSD: F(4, 36) = 5.98, p = 0.0009, Figure 3B]. The mean RT
in failure-to-stop errors increased with longer SSDs [overall
mean = 153.77 ± 4.67 ms, main effect of SSD: F(4, 36) = 102.27,
p < 10−20] but were faster than the mean RT in Go trials [Go vs.
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FIGURE 3 | Failure-to-stop and failure-to-wait represent independent

errors. (A–C) Failure-to-stop (FS) errors. (A) Proportion of FS trials among
all Stop trials increased as a function of SSD, reflecting that stopping is
harder when SSD is longer. (B) Proportion of FS trials in which animals
attempted to lick for reward at the sipper tube. (C) RT relative to Go signal
onset in FS trials increased as a function of SSD. (D–F) Failure-to-wait (FW)
errors. (D) Proportion of FW trials among the subset of Stop trials in which
the fast Go response was cancelled as a function of SSD. Unlike FS errors,
FW errors were unaffected by SSDs. (E) Proportion of FW trials in which
animals attempted to lick for reward at the sipper tube. Unlike FS errors,
FW errors were associated with a high percentage of attempted reward
collection and unaffected by SSDs. (F) WT relative to Stop signal onset in
FW trials was not affected by SSDs. Error bars represent s.e.m (n = 10
rats). See Methods for the definition of FS and FW errors. Asterisks denote
main effect of SSD (repeated measures ANOVA).

failure-to-stop: 287.27 ± 18.27 vs. 153.77 ± 4.67 ms, t(9) = 7.20,
p = 9.1 × 10−22, Figure 3C]. These features are consistent with
key properties of stop failure error predicted by the independent
race model between the go and stop process (Logan and Cowan,
1984; Logan et al., 1984).

In contrast, the proportion of trials in which animals suc-
cessfully stopped and subsequently failed to wait (failure-to-wait
errors) was little affected by SSDs [Overall mean p(failure-to-
wait) = 0.35 ± 0.04, no main effect of SSD, F(4, 36) = 1.19, p =
0.33] (Figure 3D, see also Figures 2C,D). Rats attempted to col-
lect reward in 76.00 ± 5.33% of these trials and attempted to
collect reward with equal likelihood on all SSDs [no main effect
of SSD, F(4, 36) = 0.38, p = 0.82, Figure 3E]. Fixation port exit in
these trials occurred close to the end of the 500 ms hold period
and was not affected by SSD [mean WT = 412.85 ± 6.04 ms,
no main effect of SSD, F(4, 36) = 0.3, p = 0.88, Figure 3F].
Therefore, while rats similarly forfeited reward in these trials by

responding during the 500 ms hold period, this mode of failure
is distinct from the failure-to-stop error. In contrast to failure-to-
stop errors, failure-to-wait errors are more similar to successful
stop trials because of their long RTs near the end of the hold
period and high percentage of reward collection attempts after
fixation port exit. These properties support the idea that this
type of error likely reflects failure-to-wait during the hold period,
even though rats are able to successfully inhibit their planned go
response.

The prevalence of failure-to-wait errors poses a unique chal-
lenge of adopting the SST in rodents because SSRT should be
estimated based only on failure-to-stop errors while excluding
failure-to-wait errors, even though both types of error led to for-
feiture of reward. However, these two types of errors have been
traditionally conflated in rat studies because whether rats suc-
cessfully obtained reward is typically used as a proxy for whether
the planned go response was canceled. To disambiguate these two
types of error, we developed a new analytic method that esti-
mates SSRT independent of failure-to-wait errors. Because SSRT
represents the time it takes to process the Stop signal and to can-
cel the planned go response, RTs in Go and Stop trials should
be statistically indistinguishable up to the point of SSRT: RTs
faster than this time point should similarly result from the exe-
cution of the go response alone (Logan et al., 1984) (Figure 4).
Therefore, by directly comparing Go and Stop trial RT distri-
butions, SSRT should correspond to the earliest time point that
Go and Stop trial RT distributions diverge and Stop trial RTs
begin to significantly slow down. We successfully implemented
this method by extending the latency-matching procedure to
generate Go trial RT distributions aligned to would-be stop
signals, comparing the cumulative Go and Stop trial RT distri-
butions, establishing statistical significance using a bootstrapped
99.9% confidence interval, and finally extending the integration
method of SSRT estimation to RT distributions aligned to the
onset of the stop signal (Figure 4). Importantly, this method
does not require assumptions about the shape of RT distribu-
tions or how the Go and Stop process interact. Because of the
conceptual similarity with the integration method, we refer to
this new SSRT estimation method as the “modified integration
method.”

To validate our new modified integration method of esti-
mating SSRT, we simulated RT distributions in the SST with
a fixed SSRT of 150 ms (Figure 5A, schematic of simulation).
Using the simulated RTs, we then compared SSRT estimation
between the modified integration method and two commonly
used methods—median and integration methods. RT distribu-
tions in the SST were simulated using the independent race model
between the go process (randomly drawn from the empirically
observed go RT distribution) and the stop process (randomly
drawn from one of five SSDs plus the duration of SSRT). If the
stop process completed earlier than the go process, WT was then
determined by the empirically observed WT distribution in trials
that rats had successfully cancelled the go response (correspond-
ing to the second peak of the bimodal Stop trial WT distribution).
Therefore, the simulation matches the empirically observed RT
distributions, including the proportion of the two types of Stop
trial errors.
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FIGURE 4 | A new method to estimate SSRT independent of

failure-to-wait errors. (A) Illustration of the new modified integration
method by plotting the WT cumulative distributions from one example
session. WT distributions relative to stop signal onset from Stop trials (red)
and re-aligned Go trials (mean, black; 99.9% CI, gray). The intersection of
Stop trial WTs (red) and the upper 99.9% CI bound (gray) defined an
optimal WT cutoff (red vertical dashed line) that best separated FS and FW
errors. (B) The WT cutoff determined the proportion of FS errors, p(FS),
indicated by the red area under the WT distribution from Stop trials. (C)

SSRT estimate (blue vertical dashed line) was defined as the time point in
the WT distribution from re-aligned Go trials that corresponded to p(FS)
under the curve. This is conceptually similar to the integration method of
SSRT estimation, but aligned to stop signal onset. (D) SSRT estimation
from two other example sessions. Note that WTs from re-aligned Go trials
and Stop trials overlapped completely up until SSRT.

Our simulation shows that the median and integration
methods produced SSRT estimates that were, respectively,
69.60 ± 2.98 and 59.22 ± 3.02 ms (mean ± s.e.m.) slower
than the true SSRT when success in Stop trials was defined

as successfully waiting for the entire 500 ms hold period (i.e.,
100% failure-to-wait errors mislabeled), as has been used in
previous rodent SSTs (Figure 5B) (Eagle and Robbins, 2003b;
Bryden et al., 2012; Leventhal et al., 2012). While overall SSRT
estimates were similar between the median and integration
method [no main effect of method, F(1, 126) = 0.52, p = 0.64,
repeated measures ANOVA, Method × Percent failure-to-
wait Mislabeled], they were systematically overestimated with
increasing inclusion of failure-to-wait errors [main effect of
Percent failure-to-wait Mislabeled: F(6, 126) = 193.02, p < 10−20,
Figure 5B]. Troublingly, the mislabeling of as few as 15–30%
of failure-to-wait errors (corresponding to 4–8 out of 150
Stop trials simulated) significantly biased the SSRT estimate
by 10–20 ms [Median method SSRTEstimated − SSRTActual ±
s.e.m.; Median15% failure-to-wait: 6.48 ± 2.52 ms, t(9) = 2.56,
p = 0.0304, n.s. vs. Bonferroni corrected α/n = 0.0036;
Integration15% failure-to-wait: 10.58 ± 1.90 ms, t(9) = 4.31,
p = 0.0003; Median30% failure-to-wait: 15.98 ± 12.49 ms,
t(9) = 6.42, p = 0.0001; Integration30% failure-to-wait: 17.94 ±
1.93 ms, t(9) = 9.29, p = 7.0 × 10−36; Figure 5B]. The median
and integration methods provided accurate estimates only when
given an ideal WT cutoff that perfectly distinguishes failure-
to-stop errors from failure-to-wait errors in the simulation
(Figure 5B), which converged with the estimates of the modi-
fied integration method [Median method Pearson’s r: 0.8865,
p = 1.5 × 10−34; Integration method Pearson’s r: 0.9641,
p = 3.2 × 10−58; Figure 5C]. Using a cutoff that included
100% failure-to-wait errors significantly degraded this rela-
tionship (Median method Pearson’s r: 0.6548, p = 1.5 × 10−16;
Integration method Pearson’s r: 0.4021, p = 8.5 × 10−5;
Figure 5D). The modified integration method provided an
accurate estimate of the true SSRT without the need for an
arbitrary WT cutoff (Figure 5B). This comparison shows that
the conflation of the two types of stop errors leads to significant
bias in SSRT estimation using the conventional methods, and
validates our new modified integration method in providing an
unbiased SSRT estimate independent of failure-to-wait errors.

In empirical data from rats performing the SST, the mod-
ified integration method estimated SSRT at 134.77 ± 2.48 ms
(mean ± s.e.m.), which was substantially faster than the esti-
mates provided by median [193.72 ± 8.38 ms, t(9) = −8.22, p =
1.8 × 10−5] and integration [205.40 ± 9.23 ms, t(9) = −8.79,
p = 1.0 × 10−5] methods using reward as the proxy for stop
success (Figure 6A). As our simulation results illustrated, such
differences in SSRT estimates likely resulted from the conflation
of the two types of Stop trial errors. The modified integra-
tion method, however, can also provide a reliable WT cut-
off that best separates the two types of stop errors such that
median and integration methods produced similar SSRT esti-
mates as the new modified integration method [Median method:
130.81 ± 3.72 ms, t(9) = 1.86, p = 0.0953; Integration: 136.80 ±
3.03 ms, t(9) = −1.19, p = 0.2632, Figure 6A]. The SSRTs esti-
mated by median and integration methods using this optimal
WT cutoff were highly correlated with the SSRT estimated by
the modified integration method (Median method: Pearson’s
r = 0.8489, p = 5.1 × 10−72; Integration: Pearson’s r = 0.8465,
p = 4.0 × 10−70, Figure 6B), suggesting a convergence of SSRT
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FIGURE 5 | Validating the new SSRT estimation method using simulated

data. (A) Schematic of the RT simulation. Each of the 100 simulation runs
consisted of 300 Go trials and 150 Stop trials. RTs in Go trials were randomly
drawn from the mean RT distribution from Figure 2A. Stop trials were
modeled as an independent race between a go process (as in Go trials) and a
stop process consisting of the SSD randomly drawn from 5 SSDs and a fixed
SSRT at 150 ms. If the go process finished faster, RT was determined by the
go process. If the stop process finished faster, the fast go response was
inhibited and the WT was randomly drawn from the slow peak of the mean
WT distribution from Figure 2B (red). This simulation produced RT and WT
distributions similar to the empirical observation. (B) Summary of SSRT
estimates (mean ± s.e.m) with varying amounts of FW errors mislabeled as

FS errors for integration (blue) and median (green) methods, compared with
SSRT estimated from the modified integration method. Conflation of FW
errors as FS errors systematically overestimates SSRT using median and
integration methods. Asterisks denote SSRT estimates significantly greater
than the true SSRT (150 ms) by independent t-test Bonferroni corrected for
multiple comparisons (n = 10.10-iteration blocks). (C) Scatter plot of
estimated SSRTs over all model iterations between the modified integration
method vs. the conventional median (green) and integration (blue) methods.
For median and integration methods, the ideal WT cutoff (see Methods) was
used to classify failed and successful stop trials. n = 100 iterations. (D)

Scatter plot of SSRT estimates using the 500 ms WT cutoff, which mislabels
all FW errors as FS errors. Convention as in (C) n = 100 iterations.

estimation by all methods under ideal conditions. This cor-
relation was significantly degraded when SSRT estimated by
median and integration methods was based on reward as the
proxy for stop success (Median method Pearson’s r = 0.3957, p =

1.0 × 10−7; Integration method Pearson’s r = 0.5103, p = 3.0 ×
10−18, Figure 6C). These results suggest that SSRT estimates in
rats have been significantly overestimated by existing methods
when failure-to-wait and failure-to-stop errors are conflated.
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FIGURE 6 | Comparing three SSRT estimation methods in empirical

data. (A) Summary of SSRT estimates using different methods and WT
cutoffs (mean ± s.e.m). The optimal WT cutoff refers to the conservative
upper bound of the SSRT estimate (see Methods), while the hold period
WT cutoff corresponds to defining success in stop trials as obtaining
reward. Asterisks denote estimates significantly different from the modified
integration method estimate corrected for multiple comparisons (n = 10
rats). (B) Scatter plot of estimated SSRTs over all behavioral sessions
between the modified integration method vs. the conventional integration
(blue) and median (green) methods, using the optimal WT cutoff. (C)

Scatter plot of SSRT estimates using the entire hold period (500 ms) as
cutoff, which mislabels all FW errors as FS errors. Convention as in (B)

n = 257 sessions.

Having demonstrated that rats exhibited reactive inhibitory
control similar to primates, we further examined whether rats
also employed proactive control strategies in the SST by adjusting
the speed of their responses based on the outcome of previ-
ous trials (Emeric et al., 2007; Li et al., 2008b; Verbruggen and
Logan, 2009; Ide and Li, 2011; Pouget et al., 2011; Bissett and
Logan, 2012; Ide et al., 2013; Beuk et al., 2014). To this end, we
first compared RTs in two Go trials (G1, G2) interleaved with
either a Go trial (G), a failure-to-stop trial (F), a failure-to-wait
trial (W), or a successful stop trial (S) as percent changes rela-
tive to G1 (Figure 7A) or as median-normalized RTs (Figure 7B).
We observed that rats speed up following sequential Go tri-
als (Median-normalized RT on G1-G trials: 1.02 ± 0.002; G-G2

trials: 0.99 ± 0.003; t(9) = 5.86, p = 2.4 × 10−4 vs. Bonferroni
corrected α/n = 0.0042). In addition, rats slowed down follow-
ing both failure-to-stop [G1-F: 0.95 ± 0.01; F-G2: 1.03 ± 0.01;
t(9) = −5.52, p = 3.7 × 10−4 vs. corrected α/n = 0.0042] and
failure-to-wait [G1-W: 0.99 ± 0.01; W-G2: 1.06 ± 0.01; t(9) =
−3.93, p = 0.0034 vs. corrected α/n = 0.0042] errors, but not
successful stop trials [G1-S: 1.00 ± 0.01; S-G2: 1.03 ± 0.02;
t(9) = −1.64, p = 0.1365 vs. corrected α/n = 0.0042]. We further

FIGURE 7 | Proactive adjustment of RT based on trial outcome. (A)

Percent change in RT between Go trials preceding (G1) and following (G2)
different trial outcomes. G1-G-G2 refers to three consecutive go trials (F,
failure-to-stop; W, failure-to-wait; S, stop success). (B) Median-normalized
RT for the Go trials preceding (gray) and following (white) each trial
outcome. Horizontal black dashed line indicates median RT. Intermediate
trial data were included for visualization purposes only and not included in
statistical analyses. Asterisks represent means significantly different than 1
or significant differences between groups, corrected for multiple
comparisons. Error bars represent s.e.m. n = 10 rats.

observed that, in Stop trials, only G2 trial RTs following failure-
to-wait trials (W-G2) were significantly slower than the median
RT [t(9) = 4.15, p = 0.0025 vs. corrected α/n = 0.0042], while
only G1 trial RTs before failure-to-stop trials (G1-S) were signif-
icantly faster than the median RT [t(9) = −5.10, p = 0.0006 vs.
corrected α/n = 0.0042]. These results suggest that, in proactive
inhibitory control, not only do Stop trial errors induce modifica-
tions in subsequent response speed (G2), but also that the baseline
response speed (G1) predicts whether subsequent stopping, but
not waiting, would be successful.

Recent studies in humans and monkeys have also shown that
the frequency of Stop trials in the recent trial history affect sub-
sequent speed of go responses as well as the probability of stop
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success (Emeric et al., 2007; Ide et al., 2013). To further investigate
whether similar effects are present in rats, we determined how
Stop trial frequencies in any contiguous 6-trial sequence affected
go and stop performance in the next trial, relative to the perfor-
mance in the entire session. This was achieved by first identifying
all 7-trial sequences that ended with a Go or a Stop trial (on trial
7), and categorizing trial sequences based on the number of Stop
trials in trials 1–6 (Figure 8). We found that RTs on Go trials fol-
lowing no recent Stop trials were faster than median RT [t(9) =
−3.91, p = 0.0035 vs. corrected α/n = 0.01], while RTs follow-
ing blocks of trials with 3/6 and 4/6 Stop trials were slower [t(9) =
3.76, p = 0.0045 and t(9) = 5.97, p = 2.1 × 10−4 vs. corrected
α/n = 0.01] (Figure 8A, left). The pattern of proactive RT adjust-
ment is consistent with other reports showing go RT speeding
following infrequent recent Stop trials and go RT slowing follow-
ing frequent recent Stop trials (Emeric et al., 2007; Ide et al., 2013)
and also agrees with our observations in Figure 7. However, we
found that frequent recent Stop trials were followed by worse stop
performance compared to the session-wide performance level,
and vice versa following infrequent recent Stop trials (Figure 8A,
right). Furthermore, the extent of RT adjustment was significantly
correlated with the extent of stop performance adjustment in the
same trial categories (Figure 8A, right). In other words, frequent
recent Stop trials resulted in slower response speed as well as
worse stop performance in the following trial, and the extent of
both adjustments were coupled. This observation was surprising
because slower RTs are typically associated with better, not worse,
stop performance, assuming that SSRT was not affected.

To further validate this surprising observation, and to delineate
the respective contributions of three types of Stop trial outcomes,
we sorted the same trial sequences by the number of failure-
to-stop trials (Figure 8B), failure-to-wait trials (Figure 8C) and
successful stop trials (Figure 8D). We found that trial sequence
sorting based only on failure-to-stop trials did not result in signif-
icant RT modulations and only led to minimal stop performance
adjustments that were not correlated with RTs, even in blocks
with several failure-to-stop trials (Figure 8B). On the other hand,
sorting based on both failure-to-wait and successful stop tri-
als showed RT modulations and correlated stop performance
adjustments (Figures 8C,D), patterns that were comparable to
the findings in Figure 8A. These observations suggest that RT and
stop performance adjustments were driven not by failure-to-stop
trials but primarily by failure-to-wait and successful stop trials.
Indeed, we observed the strongest correlation between RT and
stop performance adjustments when trial sequences were sorted
by the number of both failure-to-wait and successful stop tri-
als (Figures 8E,F) (r = −0.75). Among the three possible Stop
trial outcomes, the adjustment of stop success probability was
consistently best correlated with RT adjustments. Together, the
strong coupling between RT and stop performance adjustments
suggests that both types of proactive adjustment were likely con-
trolled by the same underlying mechanism. The commonality
between failure-to-wait and stop success trials that were able to
trigger these proactive adjustments is that both trial types involve
successful stopping of the prepotent go response. Failure-to-stop
trials, on the other hand, neither trigger proactive adjustments
nor involve stopping of the go response.

Finally, to ensure that the proactive adjustments we observed
did not result from any embedded trial history dependency in
our experiment that rats may be able to exploit, we compared the
observed trial sequences with simulated ideal pseudorandom trial
sequences. We found that the randomization function used in the
current study (RANDD function from Med-PC IV) contained a
small but significant non-random trial history dependency that
deviated from ideal pseudorandom sequences (Figure 9). The
experimental trial sequence introduced a small above-random
correlation in adjacent trials (trial lag 1 in Figure 9A), such that
a Go trial is more likely to be preceded and followed by a Go
trial, and that a Stop trial is more likely to be preceded and
followed by a Stop trial (Figure 9B). While we cannot rule out
that rats may exploit this trial history dependency and such
behavioral strategies may contribute to the observed proactive
adjustments, we believe such contributions are minimal for the
following reasons. If rats were able to detect and exploit the trial
history dependency, they should expect to encounter Stop tri-
als following frequent recent Stop trials and use this predictive
information to slow down response speed as well as increase stop
success probability. While the observed RT adjustment was con-
sistent with this interpretation, the stop success probability did
not increase as predicted but instead decreased. We therefore
believe that the observed proactive adjustments occurred in spite
of the non-random trial history dependencies.

DISCUSSION
In this study, we developed a novel, rodent appropriate SST
and characterized both reactive and proactive control strategies
in rats. Our rodent SST incorporated key elements commonly
used in the primate SSTs, including multiple SSDs and requir-
ing subjects to cancel a planned action instead of stopping an
ongoing movement (Figure 1). For reactive inhibitory control, we
showed that errors in Stop trials resulted from two independent
sources: failure-to-stop the go response, or failure-to-wait after
stopping was achieved (Figures 2, 3). The conflation of these two
types of errors systematically overestimates SSRT by at least 50ms
both in a simulated race model and in practice (Figures 5, 6).
To address this issue, we developed and validated a novel modi-
fied integration method that provides an unbiased SSRT estimate
independent of the ability to wait (Figures 4, 5, 6). For proac-
tive inhibition, we found that rodents adjust both RTs and their
ability to stop following failure-to-wait and successful Stop tri-
als, but not after failure-to-stop trials (Figures 7, 8). Together,
these results establish the rat as a valid model that displays proac-
tive and reactive inhibitory control as observed in monkeys and
humans.

Our study differs from previous attempts to translate the SST
to rodents in several critical ways. While rats are required to can-
cel the initiation of an action in our task as in most primate and
human studies, previous rodent studies from both Eagle et al.
(Eagle and Robbins, 2003a) and Beuk et al. (2014) used a task
in which rodents were required to inhibit an ongoing movement
following a stop signal. It is not clear if these experimental designs
invoke the same task demands as in human and primate ver-
sions of the SST. While this is not a concern for Berke et al.
(Leventhal et al., 2012; Schmidt et al., 2013), which required rats
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FIGURE 8 | Proactive adjustments of RT and stop performance by recent

stop trials. (A) Comparison of 7-trial sequences ending with a Go trial (left) or
a Stop trial (right), sorted by the total number of all stop trials in trials 1–6. The
top three rows show the average trial composition in trials 1–6 in each trial
sequence category (top row), the respective relative frequencies (second
row) and sessions containing at least 5 sequences in each trial sequence

category (third row). The bottom row shows, for each trial sequence
category, the median-normalized RTs (left) and the difference between the
observed and predicted stop trial outcomes (right) in trial 7. The difference
between the observed and predicted stop trial outcomes [�p(Stop)]
represents the influence of recent Stop trial frequency on subsequent stop

(Continued)
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FIGURE 8 | Continued

performance beyond what would be expected given the observed
distribution of SSDs for that trial sequence category. P-values for t-test
(n = 10) are represented by the size of circles. R and p-values for Pearson
correlation between median-normalized RTs and �p(Stop) are indicated next
to each type of Stop trial outcome. (B–E) The same analysis as in (A), sorted

by the number of failure-to-stop trials (B), failure-to-wait trials (C), successful
stop trials (D), or the number of successful stop trials and failure-to-wait trials
combined (E). (F) Correlation between median-normalized RTs and �p(Stop
Success) based on trial sequence categories in (E). These results show that
proactive adjustments of RT and stop performance are highly correlated and
jointly driven by recent failure-to-wait and successful stop trials.

FIGURE 9 | Comparison of trial history dependencies in observed and

ideal trial sequences. (A) Autocorrelation of trial sequences in observed
pseudorandom sequences generated by RANDD function from Med-PC IV
(black) and in ideal pseudorandom sequences generated by MATLAB (blue).
Trial sequences were converted into 1’s (Go trials) and 0’s (Stop trials). Each
gray line represents the autocorrelation from one session, with mean ±

s.e.m. of all sessions shown in black. (B,C) The frequencies of Go and Stop
trials in 7-trial sequences ending with a Go trial (B) or a Stop trial (C), with
observed frequencies in black (Go) and red (Stop) and the corresponding ideal
frequencies in blue. There is a small but significant non-random trial history
dependency in the observed trial sequences, suggesting imperfect
pseudorandomization by RANDD.

to cancel a fixation port exit response similar to the task design
used here, their paradigm, as well as those used by Eagle and col-
leagues, used only a single, constant SSD per session. The practice
of using a constant SSD makes the stop signal highly predictable
and likely encourages rats to employ a timing strategy to improve
stopping. Such a concern is minimized in primate SSTs, which
typically use multiple SSDs or a tracking procedure to dynam-
ically adjust SSD across trials. Our SST design addresses both
issues and successfully translates the SST to rodents.

In SST studies of humans and non-human primates, proac-
tive and reactive control each refers to preparation to stop prior
to signal onset and stimulus-driven processing at signal onset.
In the context of understanding reactive inhibitory control in
rodents, our results highlight the unique challenge in rodents to
dissociate initial stopping from subsequent waiting in the SST.
While the stop signal similarly instructs humans, monkeys and
rats to withhold the prepotent go response for a short period of
time (the hold period), rats are especially prone to committing
errors during this period. Further, while failure-to-stop errors
likely represent failures of reactive control (Figures 3A–C) and
are influenced by proactive adjustments (Figure 7), failure-to-
wait errors seem unaffected by SSD, RT, or proactive adjustments
(Figures 3D–F, 7). This difference likely originates from two
sources: First, rodents may be more impulsive than primates and
less able to wait for the entire duration of the hold period after
they have successfully stopped the planned go response (Robinson
et al., 2009). Second, the nature of behavioral responses gen-
erated by primates and rats in behavioral tests are fundamen-
tally different and these differences must be accounted for. For
instance, unlike in primates, rats needed to rapidly exit the fix-
ation port to approach, collect, and consume the reward after

they had successfully stopped the planned go response and waited
for the entire hold period. In contrast, reward in primate SSTs
is not directly associated with specific task-relevant behavioral
responses such as saccade or button press, but is instead gener-
ally delivered without an instrumental requirement (e.g., licking).
Therefore, in rodents this reward-approaching response likely
commands a stronger motivational drive than in primates, espe-
cially toward the end of the hold period when reward availability
is imminent.

Our results support that failure-to-stop and failure-to-wait
errors are generated independently. We show that failure-to-
wait errors are associated with long WTs and a high frequency
of reward collection attempts, but are not modulated by SSD
(Figure 3), properties that are very similar to successful Stop tri-
als. By contrast, failure-to-stop errors are significantly modulated
by SSD and their associated RTs are faster than Go trial RTs
(Figure 3), which recapitulate the key properties predicted by the
independent race model (Logan and Cowan, 1984; Band et al.,
2003). These findings are consistent with the interpretation that
failure-to-stop errors result from failure of reactive inhibition to
cancel the planned go response, while failure-to-wait errors rep-
resent premature attempts to collect reward after stopping was
successful and are unrelated to factors affecting stopping. The
presence of failure-to-wait errors likely represent a common fea-
ture of rodent SSTs that must be addressed when estimating SSRT
(Eagle and Robbins, 2003a; Bryden et al., 2012; Leventhal et al.,
2012; Schmidt et al., 2013). For example, RTs on failed Stop trials
are similarly bimodally distributed in Figure 1 of Schmidt et al.
(2013) and Figure 4B of Leventhal et al. (2012). The distinction
between failure-to-stop and failure-to-wait errors is important
because these two types of errors are under the control of separate
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behavioral variables and therefore likely arise from distinct under-
lying neural mechanisms. In addition, our rodent SST may also
serve as a useful model to independently assess two forms of
impulsive action in a within-task design (Eagle et al., 2008; Broos
et al., 2012; Worbe et al., 2014).

It is important to note that the distinction between failure-to-
stop vs. failure-to-wait errors does not map onto the distinction
between proactive and reactive inhibitory control. Rather, dis-
tinguishing failure-to-stop from failure-to-wait errors is relevant
primarily for correctly estimating SSRT, which embodies the reac-
tive inhibitory control process. It is also important to note that,
while our study identifies and establishes failure-to-wait errors to
be distinct from failure-to-stop errors, it remains unclear whether
failure-to-wait errors are also present in human and primate stud-
ies or whether failure-to-wait errors represent a rodent-specific
phenomenon.

The conflation of these two types of errors in rodent stud-
ies not only significantly overestimates SSRT (Figures 5, 6),
such conflation may lead to incorrect mechanistic interpretations
because manipulations such as psychostimulant administration
(Fillmore and Rush, 2002; Li et al., 2006b, 2008a, 2010; Groman
et al., 2009; Liao et al., 2014) or prefrontal cortical lesion (Aron
et al., 2003; Picton et al., 2007) may also affect impulsivity
(Mendez et al., 2010; Mar et al., 2011) and therefore the ability
to wait. In such cases, manipulations that affect the ability to wait
will produce longer SSRT estimates when the two types of stop
error are conflated, and likely would be misinterpreted as affect-
ing the ability to stop instead (Farr et al., 2012). Even in cases
in which such manipulations are not used, the mislabeling of as
few as 15% failure-to-wait errors (corresponding to about 3% of
all stop trials) as failure-to-stop errors significantly inflates the
SSRT estimate. Given the rapidly growing demand for an appro-
priate rodent SST to link the computational power of the SST to
techniques too costly or not yet available in human and monkey
studies, special attention must be placed on ensuring rodent SSRT
estimates are valid, reliable, and comparable to primate estimates.

The new method developed in this study represents an exten-
sion of the commonly used integration method, and provides
an unbiased SSRT estimate independent of the ability to wait,
without assuming the shape of RT distributions or how the go
and stop process interact (Figures 4, 5). This modified integra-
tion method estimates SSRT by comparing RT distributions in
Stop trials with appropriately resampled and realigned Go trials to
would-be stop signals. The modified integration method provides
a direct parallel with, and was in fact inspired by, neurophysio-
logical data analysis where responses are aligned to the onset of
distinct events. Therefore, the modified integration method can
potentially provide a unified framework for comparing behav-
ioral and neural responses between Go and Stop trials, a major
analytic advance applicable to rodents and primates alike.

Using this new modified integration method of SSRT estima-
tion, we found that rats show a very robust and fast stopping
behavior. Our estimate of SSRT is ∼50–60 ms faster than SSRT
estimates using median or integration methods when the failure-
to-stop and failure-to-wait errors are conflated, as has been
the case in previous rodent studies (Eagle and Robbins, 2003a;
Bryden et al., 2012). The use of a long RT cutoff to separate

failure-to-stop from failure-to-wait errors by Leventhal et al.
offered a sub-optimal solution and similarly produced substan-
tially slower SSRT estimates than reported here (162.00 ± 12.65
vs. 134.77 ± 2.48 ms). This bias represents a significant percentage
of the SSRT estimate and is of critical importance for existing and
future rodent studies using the SST. More importantly, such a bias
may also shift the temporal order and causal inference between
neurophysiological responses and SSRT, such that a neural signal
that was faster than conventional SSRT estimates in rodents may
in fact occur after the true SSRT. Special attention must be paid
to minimizing or eliminating the conflation of failure-to-stop and
failure-to-wait errors.

Our analysis using RT simulations further shows that conven-
tional methods of SSRT estimation can be salvaged by selecting an
optimal WT cutoff that best separates failure-to-wait error from
failure-to-stop error (Figure 5). While setting such a WT cutoff
in empirical datasets can be subjective and arbitrary because sub-
stantial differences exist between subjects and between different
training sessions within the same subject, our new modified inte-
gration method can also provide an unbiased WT cutoff so that
SSRT estimates from all methods converge (Figures 5, 6).

In the context of understanding proactive inhibitory control in
rodents, we demonstrate that like primates, rats employ a proac-
tive slowing strategy based on recent trial history (Rieger and
Gauggel, 1999; Emeric et al., 2007; Verbruggen and Logan, 2009;
Nelson et al., 2010; Pouget et al., 2011). In 3-trial sequences, we
observe that RTs are slower than the median RT following failure-
to-wait errors (Figure 7B). In addition, we observe that RT on the
previous trial predicts the outcome on the current trial: RT prior
to a failure-to-stop trial was faster than the median RT, while RT
prior to a successful Stop or failure-to-wait trial was not different
from the median RT. These data suggest a complicated push-pull
relationship in rats between the predisposition to respond quickly
and the task-relevant requirement to stop. We extend those find-
ings in the longer 7-trial sequence (Figure 8) and observe that
RTs following frequent recent Stop trials are slower than the
median RT, while RTs following infrequent recent Stop trials can
be faster than the median RT. The presence of significant RT
adjustment following stop success trials in Figure 8 but not in
Figure 7 likely resulted from differences in trial sequence lengths
and trial sequence compositions between the two analyses.

Much to our surprise, however, the same trial sequences lead-
ing to slower subsequent RTs are associated with worse stop
performance relative to the session-wide stop performance level,
even after controlling for the contribution of SSDs (Figure 8).
Such an adjustment pattern cannot be explained by the non-
random trial history dependencies that we uncovered (Figure 9).
In the context of the independent race model, stop performance is
completely determined by the go RT distribution, SSRT and SSDs.
Therefore, our observation that slower RTs are associated with
worse stop performance necessarily implies that SSRT slows down
even more so than RT slowing. Together, these observations imply
that, rather than being stationary stochastic processes, both the
Go RT distribution and the SSRT are subject to trial-by-trial vari-
ation in their underlying parameters and are dynamically adjusted
based on recent trial history. While such dynamic adjustments
pose a serious challenge for accurately estimating SSRT, our
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analysis shows that a comparison with the session-wide perfor-
mance level provides a viable way to identify systematic dynamic
adjustments in stop performance based on local trial history.

Two observations are important for interpreting the surpris-
ing finding that slower RTs following frequent recent stop trials
are associated with worse stop performance. First, the extent of
stop performance adjustment is tightly coupled with the extent of
RT adjustment, suggesting that both effects arise from a common
cause (though, importantly, they may not share a common neural
mechanism). Second, both RT and stop performance adjustments
are specifically driven by failure-to-wait errors and successful stop
trials but not failure-to-stop errors, with the former two sharing
the common feature that the prepotent planned go response is
successfully canceled. Such an observation also supports our con-
clusion that failure-to-wait errors are similar to successful stop
trials and distinct from failure-to-stop errors with which they
should not be conflated.

One possible hypothesis based on these observations is that the
common driving force for both types of proactive adjustments is
the conflict between the go response rule and the stop response
rule in the context of relatively common Go trials and relatively
infrequent Stop trials. In other words, following successful and
repeated execution of stopping in recent past trials that takes place
against the background of low Stop trial probabilities, rats are
less certain about which of the two response rules to prepare for:
the global and more probable go response or the recent but less
probable stop response. As a result, rats are less efficient at exe-
cuting both the go and the stop response. Such a conflict is not
present, however, in failure-to-stop errors when rats failed to exe-
cute the stop response. Future studies are needed to reconcile the
differences between the current finding with those in humans and
non-human primates (Ide et al., 2013).

Together, the current study establishes the rat as a valid model
that displays both proactive and reactive inhibitory control simi-
lar to monkeys and humans. This is especially important because
SSRT estimates are elevated in individuals with deficient cogni-
tive control, including adults (Bekker et al., 2005) and children
(De Zeeuw et al., 2008) with Attention Deficit Hyperactivity
Disorder, Obsessive-Compulsive Disorder (Lipszyc and Schachar,
2010), Parkinson’s Disease (Mirabella et al., 2011), pathological
gambling (Grant et al., 2011), Tourette syndrome (Goudriaan
et al., 2005; Ray Li et al., 2006), schizophrenia (Hughes et al.,
2012), drug abuse (Li et al., 2006b, 2010; Liao et al., 2014)
and normal cognitive aging (Kramer et al., 1994; Coxon et al.,
2012; Hu et al., 2013). The current study therefore represents an
important first step in connecting the quantitative power of the
SST paradigm for studying inhibitory control with the unique
advantages of dissecting neural circuit mechanisms in rodent
models to advance research with both basic science and clinical
implications.
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