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Abstract: Sensorineural deafness is caused by the loss of peripheral neural input to the auditory
nerve, which may result from peripheral neural degeneration and/or a loss of inner hair cells.
Provided spiral ganglion cells and their central processes are patent, cochlear implants can be used to
electrically stimulate the auditory nerve to facilitate hearing in the deaf or severely hard-of-hearing.
Neural degeneration is a crucial impediment to the functional success of a cochlear implant.
The present, first-of-its-kind two-dimensional finite-element model investigates how the depletion
of neural tissues might alter the electrically induced transmembrane potential of spiral ganglion
neurons. The study suggests that even as little as 10% of neural tissue degeneration could lead to a
disproportionate change in the stimulation profile of the auditory nerve. This result implies that apart
from encapsulation layer formation around the cochlear implant electrode, tissue degeneration could
also be an essential reason for the apparent inconsistencies in the functionality of cochlear implants.

Keywords: neurodegeneration; tissue density; auditory nerve; cochlear implant; modeling and
simulation; finite element models; image-based modeling

1. Introduction

An estimated 466 million people, including 34 million children, are subjected to disabling hearing
loss worldwide [1]. A variety of physical, genetic, and pathological factors cause different degrees of
hearing loss [2–4]. Sensory neural deafness is a consequence of a loss of peripheral neural input to the
auditory nerve (AN), which can be due to neural degeneration in the presence of a normal compliment
of cochlear hair cells, called “primary” neural degeneration, or due to the loss of inner hair cells
followed by causal neural degeneration, called “secondary” neural degeneration [5]. Of course, a loss of
neural input can also be due to the malfunction of cochlear components, without necessarily implying
anatomical absence. In the absence of peripheral neural activity, the spiral ganglion neurons (SGNs)
when intact with the central processes in Rosenthal’s canal (RC), provide a window of opportunity
for clinical intervention with a cochlear implant (CI) [6,7]. The CI consists of an array of electrodes
inserted into scala tympani to stimulate SGNs electrically [8,9]. The electrical stimulation of the AN by
CIs facilitates hearing in the deaf or severely hard-of-hearing [10–12].
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Various experimental studies and mathematical models have attempted to explain how the electric
field produced by the CI stimulates the AN in RC [13]. In particular, mathematical models have been
harvesting rich experimental data and serving as useful tools for investigating the influence of different
electrophysiological parameters on the efficacy of the CI. However, mathematical models of a bioelectric
phenomenon rely upon several model assumptions and geometrical simplifications [13–15], which can
result in impractical modeling outcomes. For example, histological studies [16–19] demonstrate
that RC is filled with various neural tissues such as type-1 and type-2 SGNs, satellite glial cells,
peripheral and central processes of the AN; examples are shown in Figure 1. In spite of this rich tissue
heterogeneity, the state-of-the-art mathematical models have assumed a homogeneous extracellular
medium to model the electric-field distribution in RC. With such an assumption, the existing in-silico
models have shown that the electrode placement in scala tympani [20,21], cochlear anatomy [22,23],
electrode and stimulating pulse configurations [24–27], and the dielectric properties of cochlear
tissues [28–30] are some of the important factors to be considered for optimal stimulation of the AN
by the CI. A few in-silico studies have incorporated the neural tissues, particularly AN processes,
in the modeling [31–33], but they have not considered the distribution of heterogeneous tissues in RC.
Apart from those reports, in-silico studies have not explicitly investigated the effect of neural tissue
depletion on AN stimulation by the CI. The present simulation study investigates the electrical effect
of neural tissue loss on the CI responses of the AN.
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Figure 1. The human spiral ganglion. (A) and (B) Confocal-microscopic images showing 
immunoreactivity of laminin-β2, myelin basic protein (MBP), and 4′,6-diamidino-2-phenylindole 
(DAPI) stained cell nuclei. (A) Most type-1 spiral ganglion neurons (SGNs) are MBP-negative. Some 
non-myelinated perisomal segments show a rich expression of laminin (arrow). (B) Laminin-β2 
immunoreactivity of basement membrane lining the extracellular surface of the satellite glial cells 
(SGCs) of the SGN bodies and nerve fibers. Type-1 SGN cell nuclei are round and darkly stained (*), 
while SGC nuclei are often crescent-like (arrow) and more lucent. Their cytoplasm shows no laminin 
expression. (C) Scanning-electron-microscopic image of the human spiral ganglion. Neural cell bodies 
are artificially colored green. The cell coat of several neurons shows longitudinal impressions (*) 
caused by crossing myelinated nerve fibers. Images are from the basal cochlear turn from subjects 
with normal pure-tone thresholds for their age (40–65 years). Adapted from [16], Figures 2A,B and 
6A with permission. 

In contrast to the existing in-silico models, in our earlier computational study [34], we modeled 
a heterogeneous medium composed of different neural tissues in RC and studied the effect of neural 
tissue heterogeneity on the electrical stimulation of type-1 SGNs. The external electric field induces a 
cell-specific potential difference across the high-resistive cell membrane. The difference between the 
extracellular and intracellular potentials is defined as the transmembrane potential (Vm). When Vm 
crosses a threshold potential, neural excitation takes place in the form of an action potential (AP) [35]. 
Below this threshold, the membrane behaves approximately as a linear system containing only 
resistance and capacitance [36], so that the sub-threshold response of a membrane complex can be 
evaluated by superposition of the component membrane responses [37]. The probable initiation site 
of an AP can be estimated on the basis of Vm relative to the threshold potential [37]. By comparing 

Figure 1. The human spiral ganglion. (A,B) Confocal-microscopic images showing immunoreactivity
of laminin-β2, myelin basic protein (MBP), and 4′,6-diamidino-2-phenylindole (DAPI) stained cell
nuclei. (A) Most type-1 spiral ganglion neurons (SGNs) are MBP-negative. Some non-myelinated
perisomal segments show a rich expression of laminin (arrow). (B) Laminin-β2 immunoreactivity
of basement membrane lining the extracellular surface of the satellite glial cells (SGCs) of the SGN
bodies and nerve fibers. Type-1 SGN cell nuclei are round and darkly stained (*), while SGC
nuclei are often crescent-like (arrow) and more lucent. Their cytoplasm shows no laminin expression.
(C) Scanning-electron-microscopic image of the human spiral ganglion. Neural cell bodies are artificially
colored green. The cell coat of several neurons shows longitudinal impressions (*) caused by crossing
myelinated nerve fibers. Images are from the basal cochlear turn from subjects with normal pure-tone
thresholds for their age (40–65 years). Adapted from [16], Figures 2A,B and 6A with permission.

In contrast to the existing in-silico models, in our earlier computational study [34], we modeled a
heterogeneous medium composed of different neural tissues in RC and studied the effect of neural
tissue heterogeneity on the electrical stimulation of type-1 SGNs. The external electric field induces a
cell-specific potential difference across the high-resistive cell membrane. The difference between the
extracellular and intracellular potentials is defined as the transmembrane potential (Vm). When Vm

crosses a threshold potential, neural excitation takes place in the form of an action potential (AP) [35].
Below this threshold, the membrane behaves approximately as a linear system containing only
resistance and capacitance [36], so that the sub-threshold response of a membrane complex can be
evaluated by superposition of the component membrane responses [37]. The probable initiation site of
an AP can be estimated on the basis of Vm relative to the threshold potential [37]. By comparing the
maximum value of Vm relative to an ad hoc threshold, we have shown, theoretically, that the neural
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tissues around the SGNs alter the electric-field distribution in RC and thereby influence the excitation
profile of the AN. It was shown that the orientations of the SGNs relative to the applied electric field
also play a vital role in AP initiation and, thereby, stimulation of the AN. Furthermore, we showed
that if many passive neural tissues encompass the SGNs, then the number of surviving SGNs has
little impact on AP initiation. Finally, the electrode distance from RC appeared to only mildly affect
AN stimulation.

In the present paper, we investigate how the change in neural tissue density in RC may alter
the putative AP initiation sites. Numerous histological studies of the cochlea have reported neural
degeneration with age [38–40], whereby the degeneration can be either primary or secondary [5,38,41].
A post-mortem study of human tissue has estimated that for each 10% of total neuronal loss, primary
neural degeneration causes average thresholds at each audiometric frequency to increase by 6 dB
hearing level and a word recognition score to decrease by 6.8% [38]. Although there are a multitude of
factors influencing the clinical success of a CI, the number of surviving SGNs and central processes,
the presence or absence of peripheral dendrites, as well as the relative duration of hearing before the
onset of hearing loss are crucial [42–44]. Intuitively, these observations prompt further investigation to
decide whether CI functionality depends on the tissue density in RC. Such an investigation is essential,
since patients with profound deafness, especially children, can carry the CI their entire life, in which
time progressive neural degeneration as well as the loss or production of various fibrous tissues in RC
is possible [41,45–48]. Changes in the densities of neural and aneural tissues in the RC might affect the
performance of the CI in an unpredictable manner. In this context, theoretically studying the response
of SGNs to the applied electric field is a logical starting point, since AP generation arguably takes place
on the axonal initial segments or cell bodies of the SGNs in RC [49–52].

Several dielectric tissue interfaces, such as modiolus bone, tympanic fluid, and myelinated neural
tissues and other cells are situated between the CI electrode and the SGNs. In the modeling perspective,
the geometry and dielectric properties of each tissue in the region of interest are essential for a realistic
description of the associated bioelectric phenomena. Due to insufficient morphological and biophysical
data, as well as modeling limitations, it may not be possible to accurately implement the topology of all
tissues and their dielectric properties in a modeling and simulation study. For example, in the present
case for RC, the electric conductivity values of tissues such as central processes of the AN, satellite
glial cells, type-2 SGNs, other myelin tissues, Schwann cells, and the bony labyrinth are, to a large
extent, unknown. In addition, large variations in the shape and size of the human cochlea have been
reported [53–55]. Therefore, at present, even a realistic model of the cochlea would not be sufficient to
study patient-specific simulation scenarios, which is a goal of personalized medicine.

The main focus of the present study is modeling heterogeneous tissues of irregular shapes and
distribution patterns in RC and then determining their effects on the electric fields and transmembrane
potentials. To date, there is no template geometry available for modeling the neural tissues in RC.
We have addressed this issue with the aid of an immunohistochemical image of RC containing all
the necessary neural tissues. Instead of modeling the geometry of randomly distributed tissues as a
subdomain, we use our image-based method [34] to define the dielectric properties of the neural tissues
from color-coded immunohistochemical images of the RC. Otherwise, modeling the heterogeneous
tissue geometry in RC by image segmentation methods [56] would be not only laborious but also
implausible due to the meshing complexities demanding high computational expense in finite-element
analysis. Moreover, the implementation of gradual tissue depletion would not be possible if the
geometry of the tissues was fixed by the segmented model.

Here, we show that a loss of neural tissue in the vicinity of SGNs can cause disproportionate
changes of the electric fields and transmembrane potentials in a manner that is not predictable from
the size of the SGNs and their distances from the stimulus electrode.
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2. Results

We present the results of an in-silico simulation study of the responses of SGNs in Rosenthal’s
canal to electrical stimulation with a cochlear implant in scala tympani. The model is based on a
finite-element model of the electrical conductivities of neural and aneural tissues identified with image
analysis of an immunohistochemically stained material. The degeneration of all neural tissue except
SGNs and satellite glial cells was emulated by changing the pixel intensity. Responses to voltage
steps are illustrated for the maximum transmembrane potentials (Section 2.1) and for the electric fields
(Section 2.2), for both normal and degenerated neural tissue.

2.1. Dependence of the Maximal Transmembrane Potential on Tissue Density

Figure 2 shows the dependence of the maximum value of Vm for each of 19 neighboring cells
(C1–C19) in a two-dimensional section of RC (inset of Figure 2) as a function of the amount of
surrounding neural tissue. Tissue reduction was achieved by systematically introducing a parameter α
into the conditional equation describing the electrical tissue conductivity as a function of pixel intensity
(Section 4, Equation (1)). Maximal Vm values are shown for six values (“samples”) of the relative
amount of tissue.
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Figure 2. Maximum values of the transmembrane potential, Vm, elicited by an applied electric field for
spiral ganglion neurons in a two-dimensional section of Rosenthal’s canal (RC); see the circular inset, as
a function of the relative amount of surrounding neural tissue. Maximal Vm is displayed for six relative
values (Sample number) of the amount of tissue (% Tissue). There are 19 cells in the computational
section of RC, denoted by C1–C19; the data are distributed across four panels (A–D). In this and the
following figures, the stimulus voltage is 1 V. Taken as a group, there was no correlation of maximal
Vm with the amount of tissue.

Taken across the population of 19 cells, there was no global dependence of maximal Vm on the
amount of tissue. For example, for the original amount of tissue, denoted by Sample-1 and taken
directly from the immunohistochemical image from a human subject, the maximal induced Vm on C1
is 0.5 mV, and if the neural tissue is decreased to 80%, as in Sample-2, the maximal Vm on C1 does
not change significantly. However, if the tissue density is further decreased to 65%, as in Sample-3,
the maximal Vm for C1 increases to 1.5 mV. In the remaining samples, the maximal Vm on C1 is constant
at 0.8 mV. The responses of C9 and C16 do not depend on the amount of neural tissue. In contrast,
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the maximal Vm at C2, C3, C6, C12, and C18 increase approximately monotonically with the loss of
surrounding neural tissue. Other cells tend to produce smaller Vm with increasing tissue depletion
(C4, C5, C8, C10, C11, and C19).

Taken together, the simulation results presented in Figure 2 imply that SGNs and their total
number producing electrically evoked APs depend on the amount of surrounding tissue, but not
necessarily in a predictable manner. Taking the maximum value of Vm as an indicator of the likelihood
of AP generation and if the threshold potential for eliciting an AP were, say, 1 mV, then for the largest
amount of tissue (Sample-1), six of the 19 SGNs would yield APs (C6, C9, C11, C12, C16, and C18).
The same six cells would produce APs for tissue reduction to 80% (Sample-2). However, for tissue
reduction to 65% (Sample-3), a further two cells would yield APs (C1 and C7), and for tissue reduction
to 40% (Sample-5), another group of six cells would produce APs (C2, C6, C9, C12, C16, and C18).
Clearly, the cells and their proportion in RC producing APs not only depend on the surrounding neural
tissue but also on the value of the threshold potential.

2.2. Dependence of the Electric Field on Tissue Density

To understand the voltage profiles presented in Figure 2, Figure 3 displays the electric-field
distribution for each of the tissue samples. Since neural tissues in RC have lower conductivity than
that of the extracellular medium, “bright spots” (blue-white peaks) of the electric field can be seen in
the vicinity of neural tissues of very low electric conductivity. The presence of these peaks shows that
neural tissue alters the electric field distribution around the SGNs, which also then affects the Vm. In all
six samples, the density of GroupB tissue, defined as all tissue except satellite glial cells and SGNs (see
Section 4), around C9 and C16 has not changed; hence, the Vm of those two SGNs remains unaltered.
Color-coded peaks (blue-to-red) in Figure 3 show the sites of maximal induced Vm on the SGNs.

When a cell that has a uniform membrane is exposed to a uniform electric field, hyperpolarization
and depolarization occur at diametrically opposite sites, as shown in Figure 4A. However, in the
present case of nonhomogeneous tissue, the cell membrane of each SGN is enveloped by GroupA
(satellite glial cells; see Section 4) and GroupB tissues, which act as additional non-uniform membrane
patches. Hence, the effective electric conductivity of the membrane varies locally around each SGN,
which in turn affects the intracellular fields [57]. In such a scenario, the locations of maximal and
minimal induced Vm on a cell depend upon where the current enters and exits the cell [58]. The current
entering the cell through a high electrical conductive patch must pass out through the remaining low
conductive patch to maintain the continuity of the current flow. This implies that the distribution of
tissue patches around the cell membrane determines the response of SGNs to the applied electric field.
As a consequence, even a small change in the tissue density in RC could impact on the tissue patch
distribution around one or the other SGN and, thereby, on its excitation.
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Figure 3. Electric field, E, and maximal transmembrane potential, Vm, for the six tissue samples shown
in Figure 2. The color-coded peaks (blue-to-red) show the sites of maximal induced Vm on the spiral
ganglion neurons. The distribution of E in Rosenthal’s canal is shown with a logarithmic scale (log(|E|)
for better visualization; the reference field amplitude is 9 × 104 V/m. The Cartesian coordinate axes
denote the image plane (x,y) and the dependent variable (z); namely, log(|E|) or the maximum of Vm.
The formation of electric field “bright spots” (blue-to-white peaks) in the vicinity of neural tissues is
due to the heterogeneous conductivity distribution of respective neural tissues. The black arrows in
Sample-6 point to C9 and C16: their Vm remained the same across samples because the density of
GroupB tissues was not changed in any of the samples.
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Figure 4. Electrical stimulation of spiral ganglion neurons (SGNs) in a homogeneous extracellular
medium. (A) Color-coded representation of electric-field distribution in Rosenthal’s canal.
The formation of hyperpolarization and depolarization sites on SGNs can be seen with the red-to-green
color code, respectively. Streamlines of the electric field are shown in white. Evoked transmembrane
potential, Vm, on specified SGNs having (B) similar sizes and distances from the electrode, where C4,
C5, and C6 are shown in blue, green, and red color code, respectively in the inset, (C) different sizes but
similar distances from the electrode, and (D) similar sizes but different distances from the electrode.
Arc length denotes the perimeter of SGNs.

3. Discussion

We have investigated the effect of neural tissue in Rosenthal’s canal (RC) on the transmembrane
potential (Vm) and the initiation sites of action potentials (APs) in response to electric fields produced
by intracochlear stimulation from a cochlear implant (CI). Tissue heterogeneity in RC was implemented
with a simple yet effective image-based method, which otherwise would have been an implausible
task with conventional modeling. Based on the imaging method, we have described the heterogeneity
of the passive electrical conductances of the tissues in RC and, thereby, within the framework of a
finite-element analysis, been able to solve the electrical constitutive equations to derive the electric
fields, current densities, and voltages. The model shows that the spatial distribution of the Vm

critically depends on the amount of tissue. An immediate prospect of the present study would
be revisiting contextual state-of-the-art in-silico models for the possible implementation of tissue
heterogeneity. In the long term, the results should provide an impetus for considering heterogeneous
neural tissue properties when optimizing CI stimulus conditions, which is a topic that is addressed in
the following discussion. The results can also be applied to the electrical stimulation of other tissues in
the body [59–61].

3.1. Neural Stimulation in Homogeneous and Inhomogeneous Tissue Environments

For SGNs exposed to a uniform external electric field in a homogeneous extracellular medium
such as shown in Figure 4A, the induced Vm depends on the cell shape and size [62] as well as distance
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from the stimulating electrode. From Figure 4B, it is observed that the maximal induced Vm in the case
of a homogeneous medium is similar (0.7 mV) for three SGNs of similar sizes and distances from the
electrode (C4, C5, and C6). For similar distances from the electrode, Figure 4C shows that the induced
Vm is approximately proportional to the cell size (C1, C2, C3, and C4). For similar cell sizes, Figure 4D
shows that the induced Vm is proportional to their distances from the electrode (C2, C8, and C10).

Based on such results under homogeneous conditions, it would almost certainly be concluded that
for a given voltage-stimulus paradigm at some longitudinal position along the cochlea, for example in
the basal turn where most type-1 SGNs have a diameter of approximately 30 µm [63], the electrode
distance from the SGNs is an essential design factor to be considered for achieving optimal excitation
of the AN. Under the homogeneity assumption, any mathematical model would almost certainly infer
that an electrode placed nearer to the modiolus in scala tympani, such as a modiolus hugging electrode,
would perform better compared to a more laterally placed electrode [50,64–66].

However, under inhomogeneous conditions, the present analysis shows that neighboring SGNs
of similar size can produce Vm of vastly different amplitude and spatial distribution. Compare, for
example, the spatial distributions of Vm for the three cells shown in Figures 4B and 5 (C4, C5, and C6)
under homogeneous and inhomogeneous conditions, respectively. Referring to the tissue profiles
of the six samples in Figure 5, we observe that despite their similar size and location in RC, Vm is
vastly different across cells for a given tissue condition and for a given cell for different amounts
of tissue. It has been shown that the site of AP generation is determined by specific ion-channel
distributions on the cell membrane or the axonal initial segments [51,67]. In the present study, the ion
channel distribution on the cell membrane was not included, yet the Vm exhibited strikingly different
spatial properties dependent on the amount and type of neural tissue and, therefore, on the resulting
inhomogeneous profile of the electrical conductances. Moreover, referring to Figure 2, we see that
although cells C16 and C18 are much further from the electrode than cells C1–C4, their larger values of
maximal Vm mean that they are more likely to produce APs than the proximally located cells.

Taken together, these results imply that rather than simply the position of the electrode relative
to the SGNs, the local tissue density around each SGN is of paramount importance for the initiation
site of an AP. In other words, any theoretical correlation between the electrode placement in scala
tympani and the excitation of SGNs and, thereby, the quality of speech perception would be speculative.
Importantly, such correlation has not been observed in experimental studies [68–70].
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ganglion neurons (SGNs: C4, C5, and C6) of similar sizes and distances from the stimulating electrode.
Insets in the left panels: Local view of encapsulation tissue in the vicinity of the indicated SGN.
Notice the strong and apparently random dependence of Vm on the amount of tissue both across cells
and for a given cell.

3.2. The Activating Function as an Indicator of AP Initiation Site

Most of the mathematical, AP-generating models of the cochlea have used the maximum of the
second spatial derivative of the extracellular potential, known as the “activating function” [71], as an
indicator of the most likely site of AP initiation [14,20,23,32,72–74]. The activating function evaluated
for the 19 SGCs and six tissue samples reveals peaks with positions that change with tissue density,
in what appears to be an unpredictable manner (Appendix B, Figure A2). This observation is consistent
with the strong interdependency of neural excitation and neural density in RC provided by the analysis
of the spatial distributions of the Vm and the electric field, and their dependence on tissue density
(Section 2.2). Importantly, we did not detect a correlation between the peaks of the activating function
and those of Vm (Appendix B, Figure A3). This result is consistent with those studies that report
that the maximum of the activating function does not always accurately predict the AP initiation
site [75–78].

3.3. Limitations of the Analysis

Being a first-of-its-kind study, our mathematical model suffers a few drawbacks, such as an
unavailability of sufficient image data to reconstruct a realistic three-dimensional model of the RC filled
with heterogeneous tissue. However, we carefully chose an immunohistochemical image that contains
SGNs of different size, shape, and sufficiently different neural tissues to represent possible variations
in RC throughout the cochlea. Thus, the two-dimensional representation of the region of interest is a
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first approximation of AN stimulation with the CI. Nevertheless, the image-based method proposed
for modeling two-dimensional heterogeneous tissues can be readily extended to a three-dimensional
model derived from a stack of immunohistochemical images of RC. However, a three-dimensional
realistic model with heterogeneous tissues in RC is expected to produce qualitatively similar results.
Since, for bipolar stimulation, the electric field would be confined to a small region, the anatomy of the
whole cochlea would have little impact on the stimulation profile of the SGNs.

One of the biggest challenges to produce in-silico study results comparable to those expected
in vivo is the unavailability of accurate dielectric properties of various cochlear tissues. Moreover,
comprehensive information about the types and distributions of the ion channels responsible for the
excitation of SGNs is lacking [79]. Prospectively, a recent study attempted to find the threshold currents
of SGNs by culturing them on a multi-electrode array system [80]. The response of SGNs to an applied
electric field could also vary with their position along the cochlea [81,82]. The threshold potential of
SGNs can be estimated with Hodgkin–Huxley theory by taking a limited number of ion channels into
account [83]. Nevertheless, since the Vm is essential for neural excitation, a systematic study such as the
present one does provide initial information about possible AP initiation sites and their dependence on
tissue density. Clearly, our in-silico study needs to be validated by appropriate experimental studies.
To the best of our knowledge, there are no experimental studies with which our in-silico results can
be compared.

3.4. Potential Clinical Applications

As discussed in [84], CI research is facing challenges to find the underlying factors responsible for
the unusual variability in CI performance across children and adults. The performance of the CI can
change with time after implantation due to the formation of an unwanted tissue layer, or so-called
encapsulation layer, around the stimulating electrode [85]. It is also possible that unwanted tissue
develops on the basilar membrane (far) apical from the distal end of the CI electrodes [86]. Therefore,
extending the results of the present study to the whole length of the cochlea, we suggest that even a
small change in tissue density in RC could disproportionately affect electrical stimulation of the AN
along the entire cochlea. Hence, reported inconsistencies in the performance of CIs [87–89] could be
partially attributed to the eventual degeneration of (heterogeneous) neural tissues in RC and perhaps
even the generation of aneural tissue. A few in-silico studies have proposed patient-specific and fully
automated models to aid CI surgery and evaluation [90,91]. However, a reliable method or model that
can be clinically used as a template or a pre-implant predictor for CI functionality is not yet available.
Anticipating as many influencing factors as possible is obviously essential for such an endeavor. In this
sense, the results of the present study propose tissue density in RC as an influencing factor that might
affect CI performance and, therefore, it needs to be considered when attempting to optimize the design
and performance of the CI. The results might also serve as an initial framework for modeling the latest
CI developments such as the drug-induced artificial regrowth of neural tissues in RC [79,92–95].

4. Materials and Methods

Here, we briefly present the image-based modeling of the electrical conductivities and CI-induced
electric fields for heterogeneous neural tissues in RC; refer to our earlier work [34] for a comprehensive
description of the method. In addition, we describe a novel means of altering tissue density in RC to
simulate degeneration of tissue surrounding SGNs. All modeling and simulation tasks were performed
with the AC/DC module in a commercially available FEM software package (COMSOL Multiphysics®,
Simulation software version 5.3a; Stockholm, Sweden).

4.1. Basic Assumptions

A two-dimensional finite-element model of the region of interest in the basal region of the human
cochlea was used to implement the spatial dependence of the tissue conductivities derived from
the immunohistochemical data. The immunohistochemical image is shown in Figure 6A. Given the
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attempts to focus electric fields in CI design [24,96,97], bipolar as opposed to monopolar stimulation is
presumed to be appropriate for examining the effects of localized electric fields on Vm. The dimensions
of the computational subdomains are given in Table 1.

Table 1. Dimensions of the simulated subdomains.

Subdomain Dimensions

Temporal bone 0.5 cm × 0.5 cm
Modiolus bone 100 µm × 2 mm
Electrode 0.3 mm (diameter)
Scala tympani 1 mm × 1 mm
Rosenthal’s canal 250 µm (diameter)
Spiral ganglion neurons 20–30 µm (diameter)

Membranes of all neural tissues are assumed to be passive and resistive because AP generation or
propagation in neural tissues was not subsumed in the simulation. This assumption also obviates the
need for the physical presence of heterogeneous tissue boundaries in the model. Thus, rather than the
actual geometry, the electric conductivity distribution of respective tissues in RC is sufficient to derive
the spatial dependence of the electric field and Vm.

In the model, the neural tissues in RC are classified into two groups: (1) The satellite glial cells,
which encapsulate the SGNs, called here GroupA tissues, and (2) all other neural tissues except for
SGNs, which are called GroupB tissues. The death of satellite glial cells would trigger the degeneration
of SGNs [98]; hence, the loss of GroupA tissues is not modeled. The electric conductivity of GroupA
tissues is assumed to be lower than that of the cell membrane [99]. All tissues in GroupB that
comprise the central extensions of type-2 SGNs and other neighboring cell bodies are considered to be
myelinated tissues.

4.2. Derivation of the Distribution of Electrical Conductivities

To model the degeneration of GroupB tissues, the immunohistochemical image of the tissues of
interest was delineated with false color code [Figure 6B] and imported into COMSOL Multiphysics®

5.3a. The pixel dimensions of the image were scaled in the model according to the dimensions of
the RC subdomain. In this manner, the pixel intensity data of each delineated tissue were allocated
according to their scaled spatial coordinates, which were denoted by Im(x,y). Tissue conductivity
values (σTissue) were mapped in the computational domain using the conditional equation:

σTissue =


σIntracell, 0.3 < Im(x, y) ≤ 0.5
σGroupA, 0.15 < Im(x, y) ≤ 0.3
σGroupB, (0.05 + α) < Im(x, y) ≤ 0.15
σExtracell, Im(x, y) ≤ (0.05 + α)

(1)

where σIntracell, σGroupA, σGroupB, and σExtracell are the intracellular, GroupA, GroupB, and extracellular
conductivities, respectively. Six samples—namely, Sample-1, Sample-2, Sample-3, Sample-4, Sample-5,
and Sample-6—of RC were modeled by assigning 0, 0.01, 0.02, 0.03, 0.04, and 0.05 respectively, to the
intensity parameter α. The resulting six tissue samples are presented in Figure 6. To quantify tissue loss,
the amount of GroupB tissue present in Sample-1 (the original sample from the immunohistochemical
image) was defined as 100% (α = 0), and for every other assigned value of α, the resultant GroupB
tissue percentage was calculated relative to the amount of GroupB tissue in Sample-1; these percentages
are those given in the respective panels of RC in Figure 6.

Nineteen SGNs were modeled as computational subdomains by extracting the contours of cell
bodies from the immunohistochemical image in Figure 6A. Figure 6B depicts the pixel intensities
Im(x,y) of the imported image, which is scaled from 0 to 0.5. Table 2 lists the electric conductivity
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values used for the various types of cochlear tissue; they are adapted from [34]. Using Equation (1),
Figure 6 shows the resultant conductivity distribution in RC for all samples.
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Figure 6. Modeling tissue density and its change. (A) Immunohistochemical image of human
Rosenthal’s canal in which spiral ganglion neurons (SGNs), satellite glial cells, and cell nuclei are marked
with Tuj-1 (green), Laminin-β2 (red), and DAPI (blue), respectively. Extracellular medium is indicated
in black. (From [16] Figure 2E with permission) (B) Pixel intensities represented by the Im(x,y) function
from COMSOL Multiphysics®5.3a. (C) Model geometry in the computational domain consisting of
temporal bone (TB), Rosenthal’s canal (RC), modiolus (M), electrodes (EL), and scala tympani (ST).
The conductivity distribution of the original tissue (Sample-1) was calculated according to Equation (1)
with α = 0 The following five samples represent increasing tissue loss introduced computationally by
increasing α in Equation (1) from 0.01 to 0.05 in steps of 0.01, respectively. The loss was introduced
into GroupB tissue (all neural tissue except satellite glial cells and SGNs). The percentages represent
the amount of GroupB tissue relative to that in the original sample. Panels (B,C) adapted from [34]
with permission.

4.3. The Constitutive Equations

The contact impedance boundary condition

n·Jint = σm(Vint −Vext)/d
n·Jext = σm(Vext −Vint)/d

Vm = Vint −Vext

 (2)

was used to electrically describe the thin membrane (d = 10 nm) of the SGNs. Here, n, J, σm, and V
are the unit normal vector, current density, conductivity of the membrane, and electric potential,
respectively. The subscripts ‘int’ and ‘ext’ denote intracellularly and extracellularly, respectively.

The electric insulation boundary condition

n·J = 0 (3)

was implemented on the outer boundaries of the computational domain.
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A constant voltage of 1 V was applied to one electrode using the Dirichlet boundary condition [100],
and the other electrode was assigned to the ground. Since the CI operates in the electrical low-frequency
regime and the region of interest is sufficiently small, we can safely assume that all cochlear tissues are
purely resistive. Consequently, the quasi-static approximation [101,102] was used and the electric-field
distribution in RC was derived by solving the constitutive equations:

J = σE
E = −∇V
∇·(∇V) = 0

. (4)

Although the irregular geometry of neural tissues in RC was bypassed using the afore-described
image method (Section 4.2), the heterogeneous distribution of conductivity values might still lead to
large interpolation errors at the tissue interfaces. By controlling the mesh size with the Im(x,y) function,
a virtual boundary was created to minimize possible interpolation issues. A mesh convergence study
was performed to choose the best mesh that minimizes interpolation errors (details are provided in
Appendix A). The final mesh consists of 226,306 triangular elements. The problem was solved for
457,882 degrees of freedom using a multifrontal massively parallel sparse direct solver (MUMPS) [103].
The total time taken to solve all parameters was 3 min and 24 s on the Windows server workstation
with 64-Bit Intel® Xenon® CPU with 3.40 GHz (two processors) with 256 GB RAM.

Table 2. Electric conductivity values of cochlear tissues used in the simulation

Subdomain Electric Conductivity (S/m)

Temporal bone 0.016
Modiolus bone 0.0334
Electrode 9 × 106

Tympanic medium 1.43
GroupA tissues 4 × 10−9

Intracellular medium 0.31
Extracellular medium 1.2
GroupB tissues 3.45 × 10−6
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AN Auditory Nerve
AP Action Potential
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RC Rosenthal’s Canal
Vm Transmembrane Potential

Appendix A. Mesh Convergence Study

A mesh convergence study was performed to minimize numerical error caused by the irregular
forms of the tissues in Rosenthal’s canal (RC). Efficient, automatic, and adaptive meshing options are
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available in COMSOL Multiphysics®5.3a. However, the present two-dimensional model of the region
of interest in RC poses a unique challenge when using automatic meshing options. Normally, meshing
the computational domain should be straightforward, because the irregular and heterogeneously
distributed edges of the tissues are not present in the model. However, even the finest mesh generated
by automatic meshing options resulted in large interpolation errors when the conductivities of GroupA
and GroupB tissues were mapped into the computational domain (Figure A1). To address this issue,
we used a customized, local adaptive meshing method, which was controlled by the image data;
the algorithm is defined as:

Mesh parameters =

Finer on GroupA tissues, 0.15 < Im(x, y) ≤ 0.3
Fine on GroupB tissues, 0.05 < Im(x, y) ≤ (0.15)
Normal on ext. medium, Im(x, y) ≤ (0.05)

. (A1)

By taking the mesh parameters shown in Table A1 as mesh case 6 (m6), five more mesh cases
(m5–m1) were studied in which the mesh size was increased by a factor of two for GroupA tissues
and by a factor of four for GroupB tissues for each consecutive case. The transmembrane potential,
Vm, of C5 was estimated for each mesh case. Due to the coarser sizes of the meshes, the m1–m5
cases showed large deviations in Vm. A further reduction of the mesh size below that for m6 did
not yield a change in Vm. Hence, the final mesh (m6) was selected based on the study results shown
in Figure A1. The final mesh parameters are given in Table A1, where Max, Min, GR, CF, and Res
represent, respectively, the maximum element size, minimum element size, element growth rate,
curvature factor, and resolution of the narrow regions. The accepted numerical error for calculating
Vm was 10−6 mV.
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Figure A1. Meshing for the finite-element analysis. (A) Automatically generated triangular mesh
by COMSOL Multiphysics®5.3a resulted in 251,030 elements in the whole computational domain.
Conductivity distributions for GroupA and GroupB tissues are shown in blue and red, respectively.
Intermediate colors shown in white boxes in the zoomed Rosenthal’s canal indicate the interpolation
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errors of electrical conductivity. (B) Final mesh (m6), accepted for the simulation and generated
by Equation (A1), resulted in 226,306 mesh elements. The interpolation errors are diminished at
the interfaces due to the virtual boundaries created by the adaptive mesh (zoomed picture). Here,
conductivity distributions of GroupA and GroupB tissues are shown in red and blue, respectively.
Green indicates the conductivity of intracellular medium. Black star shows C5 where the transmembrane
potential is measured. (C) Transmembrane potential measured on C5 for seven mesh cases (m1 through
to Hm) created by varying mesh parameters. The curve shown for Hm is for a homogeneous extracellular
medium (shown in blue), and m6 (shown in red) is the result for the final accepted mesh.

Table A1. Mesh parameters used in the convergence study.

Mesh Type Max Min GR CF Res

Finer 0.1 mm 0.6 µm 1.3 0.3 1
Fine 1 mm 6 µm 1.3 0.3 1

Normal 20 mm 4 µm 1.4 0.4 1

Appendix B. Activating Function

A maximum of the activating function, defined as the second derivative of the extracellular
potential, can provide an indication of the most likely AP initiation site [71]. Figure A2 shows the
activating function for the 19 SGNs and six tissue samples used in the study. The sites of the maxima
change with the tissue density, in what appears to be a random fashion, suggesting an unpredictable
dependence of the AP initiation sites on tissue density. The AP initiation sites predicted by the maxima
of the activation function and the transmembrane potential are different for different tissue samples
(Figure A3).
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