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Recalibration of deep learning models for abnormality
detection in smartphone-captured chest radiograph
Po-Chih Kuo1,2,8, Cheng Che Tsai3,8, Diego M. López 4, Alexandros Karargyris5, Tom J. Pollard1, Alistair E. W. Johnson1 and
Leo Anthony Celi 1,6,7✉

Image-based teleconsultation using smartphones has become increasingly popular. In parallel, deep learning algorithms have been
developed to detect radiological findings in chest X-rays (CXRs). However, the feasibility of using smartphones to automate this
process has yet to be evaluated. This study developed a recalibration method to build deep learning models to detect radiological
findings on CXR photographs. Two publicly available databases (MIMIC-CXR and CheXpert) were used to build the models, and four
derivative datasets containing 6453 CXR photographs were collected to evaluate model performance. After recalibration, the model
achieved areas under the receiver operating characteristic curve of 0.80 (95% confidence interval: 0.78–0.82), 0.88 (0.86–0.90), 0.81
(0.79–0.84), 0.79 (0.77–0.81), 0.84 (0.80–0.88), and 0.90 (0.88–0.92), respectively, for detecting cardiomegaly, edema, consolidation,
atelectasis, pneumothorax, and pleural effusion. The recalibration strategy, respectively, recovered 84.9%, 83.5%, 53.2%, 57.8%,
69.9%, and 83.0% of performance losses of the uncalibrated model. We conclude that the recalibration method can transfer models
from digital CXRs to CXR photographs, which is expected to help physicians’ clinical works.
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INTRODUCTION
Chest X-ray (CXR) is an essential tool to detect pulmonary
abnormalities and has become one of the most prescribed
medical tests. An estimated 110 million CXRs are performed
annually in the United States1, with only around 39,000
radiologists providing the official reading2. The need for
immediate interpretation or a “wet” read by those who ordered
them has prompted clinicians to resort to teleconsultation,
especially in settings where they may not have access to a
radiologist 24/7. With advances in smartphone technology,
doctors have increasingly taken photographs of CXRs and sent
them to colleagues for instantaneous reading3,4.
In recent years, deep learning algorithms have been proposed

as computer-aided diagnosis (CAD) solutions to the radiologist
shortage5–14. Mostly built on convolutional neural networks
(CNNs), the algorithms can detect certain pulmonary abnormal-
ities in CXR images within a second. Numerous studies have
shown the competency of CNNs achieving performance close to
radiology experts7,11,12,15–17.
On the other hand, incorporating the algorithm for automated

CXR radiological finding detection into a smartphone offers a
number of benefits. First, it will provide access to radiologist-level
expertise to a healthcare worker seeking assistance with CXR
interpretation or a second opinion anytime, anywhere. Second, it
can scale and standardize the process of teleconsultation with less
variation in the interpretation compared to one given by different
individuals with varying levels of expertise. Third, there is an
opportunity for quality assurance as the algorithms can be
continuously evaluated and recalibrated against radiologists.
In this study, we explore combining the power of deep learning

and the ubiquity of smartphones for CXR finding detection. To the
best of our knowledge, this is the first study that recalibrates deep

learning models specifically targeting CXR photographs. The
target user of the software is a healthcare provider in a
resource-limited setting who may not be confident about her/
his interpretation or is not a specialist in radiology. It will be easier
to install an algorithm on smartphones rather than a legacy
computer system in a public hospital or clinic where data
interoperability is almost always a challenge. The methodology
can also be applied to the abnormality detection on plain films but
requires images of the plain films for the recalibration.
We begin the study by showing that the performance of the

original CNN-based models trained on high-resolution digital CXR
images decreases on CXR photographs. Using less than 200
photographs of CXR, we recalibrated the training process of the
models and obtained significant performance improvement. To
ascertain the generalizability of the recalibrated model, we
measured the performance on four photograph datasets derived
from two large and publicly accessible digital CXR databases
(MIMIC-CXR18 and CheXpert18,19). To simulate real-world telecon-
sultation, these photographs were taken by twelve users including
nine medical residents using different computer monitors and
smartphones to display and photograph the CXRs. We are also
open-sourcing these photograph datasets to the community to
promote novel research and the development of similar systems.

RESULTS
Experiment design
We conducted four experiments corresponding to four testing
CXR photograph datasets, as shown in Fig. 1b: (1) internal
validation using 1,759 photographs taken from MIMIC-CXR dataset
(Photo-MMC); (2) external validation using 1,337 photographs
taken from CheXpert CXR dataset (Photo-CXP); (3) end-user
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scenario using 1,337 photographs taken from CheXpert by nine
medical residents (Photo-MED); (4) device-variance test using 2020
photographs taken from CheXpert by a single physician with
different smartphones and computer monitors (Photo-DEV).
Four models based on the MIMIC-CXR dataset were constructed

and tested, as shown in Fig. 1a. (1) Model-ORIG is the conventional
model trained on digital CXRs. (2) Model-RECA is our recalibrated
model trained on augmented CXRs. (3) Model-TRNS is the transfer
learning model transferred from Model-ORIG and fine-tuned by
CXR photographs. (4) Model-PHOT is the model directly trained on
CXR photographs. The details of model construction and dataset
collection are described in the “Methods” section.

Performance evaluation
Table 1 and Fig. 2 summarize the results for the first three
experiments: internal validation, external validation, and end-user
scenario. The areas under the receiver operating characteristic
curves (AUROCs) were used to present the performance of
different models. Conventional metrics such as sensitivity,
specificity, f1 score, and accuracy were also calculated and
presented in Supplementary Table 2 - Table 4. Six major
radiological findings (cardiomegaly, edema, consolidation, atelec-
tasis, pneumothorax, and pleural effusion) were selected as target
labels due to clinical relevance. We obtained the comparison
reference by using high-resolution images for both training and
testing to avoid the domain discordance problem. The blue lines
present the results of comparison reference. The green, yellow,
pink, and red lines show the results of the Model-ORIG, Model-
RECA, Model-TRNS, and Model-PHOT, respectively, using CXR
photographs as the testing data.

Internal validation
First, we developed and internally tested our models using the
MIMIC-CXR database. That is, both the training images and the
source of the testing photographs, Photo-MMC, were derived from
the same database. As shown in Fig. 2a, across the six major
radiological findings, Model-ORIG shows a performance decrease
from an averaged AUROC of 0.86 to 0.77 (p < 0.0001) compared to
our comparison reference. After model recalibration, the Model-
RECA shows significant performance recovery from an averaged
AUROC of 0.77 to 0.84 (p < 0.0001), close to our comparison
reference. Figure 3 shows the receiver operating characteristic
(ROC) curves. The blue lines show the comparison reference. The
yellow lines show the results when the Model-ORIG was evaluated
using CXR photographs. The green lines show the performance of
the Model-RECA on the CXR photographs. The AUROC, sensitivity,
specificity, F1-score, and accuracy for all 14 labels are presented in
Supplementary Table 2. The results reiterate two insights and
underscore the importance of this study. First, the model trained
on the original CXRs was incapable of maintaining its performance
on CXR photographs. Second, the recalibration process improved
the model performance and successfully transferred image-based
models’ detection accuracy to the CXR photographs.

External validation
To investigate whether the two insights mentioned above can
be generalized to the other database, we tested models
developed from the MIMIC-CXR database by the photographs
made from an external database, CheXpert. That is, the models
were tested on the Photo-CXP. As shown in Fig. 2b, across the six
radiological findings, the Model-ORIG lost its performance from
an averaged AUROC of 0.75 to 0.67 when tested on the CXR
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Fig. 1 Overview of the proposed method. a The uncalibrated model (Model-ORIG) was trained on the original CXR images. The transfer
learning-based model (Model-TRNS) was transferred from the uncalibrated model and fine-tuned by real photographs. The photograph-based
model (Model-PHOT) was trained by the real smartphone-captured photographs. The recalibrated model (Model-RECA) was recalibrated from
Model-ORIG by using augmented CXR images. b Model-ORIG, Model-TRNS, Model-PHOT, and Model-RECA were tested on four CXR photograph
datasets (Photo-MMC, Photo-CXP, Photo-MED, and Photo-DEV) in four experiments. The performance metrics across 14 labels were calculated.
Gradient-weighted Class Activation Mapping was employed for diagnostic focus visualization of models.

P.-C. Kuo et al.

2

npj Digital Medicine (2021)    25 Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;



photographs (p < 0.0001). On the other hand, the Model-RECA
improved an averaged AUROC from 0.67 to 0.75, significantly
recaptured the performance loss (p < 0.0001). The results of
external validation were consistent with those of internal
validation. Furthermore, although the transfer learning model
(Model-TRNS) had significantly better performance than Model-
PHOT (0.71 vs. 0.59, p < 0.0001) and Model-ORIG (0.71 vs. 0.67, p
< 0.0001), the Model-RECA still outperformed Model-TRNS (0.75
vs. 0.71, p < 0.0001). The results imply that although transfer
learning strategy can help to deal with the domain shifting
problem, the recalibration process provides a better solution for
radiographic finding detection on CXR photographs. Finally,
when comparing Fig. 2a with Fig. 2b, the difference between the
MIMIC-CXR and the CheXpert databases led to AUROC drops for
each model and each label, except for the pleural effusion. The
AUROC, sensitivity, specificity, F1-score, and accuracy for all 14
labels can be found in Supplementary Table 3.

End-user scenario
To simulate model performance when implemented in real clinical
practice, the Photo-MED dataset was used to test models. Nine
medical residents were told to take the pictures on their own
smartphones and computer monitors as if they would send them
to their colleagues for further discussion. Figure 2c shows the
comparison results. Again, we reached similar results as those in
internal or external validation. The recalibrated model (Model-
RECA) has the best performance among the four models tested
(0.75 vs. 0.72, p < 0.0001; 0.75 vs. 0.70, p < 0.0001; and 0.75 vs. 0.61,
p < 0.0001). This achievement is the same as that of the
comparison reference (0.75 vs. 0.75). The AUROC, sensitivity,
specificity, F1-score, and accuracy for all 14 labels can be found in
Supplementary Table 4. The results demonstrate that the model
improvement is not user-dependent and the recalibrated model
has potential to be deployed to the real clinical works.

Device-variance test
Figure 4 shows the results of the device-variation test, in which a
physician photographed the same set of the CheXpert CXRs ten
times by using ten different device setting (smartphones and
computer monitors) combinations (Photo-DEV). The box plots
show the median and interquartile range of AUROCs for Model-
ORIG and Model-RECA across ten settings. The overall AUROC for
Model-RECA (0.80 ± 0.076) is significantly higher than that for
Model-ORIG (0.74 ± 0.094) (p < 0.0001).
Besides, we used the intraclass correlation coefficient (ICC) to

evaluate the radiographic detection stability of both uncalibrated
and recalibrated models when tested on photographs taken by
different device combinations. The ICC score for the Model-ORIG,
[0.39, 0.77] (95% confidence interval), is significantly higher than
that for the Model-RECA, [0.85, 0.93] (p < 0.0001). These results
indicate that although the noises of photographs generated by
different smartphones and computer monitors were various
(Supplementary Fig. 1a), the Model-RECA can provide more
consistent detection results to the same CXR image taken under
different noise distribution than Model-ORIG.

Diagnostic visualization
In this study, activation maps were created for demonstration of
explainability. By identifying the segment of the CXR that weighed
most heavily with regard to the algorithm output, the user is
provided some insight of what the algorithm “sees”. This can be
particularly useful to determine the trustworthiness of an
algorithm’s classification. With the Gradient-weighted Class
Activation Mapping (Grad-CAM)20, Fig. 5 shows the resilience of
Model-RECA to noise disturbance in an example case labeled as
consolidation. When applied to the original CXR image, irregularTa
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opacification at the right lower lobe was correctly tagged by both
models. However, when applied to the CXR photograph, Model-
ORIG was distracted by photography noise and mistakenly used
the right clavicle as the determining factor to label consolidation.
On the contrary, the Model-RECA identified the same location as
where it focused when tested on the original CXR images, visually
showing its model stability even though the CXR photograph was
presented with conspicuous noise. However, the algorithm might
be influenced by noise if the quality of the CXR or the photograph
captured by the smartphone is suboptimal (see Supplementary
Fig. 4).

Cross-database validation
To re-examine the stability of the recalibration method, we further
constructed the CheXpert-based models (Model-ORIG, Model-RECA,
Model-TRNS, and Model-PHOT) by swapping the roles of MIMIC-
CXR and CheXpert databases for training and testing. We again
went through all procedures to confirm the consistency of our
results and we obtained similar results as shown in Supplementary
Fig. 3, Supplementary Table 5, and Supplementary Table. 6.

DISCUSSION
This study presented a framework to recalibrate conventional
deep learning model training process and obtained models
capable of detecting radiological findings on CXR photographs.
We first demonstrated that the conventional detection algorithms
trained on the digital CXRs did not perform well on CXR
photographs due to the discordance between images and
photographs. We also showed that, from a transfer learning
perspective, the performance of the model fine-tuned on a limited
number of CXR photographs was not good enough to recover the
performance losses. Instead of retraining a model on a large
corpus of CXR photographs, we presented a method to recalibrate
the models using a small number of photographs from publicly
accessible CXR datasets, which saved time from collecting huge

number of data for fine-tuning. Finally, we conducted four
experiments and showed that the performance losses caused by
shifting targets from the original images to photographs could be
recovered by the proposed recalibration method.
The main goal of this study is to solve the problem of domain

shift in CXR interpretation. Previous research has shown that
machine learning systems are vulnerable to adversarial examples
generated by smartphone cameras21. With different noise,
photographs generated from the same image source were
classified into incorrect categories. Similarly, our study shows that
the uncalibrated model failed to overcome the difference
between digital CXRs and CXR photographs. A feasible solution
to this obstacle is using transfer learning strategy. A model trained
on digital CXRs can be fine-tuned using CXR photographs in order
to solve the problem of domain shift. However, we demonstrated
that the recalibrated model required only 10% of photographs
(n= 175) but performed better than the transferred model.
Moreover, the proposed recalibration process does not rely on
any specific deep learning architecture and thus is applicable to
various models. We suggest that the recalibration method can
serve as an alternative to transfer learning for the model building
when dealing with domain shift problems.
A challenge for recent deep learning advances in radiology is

generalizability22. Some algorithms with high accuracy, as
reported in publications, struggle to translate their success in
the real world. A study also demonstrated the reduction in model
performance when training and testing were done on different
CXR databases, MIMIC-CXR and CheXpert23. To ascertain general-
izability of our methods, we employed a second large CXR dataset
to conduct external validation and experiments with different
users and devices. Across these experiments, the performance of
the recalibrated model was stably better than the uncalibrated
model and close to the comparison reference. Besides, the
significantly better ICC of the recalibrated model demonstrated its
robustness despite various noise distributions. Finally, we per-
formed a cross-database validation by swapping the training and
testing sets of MIMIC-CXR and CheXpert and showed that results
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Fig. 2 Radiographic detection performance evaluated by AUROCs for six labels including cardiomegaly, edema, consolidation,
atelectasis, pneumothorax, and pleural effusion, using different approaches. a Internal validation: the comparison for the models tested on
MIMIC CXRs and the photographic copies (Photo-MMC). b External validation: the comparison for the models tested on CheXpert CXRs and the
photographic copies (Photo-CXP). c End-user scenario: the comparison for the models tested on photographs taken by medical residents
(Photo-MED). In these figures, blue lines show the comparison reference performance of the models tested on original CXRs. Among the three
experiments, except for the baseline model, the proposed model, Model-RECA, outperformed the other models. (PTX: Pneumothorax; PE:
Pleural effusion; Cons.: Consolidation; Model-ORIG: Model trained on MIMIC-CXR; Model-RECA: Recalibrated model trained on MIMIC-CXR;
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were consistent with the analog experiment. These experiments
suggest that our recalibrated model has generalizability to
different hospitals, users, and devices and can provide a
foundation to build a smartphone application to assist clinicians
with CXR interpretation anytime, anywhere.
Although a previous work24 showed the possibility of directly

shifting the models from digital CXRs to CXR photographs, the
photographs used to test the model were limited to a small
number and certain categories. In our experiments, similar and
minor performance loss can only be observed when we internally
validated the uncalibrated model with five specific categories (i.e.,
cardiomegaly, edema, consolidation, atelectasis, and pleural
effusion). Otherwise, the uncalibrated model lost its accuracy
when tested on an external dataset or more categories of
radiological findings.
Phillips and colleagues have also built a CXR photograph

dataset25, which contains CXR photographs taken by a single
physician but using different techniques. Although both studies
look at photographs of CXRs, our study focuses on recalibrating
the algorithms on images taken by different users and different
cameras. The noise generation and non-trivial image transforma-
tions of the photographs are greatly affected by camera hardware
(e.g., the sensor’s resolution and the construction of the lens) and
software (e.g., auto-adjustment of ISO and white balances).
Moreover, the photographs taken by a single experienced user
could greatly differ from those taken by a less experienced user.
Therefore, we built our validation sets by capturing the images
using several devices and taken by several users. As shown by our
results, the uncalibrated model had greater loss of its accuracy
while the recalibrated model performed well when tested on
different data sources, users, and devices.
The primary use case envisioned for the smartphone-based

algorithm is for assistance with interpretation of a CXR (digital
image or plain film) in an acute care facility with a legacy clinical
information system. Currently, a messaging application such as

WhatsApp is typically employed to take a photo of either the
digital image or the plain film and send it to a colleague for a wet
read. Is the CXR suggestive of pneumonia? Is there pulmonary
edema? The use of the smartphone-based algorithm is not
intended for the detection of lung nodules for cancer screening
nor for quality assurance of radiologists given that these two tasks
require high-resolution images. Despite applications limited to
acute care, the software can still help address radiologist shortage
in low-resource countries. For example, there are only three
radiologists in Botswana for two million people26. However, in
countries like Botswana, CXR films are still printed instead of
digitalized. When radiology consultation is required in remote
areas, clinicians send printed films to the capital and receive the
reading days, if not weeks later. Applying this smartphone-based
application can help to shorten the turnaround time and provide
immediate assistance to local clinicians.
Lastly, the model performance should be carefully assessed in

clinical scenarios. We used AUROCs to evaluate the discrimination
of the models. However, clinicians may care more about precision,
or positive predictive value, and recall, or sensitivity. The
consequence of missing some CXR finding (false negative) must
be balanced with the harm of overcalling it (false positive). For
example, if clinicians would like to use the algorithm to screen for
pneumonia, then the model with the best recall is preferred over
one with the best discrimination. However, if the intent is to help
filter referrals from rural health centers and decongest strained
tertiary care facilities in the capital, then precision is prioritised
over recall.
There are a number of limitations to this work. First, both digital

CXR databases used in this study were obtained from patients in
the US. Ideally, the model should be recalibrated using photo-
graphs obtained from the local population. The model will be
used, particularly as the common radiographic findings in such a
population will likely differ from those in a US population. Second,
the model performance we report is tied to the accuracy and
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consistency of the CXR labels on MIMIC-CXR and CheXpert. For
example, the discrimination between “consolidation,” “pneumo-
nia,” and “opacity” may not be the same across different datasets
and will interfere with the recalibration process. This issue can be
addressed by harmonizing labels and annotations across the CXR
datasets before the recalibration. Finally, we did not compare the
re-calibration of the algorithm with reader re-calibration when
interpreting the high-resolution DICOM image and the low-
resolution photo of the same CXR on a smartphone. In all the
experiments, the interpretation of the high-resolution DICOM
image was used as the gold standard. Neither a human or an
algorithm can compensate for a significant loss of information
with a reduction in the image resolution.
In summary, we presented a method to recalibrate deep

learning models built on high-resolution digital images to detect
radiological findings on smartphone-captured CXR photographs.
The recalibrated model achieves similar performance as the
original model, and its performance is not significantly affected by
variation in devices and operators.

METHODS
Overview
Figure 1 illustrates the proposed method. We first collected CXRs from two
databases and created the CXR photograph datasets by taking smartphone
photographs of digital CXR. Instead of taking a large number of
photographs, we built a series of augmentation functions to augment
the training datasets to be photographic-like CXRs. Hyperparameters of
augmentation functions were tuned by comparing the similarity between
the augmented results and 175 real photographs. The final augmented
CXR photographs were used to train the recalibrated model (Model-RECA),
as shown in Fig. 1a. Three other models (Model-ORIG, Model-TRNS, and
Model-PHOT) were constructed for comparison. Finally, as shown in Fig. 1b,
the models were tested on four derivative CXR photograph datasets

(Photo-MMC, Photo-CXP, Photo-MED, and Photo-DEV) corresponding to four
experiments (internal validation, external validation, end-user scenario, and
device-variance test. The performance metrics and activation maps for 14
labels representing radiological findings were used to evaluate model
performance.

Data collection and curation
We used frontal-view CXR images from MIMIC-CXR and CheXpert
databases18,19. MIMIC-CXR contains data from 64,588 patients from the
Beth Israel Deaconess Medical Center Emergency Department collected
between 2011 and 2016. MIMIC-CXR database v2.0.0 has been de-
identified. The institutional review boards of Massachusetts Institute of
Technology (No. 0403000206) and Beth Israel Deaconess Medical Center
(2001-P-001699/14) both approved the creation of the database for
research. Requirement for informed consent was waived because the study
did not impact clinical care and all protected health information was
removed. A total of 14 labels of radiological findings, as listed in Table 2,
were extracted from the radiology reports using the CheXpert and NegBio
algorithms18,27. Twenty-two images, simultaneously labeled as ‘no finding’
and positive for one of the 14 labels, were excluded in the following
analyses. A total of 250,022 frontal-view CXR images were randomly
separated into training (n= 248,263), and testing (n= 1759) sets.
CheXpert is a publicly available database collected from Stanford

Hospital. The database includes 224,316 CXRs from 65,240 patients. Each
CXR was labeled with the presence or absence of 14 pulmonary
radiological findings. A total of 191,229 frontal-view CXR images were
used and were randomly separated into training (n= 189,892), and testing
(n= 1337) sets. The ratio of the size of the training and testing data is the
same (1000:7) for both datasets. Another 202 frontal-view CXR images
annotated by three board-certified radiologists and originally designed as
a validation set, were included to examine the device variation.
Table 2 summarizes the distribution of the radiological findings in the

training and test sets of MIMIC-CXR and CheXpert. Prior to the analysis, all
images were normalized by histogram equalization.
To create the CXR photograph datasets, we selected the current

generation of smartphones with different camera specifications (see
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Fig. 4 Results of the device-variation experiment, in which the same set of 202 CheXpert CXRs were copied into photographs by ten
different device settings. The box plots for the uncalibrated model (Model-ORIG) and recalibrated model (Model-RECA) show the median and
interquartile range of AUROCs. In each box, the central line indicates the median, and the edges of the box indicate the 25th and 75th
percentiles. Three labels “fracture,” “lung disease,” and “pleural other” were excluded in the plots because the numbers of cases are less than
1%. The intraclass correlation coefficient (ICC) score for the Model-ORIG is [0.39, 0.77] (95% confidence interval) and the ICC for the Model-RECA
is [0.85, 0.93]. The p-value between these two ICCs is smaller than 0.0001, which indicates that Model-RECA provides more reliable radiographic
detection results.
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Supplementary Table 1). All photographs were taken under random
angles, ambiance factors, and noise disturbance. The alignment of each
photograph was automatically adjusted with the Microsoft Office Lens App
(Microsoft Corp.) to simulate instructions to users for obtaining the best
possible image. We reduced the resolution of the photographs to 320 ×
320 pixels after they were captured. Four CXR photograph datasets were
created.

(1) Photo-MMC: Photographs of the CXRs in MIMIC-CXR were captured
by three participants using eight different smartphones. The images

were displayed on eight different computer monitors. The CXR
photographs were taken at different times, locations, and using
various lighting sources. A total of 1759 photographs were included
in the MIMIC-CXR testing set.

(2) Photo-CXP: Using the same settings as those to create Photo-MMC,
a total of 1337 photographs were taken from the CheXpert
testing set.

(3) Photo-MED: 1337 photographs in the CheXpert testing set were
separated into nine subsets. Nine medical residents were recruited
to take photos of each subset by using their own smartphones
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Fig. 5 An example of the visualization of the diagnostic focus of two models. a An example CXR is diagnosed as consolidation from the
radiology report. The red arrow indicates the abnormal location. (b) and (c) show the diagnostic focus of the recalibrated model (Model-RECA)
and the uncalibrated model (Model-ORIG) tested on the original CXR, respectively. (e) and (f) show the diagnostic focus of the Model-RECA and
the Model-ORIG tested on the corresponding CXR photograph, respectively. The colors from blue to red map the strengths of the contribution
of each image location from low to high for predicting consolidation.

Table 2. Numbers of cases for 14 labels in MIMIC-CXR and CheXpert datasets.

MIMIC-CXR CheXpert

Training Testing Training Testing

Total 248,263 1759 189,892 1337

No finding 82,662 33.3% 649 36.9% 16,800 8.85% 200 14.96%

Enlarged cardiomediastinum 7866 3.2% 49 2.8% 9132 4.81% 160 11.97%

Cardiomegaly 48,893 19.7% 356 20.2% 23,273 12.26% 178 13.31%

Airspace opacity 55,648 22.4% 369 21.0% 93,744 49.37% 584 43.68%

Lung lesion 7003 2.8% 55 3.1% 6996 3.68% 45 3.37%

Edema 29,389 11.8% 171 9.7% 49,408 26.02% 309 23.11%

Consolidation 11,732 4.7% 81 4.6% 12,933 6.81% 82 6.13%

Pneumonia 18,325 7.4% 109 6.2% 4653 2.45% 30 2.24%

Atelectasis 49,627 20.0% 333 18.9% 29,526 15.55% 269 20.12%

Pneumothorax 11,610 4.7% 64 3.6% 17,633 9.29% 67 5.01%

Pleural effusion 58,727 23.7% 377 21.4% 76,580 40.33% 383 28.65%

Pleural (other) 2135 0.9% 31 1.8% 2497 1.31% 9 0.67%

Fracture 5016 2.0% 28 1.6% 7391 3.89% 45 3.37%

Support devices 74,247 29.9% 451 25.6% 106,628 56.15% 641 47.94%
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and monitors. They were instructed to “take photos as if you want
to send them to a radiologist for interpretation.” No other
instruction or quality requirement was given.

(4) Photo-DEV: To examine the effect of the make of the computer
monitor and the smartphone, 202 photographs of the CheXpert
validation dataset were repeatedly taken by a single physician ten
times. For the first nine subsets, nine different device settings
were used under the same lighting condition and location. The
last subset was taken with a brighter lighting condition. This
dataset consists of 2020 photographs in total. Supplementary Fig.
1a shows examples of CXR photographs taken by different device
settings.

Data augmentation
We augmented the training datasets by generating simulated CXR
photographs with the hyperparameters determined by photographs for
recalibration. Eight common types of noise were embedded in the
functions: (1) Gaussian noise, (2) saturation change, (3) overexposure, (4)
contrast change, (5) motion blur, (6) moiré pattern, (7) Poisson noise and
(8) noise-induced by image compression28 (see Supplementary Fig. 2). We
used the imgaug 0.4.0 library for Python 3.7.0 to generate noise (1)–(5), (7),
and (8)29. The moiré pattern was simulated using the Radon and inverse
Radon transform30,31 from the scikit image library v0.17.dev032. These
noise simulation functions were aligned in their occurrence order on the
optical path, starting from the computer monitor. An example photograph
produced by augmentation functions is shown in Supplementary Fig. 1b.
The augmented photograph shows the effects of noise patterns,
overexposure, and contrast enhancement in the CXR photograph.

Hyperparameter optimization
Ten hyperparameters were optimized in the augmentation function with
the range: (1) the mean (range: 5–20) and (2) the variance (range: 4–12) of
Gaussian noise, (3) the possibility of saturation change (range: 0.5–0.8), (4)
the white/yellowish ratio of saturation changes (range: 0.6–0.8), (5) the
intensity mean (range: 1–1.4) and (6) the intensity variance (range: 0.2–0.4)
of overexposure, (7) the intensity of contrast correction (range: 1.6–2.2), (8)
the probability of motion blur (range: 0.2–0.5) (9) the probability of moiré
pattern (range: 0.3–0.9) and (10) the lambda of Poisson noise (range: 2–10).
Motion intensity was fixed to 5, and the compression rate was set to
30–70%.
A similarity comparison between the CXR photographs and the

augmented photographs was performed to determine the value of each
hyperparameter in the augmentation functions. The similarity was
calculated by using the complex wavelet structural similarity method33

and the Bhattacharyya distance of image histogram. We performed
hyperparameter optimization using a grid search of reasonable values.
10% of the photographs from Photo-MMC were partitioned for tuning the
hyperparameters and were excluded from the performance evaluation.
Three different parameter selection approaches were adopted to

determine the value of each hyperparameter and evaluate their
effectiveness based on the performance of the models. The methods
are: (1) randomly selecting hyperparameters from the chosen range. (2)
Selected by an author based on his subjective perception of each
hyperparameter and (3) similarity comparison. The comparison results are
shown in Supplementary Table 7.

Model construction
Deep learning models were built for detecting radiological findings. The
training and testing were performed on the Multiple-GPU Google
platform. Tensorflow 2.0 and Keras 2.3 were used for model training. A
121-layer Densely Connected Convolutional Network (DenseNet-121)34

with max-pooling was used as the comparison reference model
architecture, which was also used in the previous studies7,8,11,18,35. The
consistent results of the comparison reference model can also be found
in recent studies using the same model structure (DenseNet-121) and
databases (MIMIC-CXR and CheXpert)23,35. The input image size was 320
by 320 because the previous study has demonstrated that performance
did not increase with higher resolution CXR images and the use of higher
resolution images requires more computational cost36. The initial
weights of the network were randomly initialized. The final fully
connected layer contained 14 outputs corresponding to the 14 target
labels. Binary cross entropy was chosen as the loss function and the

Adam optimizers were applied in the training process with parameters:
learning rate = 0.001, beta1= 0.9, and beta2= 0.99937. As shown in Fig.
1a, four models were constructed: The comparison reference model,
Model-ORIG, was trained using the original MIMIC-CXR images. The
recalibrated model, Model-RECA, was trained using the augmented CXR
photographs. The model Model-TRNS was acquired by using the Photo-
MMC dataset (n= 1,759) to fine-tune the Model-ORIG. Finally, the
photograph-based model, Model-PHOT, was directly trained on the real
photographs in Photo-MMC (n= 1759).
We trained the Model-ORIG and Model-RECA using mini-batches of size

32 and five epochs. The models converged after five epochs. We trained
the Model-TRNS and Model-PHOT using 10 and 50 epochs, respectively, and
after that the model was converged. For the Model-ORIG, the training
dataset was augmented by a random transformation (rotating ±7 degrees,
scaling ±2%, and shearing ±5 pixels) twice38. For the Model-RECA, we
augmented the training dataset using our augmentation functions with
two sets of hyperparameters, which were determined by complex wavelet
structural similarity method33 and the Bhattacharyya distance of image
histogram, respectively. The total numbers of training data were the same
for Model-ORIG and Model-RECA (n= 496,570).

Experiment design
Figure 1b shows that the four models (Model-ORIG, Model-TRNS, Model-
PHOT, and Model-RECA) described above were tested on four CXR
photograph datasets (Photo-MMC, Photo-CXP, Photo-MED, and Photo-DEV)
separately, which were constructed for the purpose below:

(1) Internal validation
The Model-ORIG and Model-RECA were tested on the original

MIMIC-CXR testing set and Photo-MMC. The Model-TRNS and
Model-PHOT were excluded in this experiment because they were
trained using Photo-MMC.

(2) External validation
CheXpert testing dataset and Photo-CXP were used as external

datasets to test the performance of four models.
(3) End-user scenario

Four models were tested on the Photo-MED to investigate the
model performance when applied to real-world healthcare
scenarios.

(4) Device-variance test

To investigate whether the model performance is device-dependent,
Photo-DEV was used to test the models.

Performance evaluation and statistical analysis
We calculated one-versus-all AUROC, sensitivity, specificity, F1-score, and
binary classification accuracy in each experiment to evaluate model
performance. In the device-variance test, the intraclass correlation
coefficient (ICC) was used to evaluate the intra-rater reliability (i.e., the
stability of label production in our test) of both models. We used a “two-
way mix effect,” “single measurement,” and “absolute agreement”model in
R to estimate the final value32. Bootstrapping was used to estimate the
95% confidence interval and perform t statistics. Finally, we used a
nonparametric approach to estimate the p-value. We bootstrapped the
testing data 1000 times to obtain the AUROCs and performed the Welch’s
two sample t-test to calculate the p-value.

Model visualization
Finally, we employed the Grad-CAM20 to obtain visual explanations for
each label of our CNN-based models. The heatmaps produced by Grad-
CAM can be used to visualize the diagnostic focus of the working
algorithm and investigate whether the algorithms used the same visual
pattern to detect radiological findings as what radiologists have used.

Cross-database validation
We swapped the roles of MIMIC-CXR and CheXpert datasets for training
and testing and then went through all procedures again. The parameters
used in the CheXpert-based model construction were the same as those in
MIMIC-based model construction. As a result, three additional models
were constructed. The baseline model, Model-ORIG, was trained by the
original CheXpert CXR images. The recalibrated model, Model-RECA, was
trained by the augmented CXR photographs. The model Model-TRNS was

P.-C. Kuo et al.

8

npj Digital Medicine (2021)    25 Published in partnership with Seoul National University Bundang Hospital



acquired by using the Photo-CXP dataset (n= 1337) to fine-tune the
Model-ORIG. The photograph-based model, Model-PHOT, was trained on
the real photographs in Photo-CXP (n= 1337). These four models were
tested on two CXR photograph datasets (Photo-CXP and Photo-MMC), and
one-versus-all AUROC, sensitivity, specificity, F1-score, and binary
classification accuracy were computed for each label.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.

DATA AVAILABILITY
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physionet.org/content/cxr-phone/1.0.0/).
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