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ABSTRACT Urban streams are susceptible to stormwater and sewage inputs that
can impact their ecological health and water quality. Microbial communities in
streams play important functional roles, and their composition and metabolic poten-
tial can help assess ecological state and water quality. Although these environments
are highly heterogenous, little is known about the influence of isolated perturba-
tions, such as those resulting from rain events on urban stream microbiota. Here, we
examined the microbial community composition and diversity in an urban stream
during dry and wet weather conditions with both 16S rRNA gene sequencing across
multiple years and shotgun metagenomics to more deeply analyze a single storm
flow event. Metagenomics was used to assess population-level dynamics as well as
shifts in the microbial community taxonomic profile and functional potential before
and after a substantial rainfall. The results demonstrated general trends present in
the stream under storm flow versus base flow conditions and also highlighted the
influence of increased effluent flow following rain in shifting the stream microbial
community from abundant freshwater taxa to those more associated with urban/an-
thropogenic settings. Shifts in the taxonomic composition were also linked to
changes in functional gene content, particularly for transmembrane transport and
organic substance biosynthesis. We also observed an increase in relative abundance
of genes encoding degradation of organic pollutants and antibiotic resistance after
rain. Overall, this study highlighted some differences in the microbial community of
an urban stream under storm flow conditions and showed the impact of a storm
flow event on the microbiome from an environmental and public health perspective.

IMPORTANCE Urban streams in various parts of the world are facing increased an-
thropogenic pressure on their water quality, and storm flow events represent one
such source of complex physical, chemical, and biological perturbations. Microorgan-
isms are important components of these streams from both ecological and public
health perspectives. Analysis of the effect of perturbations on the stream microbial
community can help improve current knowledge on the impact such chronic distur-
bances can have on these water resources. This study examines microbial commu-
nity dynamics during rain-induced storm flow conditions in an urban stream of the
Chicago Area Waterway System. Additionally, using shotgun metagenomics we iden-
tified significant shifts in the microbial community composition and functional gene
content following a high-rainfall event, with potential environment and public
health implications. Previous work in this area has focused on specific genes/organ-
isms or has not assessed immediate storm flow impact.

KEYWORDS metagenomics, microbial communities, storm flow, urban streams

Streams and rivers are important freshwater resources, used for recreation, agricul-
ture, domestic water sources, and industrial purposes. By storing, processing, and

transporting terrestrially derived nutrients and organic matter, rivers play an important
ecological role in linking biogeochemical cycles between terrestrial and aquatic eco-
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systems (1). Over the last century, many streams and rivers have witnessed rapid
urbanization and anthropogenic development of their drainage basins, which has
exposed them to frequent external inputs in the form of wastewater treatment plant
(WWTP) effluent, industrial discharge, and sewer/stormwater overflows. These inputs
often impact stream hydrological, physicochemical, and biological characteristics (2).
For streams and rivers that serve as wastewater and/or stormwater outfall sites,
rain-induced storm flow events are especially influential, as they often lead to an
increased influx of WWTP effluent and unregulated waste via combined sewer over-
flows (CSOs) (3, 4). These perturbations bring in nutrients, a variety of microorganisms,
including pathogens, and chemical pollutants such as steroid hormones that impact
water quality, biodiversity, and ecosystem health (2, 3, 5, 6).

Because urban aquatic streams are typically highly variable systems that are regu-
larly subject to anthropogenic inputs, it is unclear how much isolated perturbations
such as rainfall and associated increases in storm flow might influence the water
column microbial community, even in the short-term. Studies investigating urban river
microbiota using genetic markers for fecal bacteria or 16S rRNA gene-based microbial
community surveys have shown the presence of human fecal contamination, “urban
signature” bacteria, and changes in community composition in streams and rivers
impacted by WWTP effluent, stormwater, and CSOs (7–11). Moreover, others have
documented the possible influx of antibiotic-resistant bacteria and pathogens from
WWTP effluent (12, 13) and stormwater events (6, 14) into urban environments, further
signifying the importance of evaluating the persistence of these organisms and their
impact on the riverine microbiome from a public health perspective. While these
studies provide valuable information about the effects of storm flow events on urban
stream microbial content, they are limited to specific taxonomic and pollutant marker
genes. Recent whole-genome shotgun (WGS) metagenomics-based approaches have
explored community composition and functional dynamics in urban-impacted streams
(15, 16), although a direct effect of storm flow on microbial dynamics remains less
explored. A robust evaluation of the impacts of such isolated and short-term pertur-
bations is critical for making predictions about the public health and possible longer-
term ecological implications.

In this study, we used both 16S rRNA gene amplicon and shotgun metagenomics to
analyze the water column microbial community during base flow and storm flow
conditions in the North Shore Channel (NSC) stream, a section of the highly urbanized
Chicago Area Waterway System (CAWS) (see Fig. S1 in the supplemental material). We
focused on a site downstream of a WWTP and numerous CSO outflow points using 16S
rRNA gene amplicon sequencing of samples from both base flow and storm flow over
the course of multiple seasons and years. Additionally, samples obtained immediately
before and shortly (�24 h) after a single rain event at the same site provided an
opportunity for a deep analysis of short-term variability in the taxonomic and functional
composition of the water column microbiome using WGS metagenomics. Coupled with
the 16S rRNA data from multiple samples, we were able to link some of these changes
in the stream microbial taxonomic and functional profiles to storm flow conditions.
Although our deep metagenomics-based analysis is centered around a single event,
our findings provide a window into the variability and short-term changes in an urban
freshwater system and set the groundwork for making predictions about possible
ecosystem-level and public-health-related impacts of rainfall events on these systems.
Overall, our results show that rain-associated WWTP effluent flow and perhaps CSOs
impact the stream microbiome composition and functional potential, with the intro-
duction of exogenous organisms to the system being a significant driver of the
observed change.

RESULTS AND DISCUSSION
Impact of rainfall on NSC microbial community composition. Rainfall can impact

urban waterways by increasing effluent flow from WWTPs or causing combined sewer
overflow events (CSOs) at outflow points along streams (4). The NSC site that we
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investigated has a WWTP (O’Brien Water Reclamation Plant) and several CSO outfall
sites within a few kilometers upstream (Fig. S1) and often experiences increased flow
from both following rainfall, including the two rain events reported in this study (see
Fig. S2 in the supplemental material). Sequences from 16S rRNA gene amplicons at five
distinct times between 2013 and 2015 representing both summer and fall and stream
base flow (dry weather; three samples) and storm flow (�24 h after rain; two samples)
(with additional details in Table S1 in the supplemental material) revealed both a
temporal and rainfall-associated clustering of the samples at the operational taxonomic
unit (OTU) level (principal-coordinate analysis [PCoA], Bray-Curtis metric) (Fig. 1A). In
particular, the separate clustering of storm flow and base flow samples along the
principal axis 2 highlights the strong influence of rain on the microbial community
composition, regardless of time/year sampled. Such changes might result from either
a direct influx of allochthonous microbes or a shift in the resident microbial community
in response to altered chemical conditions following rain, although none of the
measured physicochemical parameters showed a statistically significant difference
between storm flow and base flow conditions (P � 0.05, Welch’s t test [Table S1]). In
addition to shifts in community composition, microbial diversity based on OTU richness
and Good’s coverage was slightly higher in the storm flow samples than the base flow
samples (see Table S2 in the supplemental material), although the differences were not
significant (P � 0.05, Welch’s t test).

To analyze shifts in the microbial community across all storm flow versus base flow
samples, OTUs were clustered at various hierarchical taxonomic levels. There was a
difference in genus-based community compositions between the storm flow and base
flow samples as per analysis of similarity (ANOSIM; Bray-Curtis metric, R2 � 0.5, P � 0.1).
Genus-level comparisons of microbial community composition revealed a significantly
lower abundance of unknown genera within groups Pelagibacteraceae, ACK-M1, and
Actinomycetales and a significantly higher abundance of Arcobacter and genus C39
within the family Rhodocyclaceae during storm flow compared to base flow (P � 0.05,
Welch’s t test) (Fig. 1B). The ACK-M1 family of Actinobacteria and Pelagibacteraceae
includes common freshwater organisms that do not favor nutrient-rich conditions (17,
18), while genera within Rhodocyclaceae are Betaproteobacteria, known to take advan-
tage of nutrient/substrate-rich conditions, likely due to higher growth rates (17).
Rhodocyclaceae has previously been associated with urban streams and was reported
to be abundant in impacted Milwaukee waterways (19). Similarly, Arcobacter has often
been associated with sewage and WWTP effluent (8, 9, 20). The increase in the relative
abundance of these organisms in the NSC following rainfall could be due to point
source inputs from the increased effluent flow and/or CSOs and was analyzed in more
detail with shotgun metagenomics (described below).

Overall, the rain-associated changes in the microbial community composition ap-
peared to be directly related to increased effluent; the after-rain community OTUs were
more similar to those in the WWTP effluent than to those in the before-rain community
(Fig. 1A). This could be linked to a few taxa, such as unknown genera within families
Procabacteriaceae and Legionellacaea as well as the genus Arcobacter, which were
abundant in the effluent and increased in the stream after rain (Fig. 1B).

Metagenomics-based microbial community composition before and after rain
in North Shore Channel. The overall trends from the 16S rRNA gene-based analysis
across seasons and years warranted a whole-community metagenomic analysis of more
temporally resolved samples clustered around a large rainfall event. Here, we report our
observations of a single, isolated event, acknowledging that this might not be repre-
sentative of every rainfall event in this dynamic urban system. Instead, our results allow
us to make predictions and better understand how urban microbial communities might
be influenced by system-wide pertubations. Metagenomes with 4.06 to 16.21 million
reads per library were obtained (see Table S3 in the supplemental material) from the
same NSC site discussed above (Fig. S1) before and �24 h after a heavy rainfall that
followed a dry period in October 2013 (Fig. S2). These were used to comprehensively
identify short-term changes in the microbial taxonomic profile after the rain. The rain
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FIG 1 (A) Principal-coordinate analysis (PCoA; Bray-Curtis metric) of OTU-based microbial community diversity for North
Shore Channel (NSC) water and WWTP effluent. Samples were obtained during either base flow or storm flow conditions
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resulted in increased WWTP effluent flow into the stream for ~24 h following precip-
itation, from �200 million gal per day (MGD) to �300 MGD, and several CSO events at
at least three outfall locations upstream of our sampled site within 10 h of rain
(http://www.mwrd.org/irj/portal/anonymous/overview) (Fig. S2). Community coverage
estimates using read redundancy (21) showed that the before-rain metagenomes
captured between 50 and 60% of the community and the after-rain libraries captured
approximately 40% (see Fig. S3 in the supplemental material), indicating only a nominal
increase in diversity after rainfall; as described above, a small increase in community
OTU richness after rain was also observed with the 16S rRNA gene amplicon data
(Table S2). Furthermore, the concentrations of microbial cells in the before- and
after-rain samples were determined by DAPI (4=,6-diamidino-2-phenylindole) counts
and found to be similar: 1.39 � 106 and 1.25 � 106 cells/ml, respectively. Previous
studies have reported conflicting responses of microbial community diversity to urban
inputs, with some showing an increase (19) and others a decrease (15, 22) relative to
less-impacted conditions/systems. This may be due to different base conditions (oper-
ationally defined here as dry weather for at least 72 h); the NSC is characterized by
significant urban effluent flow even in the absence of rain. While Lake Michigan
provides the primary freshwater input, about 70% of the annual flow through the CAWS
is contributed by the treated effluent discharge from WWTPs in the city (23) during
both base flow and storm flow conditions. Our results do not show a strong pattern of
change in microbial community diversity/richness during storm flow in NSC, perhaps
because of the variable nature of urban stream microbial communities or due to the
small size of this study. However, we hypothesize based on our results that individual
rain events might not significantly impact microbial diversity in this system.

Despite overall similarities in microbial diversity and cell counts, numerous taxo-
nomic differences were seen following rain, indicating that these changes likely reflect
actual changes in microbial populations. The microbial communities pre- and post-
rainfall determined both from 16S rRNA genes and by assigning taxa to assembled
metagenomic contigs showed overall concordance; however, we focused on the
assembled contigs for a high-resolution, population-level characterization of the com-
munity and to evaluate possible links between taxonomic and functional changes in
the microbiome (24). About ~67% of the large (�500-bp) contigs used by MyTaxa were
classifiable at the phylum level, ~35% at the genus level, and 24% at the species level.
At the phylum level (Proteobacteria divided into subphyla), several individual taxa
showed significantly different relative abundances after rain with large effect sizes
(Fig. 2A). Actinobacteria and Bacteroidetes significantly decreased in relative abundance
after rain, whereas Gammaproteobacteria, Betaproteobacteria, and Chlamydia signifi-
cantly increased (P � 0.05, t test, false-discovery rate corrected) (Fig. 2A). Similarity
percentage (SIMPER) analysis (25) revealed that Actinobacteria, Gammaproteobacteria,
and unclassified Proteobacteria contributed the most (35, 14, and 21%, respectively) to
the differences in community compositions between the before- and after-rain samples
at the phylum level. At the genus level, the decrease in relative abundance of innom-
inate (unclassified at genus level) Actinobacteria, “Candidatus Pelagibacter,” and Strep-
tomyces as well as the increase in relative abundance of Legionella and Rickettsia-
affiliated sequences after rain contributed to the major change (�50%) in community
composition (Fig. 2B). Francisella, Nitrospira, Chlamydia, and Pseudomonas were other
major genera that increased significantly (P � 0.05, t test, FDR corrected) in relative

FIG 1 Legend (Continued)
between 2013 and 2015 in the summer (July) and fall (October). Each NSC time point is represented on the PCoA by
biological duplicates, except for October 2013 storm flow and base flow samples, which also have sequencing duplicates
for one of their biosamples. (B) Heat map representing the relative abundance (percentage of total 16S rRNA gene
sequences) of dominant bacterial taxa classified until the lowest possible level (up to genus) for the NSC and effluent
samples. Taxa highlighted with a star represent bacterial groups with significantly different relative abundance (P � 0.05,
Welch’s t test) between the storm flow and base flow samples of NSC. Two biological replicates marked as A and B
represent each NSC time point, and the average value of these replicates per time point was used in Welch’s t test
between the two groups (storm flow and base flow).
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abundance in the after-rain microbiome. As was observed with 16S rRNA amplicons in
all samples (described above), the urban signature bacterium Arcobacter increased by
�50% in relative abundance following rain, although the increase was not statistically
significant (Fig. 2B). Legionella, Pseudomonas, and Arcobacter have all been previously
associated with effluent contamination of urban waterways (20), supporting the sig-
nificant role of increased effluent flow on the NSC microbiome. Increases in the relative
abundance of other taxa such as Francisella, Rickettsia, and Chlamydia that comprise
pathogenic species (26, 27) and are usually not abundant in aquatic environments
could be a result of microbial influx from the effluent and/or the CSOs upstream. The
decrease in the freshwater groups of Actinobacteria and Pelagibacteria after rain likely
reflects a dilution effect on base flow NSC waters from the increased effluent and CSO
flow. Several species, including Francisella tularensis, “Candidatus Nitrospira defluvii,”
Legionella longbeachae, and Enterococcus faecalis, were rare (�0.1% of the total se-
quences characterized by MyTaxa) in the before-rain microbiome but increased in
relative abundance after rain to �0.1% (Table S3). Most of these species are not
common freshwater bacteria and are indicative of contamination.

Population-level changes in response to rainfall in the North Shore Channel.
We followed population-level trends for abundant organisms that exhibited large
changes in their relative abundance after rain. Organisms most similar to Legionella
pneumophila increased 10-fold in relative abundance after rain and also comprised the
largest fraction of characterized species (11%) in the after-rain microbiome. Reads were
recruited to the longest contig assigned to L. pneumophila in the rain-associated
samples, with roughly equal similarities (about 90 to 100% nucleotide identity) from
each sample, suggesting the presence of the same population both before and after
rain that increased substantially after rain (see Fig. S4 in the supplemental material).
This was supported by similarities in the average amino acid identity (AAI) of predicted
protein-coding genes from L. pneumophila before and after rainfall contigs (60% and
63%, respectively) to the genome sequences of the environmental isolate L. pneumo-
phila strain LPE509 and the clinical isolate L. pneumophila subsp. pneumophila strain
Philadelphia 1. The AAI between genes attributed to L. pneumophila in the before- and
after-rain metagenomes was 83%. Although genome pairs for the same species typi-
cally exhibit higher AAIs (~90%) (28, 29), 83% still signifies close genetic relatedness and
not necessarily distinct populations. Overall, these results indicate that the before- and
after-rain Legionella isolates are members of the same species, but different from any
currently known, sequenced members of Legionella. The discordance between our
Legionella-like organisms and well-characterized L. pneumophila strains also makes it
unclear if the corresponding populations are pathogenic, although a few predicted
genes (1 and 3 for the before- and after-rain metagenomes, respectively) had high
identity matches (�90%) to known L. pneumophila virulence genes in the Virulence
Factor Database (http://www.mgc.ac.cn/VFs/). Organisms within Legionella have been
associated with artificial aquatic environments, such as water distribution systems and
cooling towers in buildings (30, 31), as well as WWTP effluent (20): thus their dramatic
post-rain surge is not surprising.

Another notable increase in relative abundance after rain (~16-fold) was attributed
to Francisella tularensis, an organism with known soil- and waterborne pathogenic
subspecies (27, 32). Using a similar approach to that described above, AAIs between
genes attributed to F. tularensis in before- and after-rain samples and a reference
genome of pathogenic subspecies F. tularensis subsp. tularensis SCHU S4 were 47% and
54%, respectively. Similar AAI values were observed between the metagenomic se-
quences and genomes of low-virulence subspecies of this organism. The AAI between
the before- and after-rain F. tularensis genes was 68%. Thus, sequences classified as
F. tularensis in our samples likely share the same taxonomic order Thiotrichales, but are
different species from the known F. tularensis and might represent different popula-
tions within the same genus in the before- and after-rain samples, although the low
number of sequences in the before-rain data set could bias AAI calculation.
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We also evaluated the population dynamics for species that dramatically dropped in
relative abundance after the rain. Actinobacterium SCGC AAA027-L06 is a member of
the ubiquitous freshwater Actinobacteria lineage acI-B (33), and the relative abundance
of contigs affiliated with this organism decreased dramatically (43-fold) after rain. Read
recruitment indicated similarity between the before- and after-rain populations, with
reads from each sample sharing ~90 to 100% nucleotide identity to the largest contig
of this organism, although fewer reads mapped to the contig from the after-rain
samples (see Fig. S5 in the supplemental material). As with the L. pneumophila popu-
lation, the 84% AAI between the before- and after-rain sequences indicates close
genetic relatedness between the two populations. Furthermore, the AAIs with respect
to the Actinobacterium SCGC AAA027-L06 draft genome were similar for the sequences
from the before- and after-rain microbial communities (81% and 83%, respectively),
indicating close genetic relatedness to this organism. Members of the acI-B lineage
have been detected in diverse freshwater habitats (19, 34–36) and tend to prefer
oligotrophic environments due to their small cell size and oligotrophic life strategies
(18, 37). Their decrease in relative abundance after rain likely reflects the reduced
influence of freshwater flow from Lake Michigan due to increased wastewater flow.

Overall functional gene content in before- and after-rain microbial communi-
ties. Functional gene profiles revealed taxon-driven shifts in the microbial community
functional potential after rain. Although many abundant Gene Ontology (GO) terms
related to housekeeping functions, such as nucleic acid and small molecule binding, did
not significantly change in relative abundance after rain (data not shown), we observed
an increase of �50% of functions within the broad terms of transporter activity and
carbohydrate metabolism after rain (Fig. 3A). Little is known about the selective
increase in transporter genes under various environmental conditions, although trans-
porters are the primary microbial mechanism for the uptake and subsequent assimi-
lation of nutrients and organic matter. Transporter gene expression has been shown to
change in response to organic carbon inputs (38) and a phytoplankton bloom (39) in
marine systems. In freshwater systems, transporters are important for cyanobacterial
phosphorus acquisition (40). More recently, amino acid and amine transporter genes
were among those found to be associated with various environmental conditions in
Polynucleobacter populations in the CAWS (41). Here, we identified transporter genes
that were more abundant following the observed rain event and were primarily related
to transmembrane and substrate-specific transporter activity (Fig. 3A).

Within the broad GO term of transporter activity, genes related to substrate-specific
transmembrane transporter activity, specifically organic acid and ion transmembrane
transporter activity, doubled in relative abundance after rain from an average of 0.06%
to an average of 0.12% (see Fig. S6 in the supplemental material). Genes encoding all
transmembrane transporters were primarily attributed to Actinobacteria (31% of the
identified sequences at phylum level) and unclassified Proteobacteria (22%) before rain,
whereas unclassified Proteobacteria (39%) and Gammaproteobacteria (16%) were the
major groups encoding transporters after rain (Fig. 3B). Gammaproteobacteria harbor-
ing transporter genes increased by 51% after rain, while Actinobacteria encoding these
genes exhibited more than 9-fold decrease, mirroring the shifts observed for the overall
taxonomic profiles for these groups (Fig. 2 and 3B). Genera contributing to the increase
in gammaproteobacterial sequences included Legionella, Francisella, and Pseudomonas,
exhibiting a pattern similar to the shifts in their relative abundance in the overall
microbial community. Furthermore, as with the overall microbial community, Actino-
bacterium SCGC AAA027-L06 (unclassified at genus level) contributed the largest
fraction of sequences containing transmembrane transporter activity genes within
Actinobacteria in the before-rain community. Interestingly, based on the functional
gene content of organisms with dominant shifts in their relative abundance, those
organisms that increased after rain had a higher proportion of their genes affiliated to
transporter functions compared to those that dropped in abundance after rain. For
instance, 3.7% and 6.8% of the L. pneumophila and F. tularensis genes, respectively,
were associated with transmembrane transport, whereas Actinobacterium SCGC
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AAA027-L06 and the genus Pelagibacter had �2%. Thus, the increase in transporter
functions following the rain appears to be directly associated with an increase in the
relative proportion of a subset of the organisms that harbor these functions rather than
an increase in the distribution of these genes across the community. Organisms with
transmembrane transporter genes, especially for organic substrates like organic acids,
may be more suited to take advantage of the heterogeneous environment resulting
from storm flow conditions.

Additional GOs showing differential abundances included genes related to photo-
synthesis, biosynthesis of organic compounds such as amines, vitamins, and pigments,
as well as the activity of enzyme groups oxidoreductase (acting on the CH-NH2 group
of donors) and ligase (forming phosphoric ester bonds) that were twice as abundant in
the before-rain microbiome (Fig. S6). Genes related to multiorganism processes such as
pathogenesis and conjugation were �50% more abundant after rain, while the before-
rain microbiome had �50% more functions related to the catabolic process, amine
metabolic process, and phosphate-containing compound metabolic process (Fig. 3A).
Should the trend of increased pathogenesis and conjugation genes commonly occur
with rainfall and persist in the system, it could pose a public health threat, particularly
if it promotes the spread of pathogenicity genes throughout the community. Thus, this
could be an important group of genes to investigate in future studies.

Further evidence that changes in community composition drove the overall changes
in the metabolic capacity came from genes that decreased in relative abundance after
rain, such as those encoding biosynthesis of organic substances, which mirrored the
overall shifts in taxa (Fig. 2); Actinobacteria (39% of the identified sequences at phylum
level) and unclassified Proteobacteria (31%) were the major taxa encoding organic
substance biosynthesis before rain and unclassified Proteobacteria (45%) and Gamma-
proteobacteria (13%) after rain. The short-term nature and lack of gene expression data
make it difficult to know about the viability and activity of these organisms, but
taxon-driven shifts in community functional potential were recently observed in an-
other river in response to sewage and terrestrial-derived organisms (15).

Biodegradation and antibiotic resistance gene abundance before and after
rain. In addition to the GO-based functional analysis, we examined how rainfall
impacted biodegradation and antibiotic resistance gene content. Predicted open read-
ing frames (ORFs) from both the before- and after-rain metagenomes were searched
against a compiled database of protein sequences of microbial enzymes involved in the
degradation of 12 different compounds associated with wastewater contamination,
stormwater runoff, and WWTP effluent input (Fig. 4A). We detected biodegradation
genes (BDGs) in both the before- and after-rain samples for 8 out of the 12 contami-
nants tested, but observed a significant increase (P � 0.05, t test) in the relative
abundance of genes involved in the degradation of nicotine, phenol, 1,4-
dichlorobenzene, and pentachlorophenol and a decrease (P � 0.05) in cholesterol-
degrading genes after rain (Fig. 4A). Additionally, the total relative abundance of all
BDGs was significantly higher in the after-rain sample (P � 0.05, t test). BDGs before rain
were primarily affiliated with unclassified Proteobacteria and Actinobacteria (35% and
30% of the identified sequences at phylum level, respectively), with the profile shifting
to unclassified Proteobacteria and Betaproteobacteria (49% and 19%, respectively) as the
dominant members of the community after rain, similar to the overall taxonomic shifts
described above. These results reflect the increase in effluent flow from the WWTP as
well as the suspected presence of these compounds in untreated wastewater and CSOs
(3, 42–47) (Fig. 4A).

FIG 3 Legend (Continued)
abundance (�50%) in one of the two groups (before versus after rain) compared to the other are shown.
GOs that had less than 100 gene counts (in situ abundance) across all the samples have been excluded
from the plot. Samples numbered 1 and 2 for each time point represent biological replicates. (B)
Taxonomic composition at the phylum level of genes from the rain event microbial communities
classified within the GO term “transmembrane transporter activity.” Relative abundances are a fraction of
total sequences identified at the phylum level.
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FIG 4 Relative abundance of (A) biodegradation genes (BDGs) and (B) antibiotic resistance genes (ARGs) in the before- and after-rain microbial
communities. Relative abundance of BDGs refers to gene count (in situ abundance) per million genes per library averaged for each sample for
their replicates (n � 2) (see Materials and Methods). For ARGs, relative abundance refers to read count per million reads per library averaged for
each sample for their replicates. BDGs and ARGs with significant differences in relative abundances between the two time points (P � 0.05, t test)
are highlighted with stars.
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Changes in the relative abundance of antibiotic resistance genes (ARGs) after rain
were evaluated using the Comprehensive Antibiotic Resistance Gene Database (CARD).
As only a few ORFs (~10 per library) could be classified as ARGs from both the time
points, we queried the unassembled paired-end reads against CARD. This resulted in
several hits for various ARG categories at both time points (0.04% and 0.07% of the total
number of reads for before- and after-rain samples, respectively) and revealed notable
increases in the relative abundance of several ARG classes after rain (Fig. 4B), including
significant increases in aminocoumarin and polymyxin resistance genes (P � 0.05,
t test). As with the BDGs, the total relative abundance for all ARGs pooled for each time
point was significantly higher in the after-rain sample (P � 0.05, t test). Increases in
ARGs with urban-impacted storm flow were recently observed elsewhere as well (14),
indicating that this could be a significant and underexplored effect of storm flow. Reads
with high matches to ARGs were queried against metagenomic contigs, revealing that
unclassified Proteobacteria and Firmicutes were the abundant ARG-carrying phyla (40%
and 23% of the identified sequences at the phylum level, respectively) in the before-
rain microbiome, whereas unclassified Proteobacteria (50%) and Gammaproteobacteria
(24%) were the dominant groups after the rain. This further supports the importance of
taxon-driven changes on gene content.

The results for both community composition and functional gene analysis provide
evidence for the significant influence of storm flow-related input on the microbial
community, particularly from increased WWTP effluent flow rates associated with heavy
rain. Overall, this study revealed a shift in microbial community composition following
rain from organisms frequently associated with freshwater systems toward organisms
associated with urban-impacted waters (9, 19, 20), as well as a shift in functional gene
content. The increased relative abundance (and possibly actual abundance) of BDGs
and ARGs along with the increase in genes associated with conjugation and patho-
genesis in the after rain microbiome highlight the environmental and public health
implications of storm flow in urban waterways. The extent to which these changes in
gene content are expressed metabolically and persist is unknown. Although the WGS
metagenomic analysis of a single rainfall event limits the scope of interpretations that
can be drawn, our results provide substantial insights into microbial community
dynamics in an urban stream during storm flow conditions, highlighting the need to
investigate the urban stream microbiome with longer temporal scales and systematic
sampling design to better predict the impact of rain-associated storm flow events.

MATERIALS AND METHODS
Site description and sample collection. The North Shore Channel (NSC) is a 12.3-km-long man-

made stream of the Chicago Area Waterway System that receives freshwater input from Lake Michigan
and effluent input from the O’Brien Water Reclamation Plant, a WWTP that serves over 1.3 million people
residing in a 365-km2 area (http://www.mwrd.org/irj/portal/anonymous/waterreclamation). Our study
site is approximately 1 km downstream of the WWTP outfall (Fig. S1). The NSC also has 48 CSOs along
its course, six of which are located within about 1 km upstream of WWTP, and two of which are located
within 1 km downstream of the WWTP. These release excess stormwater mixed with untreated sewage
into the river when the transport and storage capacity of the city’s sewage network is exceeded following
high rainfall (http://www.mwrd.org/irj/portal/anonymous/overview) (Fig. S1). Water from the selected
NSC site was sampled five times between 2013 and 2015 (0- to 1-m depth): three samplings represent
stream water during base flow (dry weather) conditions, and the other two represent storm flow (�24 h
after rainfall) conditions (details are in Table S1). We also sampled the WWTP effluent in October 2013
during base flow conditions. Additional sample metadata and water chemistry are given in Table S1.

Water was collected using a horizontal sampler (Wildco, Yulee, FL) and passed on-site in succession
through ~1.6-�m-pore-size glass fiber filters to remove larger particles (Whatman, Pittsburgh, PA), and
cells were collected on 0.22-�m-pore-size polycarbonate membrane filters (EMD Millipore, Billerica, MA).
WWTP effluent was collected from the WWTP outlet where the released effluent mixes with stream water.
About 10 liters of water was filtered in duplicate for each NSC sampled time point (for effluent, a single
~10-liter sample was obtained), and ~20 ml of the filtrate was transported back to the lab for chemical
analysis. Water temperature, pH, conductivity, and total dissolved solids were measured on-site using a
portable water quality meter (Hanna Instruments, Woonsocket, RI). Additional water chemistry analysis
is described in Table S1.

DNA extraction and sequencing. DNA was extracted from filters as described in reference 48.
Briefly, filters were incubated in lysis buffer (50 mM Tris-HCl, 40 mM EDTA, 0.75 M sucrose) containing
1 mg/ml lysozyme and 200 �g/ml RNase at 37°C for 30 min. Subsequently, the samples were incubated

Chaudhary et al.

July/August 2018 Volume 3 Issue 4 e00194-18 msphere.asm.org 12

http://www.mwrd.org/irj/portal/anonymous/waterreclamation
http://www.mwrd.org/irj/portal/anonymous/overview
msphere.asm.org


with 1% SDS and 10 mg/ml proteinase K at 55°C and rotated overnight. From the lysate, DNA was
extracted using phenol-chloroform, followed by ethanol precipitation and elution in Tris-EDTA (TE)
buffer.

Whole-genome shotgun (WGS) metagenomic sequencing was done on the Illumina HiSeq (v1) with
a paired-end format and a read length of 150 bp at the Michigan State University Research Technology
Support Facility. We obtained 2.82 and 3.18 Gbp of paired-end read data for the before- and after-rain
samples, respectively. Replicate filters were sequenced at the University of Illinois at the Chicago DNA
Services Facility (DNAS) on a single lane of the Illumina HiSeq platform with paired-end format and read
length of 100 bp, yielding 4.04 and 1.31 Gbp of paired-end read data for the before- and after-rain
libraries, respectively.

For 16S rRNA gene amplicon sequencing, 10 to 30 ng of DNA from each biological replicate (filter)
was amplified with the V1 to V3 primers 27F and 534R (49, 50). Amplicons were sequenced at the DNAS
on the Illumina MiSeq platform with the paired-end format and read length of 300 bp. Between 28,933
and 160,811 sequences per sample were obtained, with an average of 61,337 sequences per sample.

16S rRNA gene-based analysis of microbial community diversity. Paired-end bar-coded reads of
16S rRNA gene amplicons were obtained for all the time points sampled and quality filtered using
Trimmomatic (51), with a minimum average quality score of 20 across a 4-base sliding window and a
minimum read length of 100 bp (including primer) posttrimming. Trimmed, paired-end reads were
merged using Pear (52), but due to low yield of the merged reads, likely due to issues related to the
MiSeq V2 kit chemistry, further analysis was only performed on the trimmed forward reads. Reads were
analyzed using QIIME version 1.8.0 (53). Library statistics are summarized in Table S2. Chimeric sequences
were removed using identify_chimeric_seqs.py with the usearch61 denovo method and filter_fasta.py.
Filtered sequences were clustered into operational taxonomic units (OTUs) at a 97% identity level using
scripts pick_otus.py and pick_rep_set.py based on usearch61 denovo OTU picking. Representative OTUs
were assigned taxonomy based on the Greengenes reference database (May 2013 version) using
assign_taxonomy.py with uclust. OTUs occurring as singletons or with sequences from just one library
were excluded from analyses. Determination of community taxonomic composition and alpha diversity
was performed using summarize_taxa.py and alpha_diversity.py, respectively, with a random subsample
of 17,384 sequences per sample to avoid bias arising from variation in sequencing depth. Good’s
coverage for each library was estimated using alpha_diversity.py and OTUs that included singletons,
subsampled to an even depth of 18,289 sequences per library, the smallest library size.

Metagenomic sequence assembly and phylogenetic classification. Raw metagenomic sequences
were quality filtered using a Phred average per sliding window with a quality threshold (Q) of �20 and
not allowing any N values. Quality-filtered coupled reads for each metagenomic library were assembled
as described in reference 48. Coupled reads were first assembled into contigs with Velvet (54) and
SOAPdenovo2 (55) separately and input to Newbler 2.0 to obtain longer contigs with better N50 values
(56). Additional metagenomic library statistics are provided in Table S3. Gene calling was done with
MetaGeneMark (57). Due to uneven data yields from sequencing, we used assemblies from the first
sequencing run for each sample as the representative sequences for annotations and mapped the
coupled reads from both the replicate libraries to these contigs for each sample to calculate the contig
coverage in each library. The predicted protein-coding genes for each data set were used for phyloge-
netic classification of the corresponding contigs using MyTaxa (28) with a database of all sequenced
bacterial and archaeal genomes (http://enve-omics.ce.gatech.edu/data/mytaxa) using DIAMOND blastp
in the sensitive mode (58). Reads were mapped to contigs using blastn with cutoffs of �50% alignment
length, identity of �97%, and an E value of �10�10. Contig coverage (sum of lengths of reads mapping
to contig/contig length) was used as a proxy for in situ abundance in each library and calculated using
the BlastTab.seqdepth_nomedian.pl script from the Enveomics bioinformatics toolbox (59). The script
aai.rb from the same toolbox was used to calculate average amino acid identity (AAI) between any two
sets of protein-coding genes.

Analysis of functional gene content and antibiotic resistance genes. Predicted metagenomic
genes were searched against the Swiss-Prot database (60) using blastp and cutoffs of at least 40%
sequence identity, 70% coverage of the query sequence, and an E value of �10�10. The Swiss-Prot match
for the best hit for each query sequence was mapped to its corresponding Gene Ontology (GO) term (61),
followed by binning the characterized genes at various depths (distance of a GO term from the parent
node) of the GO database using the Semantics collection of scripts in the Enveomics toolbox (http://
enveomics.blogspot.com/2012/11/semantics.html). To evaluate the functional profile at a specific depth,
in situ abundance for these GO terms was calculated using gene coverage (described above), and relative
abundance for each GO term was obtained as a fraction of the total abundance of genes with identified
functions in that library. The taxonomic affiliation of genes classified within a specific GO term was
evaluated using MyTaxa, as described above.

To specifically evaluate the presence and abundance of genes involved in biodegradation of
select wastewater contaminants in the rain-associated metagenomes, we created a database of
protein sequences of enzymes related to degradation of select contaminants that are commonly
found in WWTP effluent and sewage: testosterone, ibuprofen, caffeine, nicotine, cholesterol, 1,4-
dichlorobenzene, methylnaphthalene, pentachlorophenol, phenol, N,N-diethyl-3-toluamide, tetra-
chloroethylene, and phthalate (3, 42–47). The enzymes were selected based on their role in the
degradation pathways for these compounds (62), as well as the sequence availability in NCBI. This
database is available from the corresponding author upon request. The predicted ORFs were
searched against this database using blastp, and the best hits were filtered at same thresholds used
for Swiss-Prot (described above). Coverage estimates were used for calculation of the in situ
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abundance for each BDG class and normalized for each library by dividing the abundance of each
BDG class by the total coverage of all predicted genes in that library and multiplying the result by
1 million to obtain gene count per million genes per library.

Antibiotic resistance genes in the rain-associated samples were identified by searching the predicted
ORFs as well as paired-end metagenomic reads against the Comprehensive Antibiotic Resistance Gene
Database (CARD) (63) using blastp and blastx and a threshold of at least 80% sequence identity and 80%
coverage of the query sequence (64, 65). Filtered reads for each library were binned into broad antibiotic
resistance categories using the Resistance Gene Categories index file provided on the CARD website
(http://arpcard.mcmaster.ca/), and the read counts for each category were normalized for the library size
as read count for ARG category per million reads per library.

Microbial abundance estimation using fluorescence microscopy. October 2013 NSC samples
were fixed with paraformaldehyde (1% final concentration) in triplicate and stored in 4°C. Samples were
then vortexed and collected on 25-mm black polycarbonate filters (0.2-�m-pore size) and stained with
5 �l of a 10-mg/ml DAPI (4=,6-diamidino-2-phenylindole) working solution diluted in 10� phosphate-
buffered saline (PBS). Microbial cells were enumerated (three slides from three replicate samples per time
point) with an epifluorescence microscope (Zeiss Axio Scope.A1).

Statistical analyses. Analysis of similarity (ANOSIM) and similarity percentage (SIMPER) analysis on
16S rRNA gene and metagenomic community composition data sets, respectively, were performed using
the R vegan package (66). The Statistical Analysis of Metagenomic Profiles (STAMP) software package was
used for two-tailed Student’s t tests or Welch’s t tests to evaluate differentially abundant taxonomic
groups among the 16S rRNA gene and metagenomic data sets (67) (multiple test correction, if applied,
was done using Storey’s false-discovery rate correction), and R was used for these tests to evaluate
differentially abundant physicochemical parameters, ARGs, and BDGs. Principal-coordinate analysis
(PCoA; Bray-Curtis metric) of OTUs (with singletons removed and the table subsampled to an even depth
per sample) was performed with the Phyloseq package in R (68).

Accession number(s). All of the sequence data in this study have been submitted to the Sequence
Read Archive at NCBI under accession no. SRP080963.
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