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Abstract

Existing models for assessing microbiome sequencing such as operational taxonomic units

(OTUs) can only test predictors’ effects on OTUs. There is limited work on how to estimate

the correlations between multiple OTUs and incorporate such relationship into models to

evaluate longitudinal OTU measures. We propose a novel approach to estimate OTU corre-

lations based on their taxonomic structure, and apply such correlation structure in General-

ized Estimating Equations (GEE) models to estimate both predictors’ effects and OTU

correlations. We develop a two-part Microbiome Taxonomic Longitudinal Correlation

(MTLC) model for multivariate zero-inflated OTU outcomes based on the GEE framework.

In addition, longitudinal and other types of repeated OTU measures are integrated in the

MTLC model. Extensive simulations have been conducted to evaluate the performance of

the MTLC method. Compared with the existing methods, the MTLC method shows robust

and consistent estimation, and improved statistical power for testing predictors’ effects.

Lastly we demonstrate our proposed method by implementing it into a real human micro-

biome study to evaluate the obesity on twins.

Author summary

Human microbiome sequencing data analysis has been a fast growing area of genomic

research in recent years. Although there have been several works for detecting predictors

on a single operational taxonomic unit (OTU) or multiple OTUs simultaneously, there is

limited work on how to estimate the correlations between multiple OTUs and incorporate

such relationship into models to evaluate longitudinal OTU measures. Here we propose

a novel approach to estimate OTU correlations based on their taxonomic structure after

integrating longitudinal and other types of repeated OTU measures, and apply such corre-

lation structure in Generalized Estimating Equations (GEE) models to estimate both pre-

dictors’ effects and OTU correlations. The method is theoretically sound and practically

easy to implement, and we provide corroborating evidence from simulation and a real

human microbiome study.
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This is a PLOS Computational Biology Methods paper.

Introduction

Human microbiome sequencing data analysis has been a fast-growing area of genomic

research in recent years. Several studies showed that the microbial composition is associated

with environmental and host factors [1–3]. The microbiome data are usually characterized by

16S ribosomal ribonucleic acid (rRNA) gene sequencing or shotgun metagenomics sequencing

[4, 5]. Both sequencing technologies provide reads of bacteria counts clustered into operational

taxonomic units (OTUs), where each OTU is typically mapped to a taxon at level species,

genus, family, order, class, phylum, kingdom or domain in a taxonomic structure.

For each sample, OTU counts can be converted to relative abundances (RAs). No matter

the OTU data is in format of counts or RAs, there are a few analytical challenges which prevent

the application of standard regression methods on association study between microbial com-

position and the environmental or genetic factors. First, the OTU data usually contains exces-

sive zeros, which prevents modelling the OTU data by using standard types of distributions.

Next, for each individual, there may exist repeated measures of OTUs, such as microbiome

samples collected from different locations of human body, or multiple observations at different

time points in longitudinal setting. Furthermore, the sequencing method usually detects hun-

dreds or thousands of OTUs, which are potentially correlated with each other [6]. Identifying

correlations between taxa is a common goal in genomic survey [7]. An accurate estimated cor-

relation can be used to determine drivers in environmental ecology or contribution to habitat

niches or disease; it is also a powerful tool to help researchers with hypothesis generation, such

as determining which interactions might be biologically relevant in their system, and should

be given further study [8]. So instead of considering each OTU as independent, it is desirable

to incorporate the taxonomic information into the analysis, which reflects the correlation

structure between the OTUs.

Several solutions have been proposed to answer each of these challenges. Zero-inflated

microbiome data can be fitted by either zero-inflated models or two-part models [9, 10].

Repeated measures can be characterized by random effects in mixed effects models [11–15].

Modelling multiple OTUs together remains a challenging problem, although several attempts

have been made. La Rosa et al. [16] and Chen et al. [17] proposed an approach which assumes

that multiple OTUs follow Dirichlet multinomial (DM) distribution. However, the DM

assumption imposes a negative correlation among OTUs where the true correlation can be

both positive and negative. In addition, it has a fixed covariance structure which cannot flexi-

bly handle various dispersion patterns. Tang et al. [18] proposed zero-inflated generalized

Dirichlet multinomial distribution which allows for a more general covariance structure and

excessive zeros in OTU counts. To further eliminate the negative correlation assumption, they

also proposed distribution-free non-parametric tests [19, 20], which are robust to any correla-

tion structures within a cluster of taxa. However, parameter estimates of covariate effects and

correlation coefficients were not available due to the non-parametric essence. Alternatively,

Shi et al. [21] proposed a model for Paired-Multinomial Data which works for a pair of

repeated measures or a pair of correlated OTUs. Zhang at al. [22] considered estimating pair-

wise correlations between OTUs. Xu et al. [23] used latent variables to account for the correla-

tion of multiple OTUs. Zhan et al. and Koh at al. [24, 25] adopted correlated sequence kernel

association test assuming a random effect for each OTU, and Grantham et al. [26] used Bayes-

ian factor analysis to cluster correlated OTUs into different factors. However, none of these
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approaches can model the taxonomic relationship between OTUs and provide estimations for

complex correlation structure.

In order to estimate and test the association between the predictors and OTUs as well as

simultaneously estimating the correlation parameters between OTUs, we propose a general-

ized estimating equation (GEE) [27] approach which can handle multiple correlated OTUs

with repeated measures. Applying GEE model to either microbiome data [28, 29] or repeated

measures such as longitudinal zero-inflated data [30–32] is not new. The novel part of our

method is to develop and construct correlation structures which can truly represent the taxo-

nomic correlations and time dependency of longitudinal OTU measures. First, we develop a

correlation structure of multiple OTUs solely depending on their taxonomic structure, so that

the correlation structure can provide meaningful estimates of OTU correlations. Not like the

multinomial models which assume negative correlations, the correlation of OTUs in the pro-

posed model can be both positive and negative. In addition, we incorporate the taxonomic

structure with correlations due to repeated measures, and all correlations of repeated measures

can be explicitly estimated.

We organize this paper as following. In Methodology section, the detailed methodology

framework is introduced including the zero-inflated GEE models, the construction of correla-

tion structure on multiple OTUs with repeated measures, parameter estimation and hypothe-

sis testing under the Microbiome Taxonomic Longitudinal Correlation (MTLC) model.

Extensive simulation studies for comparing the performance of the proposed approach to

other models are presented in Simulation section. In Application section, the proposed model

is applied into a real microbiome sequencing study. The conclusion and further improvements

of our method are discussed in Discussion section.

Methodology

Taxonomic structure of OTUs

Numerical representation of taxonomic structure. For known taxonomic structure of

N OTUs, we consider its numeric representation, i.e., representing the structure by a list of

numerical vectors. Throughout this paper, we call taxonomic levels from species to domain

from lowest to highest. First, we find the taxonomic level at which all observed N OTUs belong

to the same taxon but not at one level lower, and define such level as level 1. For example, if all

OTUs belong to the same class but not the same order, then the level class would be level 1.

Similarly, we can identify the taxonomic level at which each OTU represents a different taxon

but not at one level higher, and define such level as level I. For example, if each OTU belongs

to a different genus but not a different family, then the level genus would be level I. Fig 1 illus-

trates an example with I = 4 (class, order, family, and genus), where class is level 1 and genus is

level 4.

For i = 1, . . .I, let Mi be the number of taxa at taxonomic level i. By definition, M1 = 1 and

Mi = N. For mi = 1, . . ., Mi, tmii
denotes each taxon at level i, and nmii

is the number of OTUs

belonging to taxon tmii
. nmii

are then computed by the following algorithm:

1. When i = I, nmii
¼ 1.

2. For i = I −1, . . ., 1,

nmii
¼

X

tmiþ1 iþ12tmii

nmiþ1 iþ1:
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It is easy to check that for i = 1, . . ., I,

XMi

mi¼1

nmii
¼ N:

Let ni ¼ ðn1i; . . . ; nMii
Þ. Then the taxonomic structure can be numerically represented by

(n1, . . ., nI).
In the illustrative taxonomic structure example from Fig 1, we observe 6 correlated OTUs

with I = 4. Then M1 = 1, M2 = 2, M3 = 3, M4 = 6, and the numerical representation of Fig 1 is

n1 = 6, n2 = (3, 3), n3 = (2, 1, 3), n4 = (1, 1, 1, 1, 1, 1).

Correlation matrix of taxonomic structure. Following the taxonomic structure, it is

natural to assume that OTUs belonging to same taxa at higher levels may have some correla-

tion. Because all OTUs belong to the same taxa at the highest taxonomic level (e.g., Bacteria

domain), they are all correlated in principle. For N OTUs, there are up to
�N

2

�
pairwise corre-

lations. When N is large, it would be infeasible to model
�N

2

�
correlation parameters, and our

intuition is to reduce the number of parameters by making some reasonable assumptions such

that many of the correlations are equal, according to the known taxonomic structure. The

basic assumption we made is that for a cluster of OTUs, if each OTU represents a different

taxon at level i + 1 but they all belong to the same taxon at level i, then all pairwise correlations

of OTUs within this cluster should be equal. Under this assumption, there is only one correla-

tion parameter in the simple case when I = 2. When I> 2, there are more than two levels in

the OTU taxonomic structure, in which case the pairwise correlation coefficients for different

pairs of OTUs may be equal or unequal, depending on the taxa which the OTUs belong to at

each level. For a pair of OTUs, if they belong to different taxa at level i + 1 but the same taxa at

level i, we call the taxon at level i as its first common taxon. For any two pairs of OTUs. A natu-

ral extension of our basic assumption is that two pairs of OTUs are assumed to have same cor-

relation if and only if the first common taxa of both pairs are identical. Formally, let P� and Py

be two pairs of OTUs, which have correlation ρ� and ρ†. tm�i ;i� is the first common taxon of P�,

and tmyi ;iy is the first common taxon of Py. Then we assume

r� ¼ ry, tm�i ;i� ¼ tmyi ;iy

Fig 1. Example illustrating the taxonomic structure of 6 hypothetical OTUs.

https://doi.org/10.1371/journal.pcbi.1008108.g001
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For all N OTUs, we define a taxonomic structure matrix to indicate which correlations

are equal and which are not. The taxonomic structure matrix is an N × N symmetric matrix,

where all diagonal entries are denoted byD, and off-diagonal entries are indexed by uppercase

Roman numbers, i.e., I; II; III (see Fig 1). Each different index value represents a different cor-

relation, and equal index value indicates the corresponding correlations are estimated by the

same coefficient. We use Roman numbers to avoid any confusion with other Arabic numerals

used elsewhere throughout our work, because these indices are categorical numbers which do

not indicate any quantity. The values of off-diagonal entries are determined by the following

steps:

1. For i = 1, . . ., I − 1, Let Γi be an N × N block diagonal matrix,

Γi ¼

B1i

. .
.

BMii

0

B
B
@

1

C
C
A:

For mi = 1, . . ., Mi, each block B1i is an nmii
� nmii

matrix, whose diagonal entries areD and

off-diagonal entries are
Pi� 1

h¼0
Mh þmi. M0 has default value 0.

2. When i = 1, Let Γ(1) = Γ1 be the interim correlation matrix.

3. When i = 2, . . ., I − 1, replace the block diagonal entries of Γ(i−1) by Bmii
and keep all other

entries the same. The interim correlation matrix after the replacement at level i is defined as

Γ(i).

4. Sort all off-diagonal entries in Γ(I−1) from largest to smallest, where the smallest value corre-

sponds to smallest order (order 1). Replace all off-diagonal entries by their corresponding

orders in uppercase Roman numbers and define the new matrix as Γ. Γ is the taxonomic

structure matrix which is numerically represented by (n1, . . ., nI).

In the above example of 6 hypothetical OTUs in Fig 1,

Γ1 ¼

D 1 1 1 1 1

1 D 1 1 1 1

1 1 D 1 1 1

1 1 1 D 1 1

1 1 1 1 D 1

1 1 1 1 1 D

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;Γ2 ¼

D 2 2

2 D 2

2 2 D
D 3 3

3 D 3

3 3 D

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;

Γ3 ¼

D 4

4 D
D
D 6 6

6 D 6

6 6 D

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

:
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Applying step 2 and 3 to achieve

Γð3Þ ¼

D 4 2 1 1 1

4 D 2 1 1 1

2 2 D 1 1 1

1 1 1 D 6 6

1 1 1 6 D 6

1 1 1 6 6 D

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

Applying step 4 and the final taxonomic structure matrix Γ is

OTU1 OTU2 OTU3 OTU4 OTU5 OTU6

OTU1 D III II I I I

OTU2 III D II I I I

OTU3 II II D I I I

OTU4 I I I D IV IV

OTU5 I I I IV D IV

OTU6 I I I IV IV D

In taxonomic structure matrix Γ, the index values are illustrated in Fig 1: index I indicates

correlation of OTUs belonging to the same class but different orders; index II indicates corre-

lation of OTUs belonging to the same order but different families; index III and IV indicate

correlations of OTUs belonging to the same family.

Modelling correlations from repeated measures

Correlations of longitudinal data. Repeated measures of single OTU from the same indi-

vidual may be another source of correlation, e.g., OTU observation at multiple time points

within the same person. Fig 2 shows repeated measures of multiple OTUs at l time points.

There are several different ways to characterize the correlations between each pair of time

points, such as exchangeable, Toeplitz and unstructured. Exchangeable structure assumes all

correlations are equal to each other. Toeplitz structure assumes time points with equal tempo-

ral distance have equal correlation. Unstructured model assumes each pair has different corre-

lations and it is the most complicated structure in terms of correlation parameter estimation.

Besides that, other correlation structures such as autoregressive, moving averages are also used

for longitudinal data analysis [33, 34]. In this paper, we assume the correlation structure within

the same individual is pre-specified. The correlation structure matrix within same individual

following a given correlation structure is denoted by OT. The diagonal entries are denoted by

Fig 2. Longitudinal OTU observations at l time points.

https://doi.org/10.1371/journal.pcbi.1008108.g002

PLOS COMPUTATIONAL BIOLOGY GEE model on longitudinal microbiome sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008108 September 8, 2020 6 / 22

https://doi.org/10.1371/journal.pcbi.1008108.g002
https://doi.org/10.1371/journal.pcbi.1008108


D again, and off-diagonal entries are indexed by lowercase Roman numbers, i.e., i; ii; iii, etc‥
For example, if the longitudinal OTU observations consist of 3 time points, then OT assuming

exchangeable structure is

T1 T2 T3

T1 D i i

T2 i D i

T3 i i D

Alternatively, OT assuming Toeplitz structure is

T1 T2 T3

T1 D i ii

T2 i D i

T3 ii i D

Sample correlation. In addition to time correlation, there may exist other types of sample

correlations, such as two or more individuals from the same pedigree, or simply any repeated

measures from the same individual. Without loss of generality we assume there are two

repeated samples S1 and S2. Then sampling correlation is represented by correlation structure

matrix OS:

S1 S2

S1 D i

S2 i D

Combining longitudinal and sample correlation. Let O be the correlation structure

combining both longitudinal and sample correlation. O =OT or OS when only time points cor-

relation or sample correlation exists. When both correlations exist, we consider all combina-

tions of time points and repeated samples in one big correlation structure O. For example, if

there are two repeated samples at each of the 3 time points, then for each OTUs there are 6

observations for each individual in total, and O becomes

ðT1; S1Þ ðT2; S1Þ ðT3; S1Þ ðT1; S2Þ ðT2; S2Þ ðT3; S2Þ

ðT1; S1Þ D i i ii iii iii

ðT2; S1Þ i D i iii ii iii

ðT3; S1Þ i i D iii iii ii

ðT1; S2Þ ii iii iii D i i

ðT2; S2Þ iii ii iii i D i

ðT3; S2Þ iii iii ii i i D
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Incorporating taxonomic structure with repeated measures

Suppose O has dimension L. For a = 1, . . ., N and b = 1, . . ., N, O(Γab) is an L × L correlation

matrix as a function of Γab, such that

ΩðGabÞ ¼

rðGab;O11Þ
� � � rðGab;O1LÞ

..

. . .
. ..

.

rðGab ;OL1Þ
� � � rðGab;OLLÞ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

:

Γ‥ and O‥ are entries of Γ and O from corresponding rows and columns. We denote O(Γab) as

Oab for notation simplicity.

To integrate repeated measures correlation structure O with taxonomic structure Γ, we

introduce the integrative correlation matrix

R ¼

Ω11 � � � Ω1N

..

. . .
. ..

.

ΩN1 � � � ΩNN

0

B
B
B
B
@

1

C
C
C
C
A

where Oab is defined above. R is a J × J matrix where J = N × L, and each of its entry has the

form rðG‥ ;O‥Þ
. The first subscript, Γ‥, is either D or an uppercase Roman number indexing

taxonomic structure correlation; the second subscript, O‥, is eitherD or a lowercase Roman

number indexing correlation from repeated measures of single OTU. In the above example,

G11 ¼ O11 ¼ D, G21 ¼ III and O21 ¼ i. The diagonal entries of R, rðD;DÞ always equal to 1, and

the off-diagonal entries are estimated in the next section.

Microbiome Taxonomic Longitudinal Correlation (MTLC) model

After specifying the correlation matrix within one cluster of OTUs with repeated measures, in

this section, we introduce how to model the association between multiple OTUs and their pre-

dictors of interest. We propose a Microbiome Taxonomic Longitudinal Correlation (MTLC)

model to estimate predictor effects, correlation coefficients between OTUs, longitudinal mea-

sures and other repeated measures. We also perform a hypothesis testing of the predictor

effects based on MTLC model. The estimates and tests are achieved by Generalized Estimating

Equations (GEE) framework.

Generalized estimating equation framework. Let yk’s be independent clusters for k = 1,

. . .K, and each cluster yk ¼ ðyk1; . . . ykJkÞ has length Jk. For j = 1, . . .Jk, let xkj denote the vector

of covariates with length p, and μk ¼ ðmk1; . . . ; mkJkÞ is the mean of yk. Then for each observa-

tion ykj,

gðmkjÞ ¼ xkj 0β ð1Þ

where g is a known link function and β are the regression parameters of the p covariates xkj.
The conditional variance of ykj is defined as Var(ykj|xkj) = ν(μkj)ϕ, where ν is the variance func-

tion depending on the distribution of ykj, and ϕ is the dispersion parameter being σ2 for nor-

mally distributed ykj and 1 for other distributions belonging to exponential family. For

estimating β, the following generalized estimating equation is solved:

UðβÞ ¼ SK
k¼1

Dk
0Vk

� 1ðyk � μkÞ ¼ 0 ð2Þ
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where Dk ¼
dμk
dβ and Vk ¼ Ak

1=2RkðρÞAk
1=2. Here Ak ¼ diagðmk1�; . . . mkJk�Þ, and Rk(ρ) is

the working correlation matrix following the correlation structure R constructed in section

“Incorporating taxonomic structure with repeated measures”, where ρ is the collection of all

correlation coefficients in Rk. Clearly β̂ depends on ρ and ϕ, which also needs to be estimated.

If we define the Pearson residual ekj ¼ ðykj � mkjÞ=
ffiffiffiffiffiffiffiffiffiffiffi
nðmkjÞ

q
, then �̂ ¼ 1

ðSKk¼1
JkÞ� p

PK
k¼1

PJk
j¼1

e2
kj.

Next, ρ̂ is estimated as a function of ϕ and ekj. The exact formula of ρ̂ depends on the correla-

tion structure R, and a few examples of ρ̂ under different structures are given in Liang et al

[27] and Wang [33]. Because the Pearson residuals ekj’s also depend on β̂, it yields an iterative

scheme which switches between estimating β from fixed value of �̂ and ρ̂ and estimating ϕ
and ρ for a fixed value of β̂. Under GEE theory [27], this scheme yields a consistent estimate

for β. Moreover β̂ is asymptotically normally distributed with mean β and variance

Vβ ¼ ðS
K
k¼1

D0kV
� 1

k DkÞ
� 1
fSK

k¼1
D0kV

� 1

k CovðykÞV
� 1

k DkgðS
K
k¼1

D0kV
� 1

k DkÞ
� 1

ð3Þ

where Cov(yk) is the true underlying covariance matrix of yk. The consistent estimator of Vβ,

V̂β , is achieved by replacing β̂, ρ̂, �̂ and fyk � μkðβ̂Þgfyk � μkðβ̂Þg
0

for β, ρ, ϕ and Cov(yk).
GEE method yields consistent estimator of β, even if the structure of working correlation

matrix is not correctly specified. The misspecified Rk(ρ) only affects the efficiency of β̂. The

consistent estimation of correlation matrix Rkðρ̂Þ, however, relies on correct specification of

the correlation structure.

For testing a hypothesis of H0: Cβ = c, a Wald test statistic can be used with the form

W ¼ ðCβ̂ � cÞ0ðCV̂βC
0Þ
� 1
ðCβ̂ � cÞ ð4Þ

and W!d w2

ðqÞ, where q is the rank of matrix C.

Estimating predictors effects on OTUs. Based on the GEE framework, we develop the

MTLC model to assess the association between OTUs and the predictors of interest, account-

ing for the correlation of repeated OTU measures. To deal with the excess zeros of OTUs

using MTLC model, first we convert quantitative OTU observations to binary outcomes (0

and 1), indicating the prevalence of OTU in each observation. Next, we focus on the OTU rela-

tive abundance (RA) of each non-zero observation, and assume the RAs following normal dis-

tribution after log transformation. We use two separate GEE models, one for assessing the

predictor effects on OTU prevalence, and the other for assessing the predictor effects on posi-

tive RA. The predictors’ overall effects are finally tested by combining the test statistics from

these two GEE models.

Formally, for k = 1, . . .K and j = 1, . . ., Jk, we assume each OTU observation ykj follows a

mixture of Bernoulli and log-normal distribution: suppose yð0Þkj follows a Bernoulli distribution

with Pðyð0Þkj ¼ 1Þ ¼ m
ð0Þ

kj , and yðþÞkj follows a normal distribution such that yðþÞkj � NðmðþÞkj ; s
2Þ,

then the distribution function of ykj is

FðyÞ ¼

(
1 � m

ð0Þ

kj y ¼ 0

1 � m
ð0Þ

kj þ m
ð0Þ

kj Fðlog10
yÞ y > 0

where F is the distribution function of yðþÞkj . By definition, yð0Þkj represents OTU prevalence
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observations because

yð0Þkj ¼

(
0 ykj ¼ 0

1 ykj > 0

and yðþÞkj represents the positive RAs because log
10
ykj ¼ yðþÞkj for all ykj> 0. We use yð0Þk to denote

the vector of all yð0Þkj , and yðþÞk to denote the the subset of yðþÞkj where ykj> 0.

Rather than running generalized linear model directly on yk, we apply GEE method sepa-

rately on yð0Þk and yðþÞk . For these two GEE models, the predictors’ design matrices Xk do not

have to be the same in principal, although they could be the same in many practical situations.

Without loss of generality we simply assume the predictors are same in each part of the GEE

model in this paper. We choose logit link function for binary outcomes and identity link func-

tion for log transformed non-zero outcomes, and the two parts of the GEE model are

logð
m
ð0Þ

kj

1 � m
ð0Þ

kj

Þ ¼ xkj0β
ð0Þ ð5Þ

and

m
ðþÞ

kj ¼ xkj 0β
ðþÞ ð6Þ

Using iterative scheme discussed in section “Generalized estimating equation framework” on

yð0Þk and yðþÞk , we can achieve the corresponding parameter estimation β̂ð0Þ and β̂ðþÞ.
Hypothesis testing. For testing if the predictors have effects to either the prevalence of

OTUs or the quantitative amount of RA, the null hypothesis is

H0 : Cð0Þβð0Þ ¼ cð0Þ andCðþÞβðþÞ ¼ cðþÞ:

Assuming same Xk for the yð0Þk part and yðþÞk part of GEE model, β(0) and β(+) will have the same

dimension p. Moreover, C(0) = C(+) and c(0) = c(+) in many practical situations. For example, if

we want to test the first q predictors in Xk and the rest p − q extra covariates are not of interest,

then

Cð0Þ ¼ CðþÞ ¼
Iq�q 0q�ðp� qÞ

0ðp� qÞ�q 0ðp� qÞ�ðp� qÞ

0

@

1

A; cð0Þ ¼ cðþÞ ¼ 0:

For each part of H0, the corresponding test statistics W(0) and W(+) are computed following

Eq 4.

It follows section “Generalized estimating equation framework” that Wð0Þ!
d
w2

ðqð0ÞÞ and

WðþÞ!
d
w2

ðqðþÞÞ. Besides, for jointly testing two null hypotheses by the combined test on W(0)

and W(+), we adopt Cauchy combination test [35], which does not require the independence

assumption between W(0) and W(+). Let p(0) and p(+) be the corresponding p-values, then the

Cauchy combination test statistic is

WMTLC ¼ 0:5tan½ð0:5 � pð0ÞÞp� þ 0:5tan½ð0:5 � pðþÞÞp�!d Cauchyð0; 1Þ ð7Þ

Estimating correlation coefficients. In our proposed MTLC model, the correlation struc-

ture is based on OTU taxonomic structure and characterizing correlations between repeated
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measures. Here we assume the two GEE models corresponding to the OTU prevalence part

and positive RA part have the same correlation structure R. However, the estimated values of

correlation coefficients, ρ̂ð0Þ and ρ̂ðþÞ, may be different for each part of the GEE model. For yð0Þk

and yðþÞk , ρ̂ð0Þ and ρ̂ðþÞ are estimated separately following the iterative scheme discussed in sec-

tion “Generalized estimating equation framework”.

It needs to be noted that GEE models do not require each cluster has equal cluster size,

which could happen, for example, in unbalanced study designs and/or when some observa-

tions are missing. Even if yð0Þk has equal size for all k, yðþÞk may have different sizes as it is a col-

lection of only positive RAs. It implies that the dimension of R may be greater than the length

of yð0Þk and yðþÞk for some k. In such case, the rows and columns in R corresponding to empty

values of OTU observations need to be removed, and we denote the modified correlation

structure matrices by Rð0Þk ðrÞ and RðþÞk ðρÞ correspondingly for each k. When applying the esti-

mating equations in our MTLC model, we essentially use Rð0Þk ðρÞ and RðþÞk ðρÞ as the working

correlation matrices.

Simulation

Simulation settings

Simulation studies are designed to simulate zero inflated multivariate normal distribution to

reflect the correlation of −log10 transformed OTUs. To achieve this, we simulate both multi-

variate Bernoulli distribution samples Y(0) and truncated multivariate normal distribution

samples Z of size K and length J. Multivariate normal distributions are truncated to generate

positive samples because all −log10 transformed RAs should be positive. We further assume

a single binary predictor X, where X also has dimension K × J, and the mean of Y(0) and Z

depend on X. Specifically, we simulate Y ð0Þ � BernoulliJð
expðXβð0ÞÞ

1þexpðXβð0ÞÞ
Þ, and Z� NJ(Xβ(+), R)

truncated at 0. The zero-inflated multivariate normal distribution samples are computed as

Y = Y(0) Z. Y is indirectly associated with X via Y(0) and Z.

For illustration purpose, we assume the simplest correlation structure, i.e., two correlated

OTUs under taxonomic structure and two repeated measures at different time points). The

correlation matrix R is then derived following section “Incorporating taxonomic structure

with repeated measures”:

R ¼

rðD;DÞ rðD;iÞ rðI;DÞ rðI;iÞ

rðD;iÞ rðD;DÞ rðI;iÞ rðI;DÞ

rðI;DÞ rðI;iÞ rðD;DÞ rðD;iÞ

rðI;iÞ rðI;DÞ rðD;iÞ rðD;DÞ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

rðD;DÞ ¼ 1, rðD;iÞ and rðI;DÞ denote the correlation between two time points and between two

OTUs. rðI;iÞ represents the correlation of observations from different OTU and different time

points, which is not of primary interest. We assume the simulated multivariate Bernoulli and

multivariate normal distribution follow the same correlation structure R, but the correlation

coefficients ρ̂ð0Þ and ρ̂ðþÞ can be different.

After achieving the zero-inflated multivariate normal distribution samples Y, we run a GEE

logistic model following Eq 5 to estimate the effects of X to OTU prevalence Y(0), and GEE lin-

ear model following Eq 6 to estimate X effects to the non-zero RAs Y(+), where Y(+) is the sub-

set of Z such that yðþÞkj ¼ zkjjðy
ð0Þ

kj ¼ 1Þ. Under GEE theory, both Y(0) and Y(+) yield consistent
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estimations of β and ρ. However, we simulate Z rather than Y(+), where Z and Y(+) may not

yield same estimations in general. To solve this issue, we simulate Z and Y(0) independently,

which implies that yðþÞkj has the same distribution as zkj. Therefore, Z also yields consistent esti-

mations of β and ρ.

Different from some literature that Y is directly simulated, we conducted our stimulation

on Y(0) and Z separately. This is because following the mixture distribution framework, we

conduct two separate GEE models on Y(0) and Y(+) rather than one model directly on Y. In

this way, we can clearly specify the true values of predictor’s main effects and OTU correlations

in simulation settings, and evaluate if the estimations of these values are unbiased explicitly. As

a sensitivity analysis to evaluate the robustness of our model performance, we also simulate

Y(0) and Z from (generalized) linear mixed model. Results are presented in S1 Appendix.

Inferences for predictor’s main effects

First, we evaluate the performance of our proposed MTLC model for estimating and testing

the main effects or the predictor X. Let β(0) denote the effects on OTU prevalence and β(+)

denote the effects on the log10 transformed none-zero RA. We evaluate the unbiasedness

of estimated b̂ð0Þ, b̂ðþÞ, Type I error for testing β(0) = β(+) = 0 and test power when β(0) and/or

β(+) 6¼ 0. OTU observations are simulated under the simulation settings discussed in section

“Simulation settings” with sample size K = 1000 and various combinations of β(0) and β(+)

values. We assume rðD;iÞ ¼ rðI;DÞ ¼ 0:3 and rðI;iÞ ¼ 0 for both the multivariate normal and

multivariate Bernoulli distribution. β, Type I errors and powers are estimated based on 1000

replications. The computation time is about 4 hours to complete all 1000 replications on a

desktop computer with quad-core processor and 8GB of RAM.

Next we compare our MTLC model to other models. All models are described in Table 1.

For each model, the estimated b̂ð0Þ, b̂ðþÞ, Type I error and power are summarized in Table 2.

We find all estimates of β(0) and β(+) are unbiased under MTLC model. For the one-part mod-

els, because there is no true value of β as a mixture of β(0) and β(+), the unbiasedness of esti-

mated β cannot be evaluated. Regarding the variations of estimated b̂, the 2.5 and 97.5

percentile of the empirical distributions of b̂ are shown in S1 Appendix.

Given the true Type I error at 0.05, 2P_ind and 1P_ind model have inflated Type I error,

and all other estimated Type I errors are accurate. It needs to be noted that when only one

of β(0) and β(+) equal to 0, the Type I error estimation is still accurate. For example, when

Table 1. Description of each model compared by simulation study.

Name Formula Description

GEE(0)

Y ð0Þ �GEEX The logistic regression part of GEE for OTU prevalence

GEE(+)

YðþÞ �GEEX The linear regression part of GEE for non-zero RAs

MTLC Y ð0Þ �GEEX
YðþÞ �GEEX

two-part GEE: our proposed microbiome taxonomic longitudinal correlation model

model for OTU prevalence, linear model for non-zero RAs

2P_ind Y(0)� X
Y(+)� X

two-part independence: assuming no correlation, logistic

1P_GEE Y �GEEX one-part GEE: assuming same correlation structure, but only one GEE linear model for

all 0 and non-zero RAs

1P_ind Y� X one-part independence: assuming no correlation and only one simple linear model for all

0 and non-zero RAs

1P_RE Y� X + γ1 +

γ2

one-part linear mixed model with random intercepts: γ1, γ2 represents random intercepts

of time points and OTUs

https://doi.org/10.1371/journal.pcbi.1008108.t001
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(β(0), β(+)) = (0, 0.05), the GEE(0) model for testing β(0) = 0 has Type I error 0.062, which is not

affected by the non-zero value of β(+). It further confirms the independence of the linear and

logistic regression parts in the two-part model.

We also evaluate the power performance of different models. The power of 2P_ind and

1P_ind model are inflated due to Type I error inflation. Our proposed MTLC model is most

Table 2. Estimated b̂, Type I error and power, from 1000 replications.

(β(0), β(+)) Estimates GEE(0) GEE(+) MTLC 2P_ind 1P_GEE 1P_ind 1P_RE

(0,0) b̂ NA NA NA NA 0.000 0.000 0.000

b̂ð0Þ 0.001 NA 0.001 0.001 NA NA NA

b̂ðþÞ NA 0.000 0.000 0.000 NA NA NA

T1E 0.056 0.038 0.039 0.120 0.050 0.116 0.047

(0,0.05) b̂ NA NA NA NA 0.027 0.027 0.027

b̂ð0Þ 0.002 NA 0.002 0.002 NA NA NA

b̂ðþÞ NA 0.052 0.052 0.052 NA NA NA

Power 0.045 0.512 0.421 0.583 0.201 0.332 0.199

(0,-0.05) b̂ NA NA NA NA -0.026 -0.026 -0.026

b̂ð0Þ -0.001 NA -0.001 -0.001 NA NA NA

b̂ðþÞ NA -0.050 -0.050 -0.050 NA NA NA

Power 0.048 0.487 0.394 0.552 0.187 0.312 0.188

(0.1,0) b̂ NA NA NA NA 0.051 0.051 0.051

b̂ð0Þ 0.101 NA 0.101 0.101 NA NA NA

b̂ðþÞ NA 0.001 0.001 0.001 NA NA NA

Power 0.693 0.050 0.609 0.772 0.571 0.712 0.570

(0.1,0.05) b̂ NA NA NA NA 0.075 0.075 0.075

b̂ð0Þ 0.100 NA 0.100 0.100 NA NA NA

b̂ðþÞ NA 0.049 0.049 0.049 NA NA NA

Power 0.705 0.487 0.771 0.887 0.862 0.934 0.866

(0.1,-0.05) b̂ NA NA NA NA 0.025 0.025 0.025

b̂ð0Þ 0.099 NA 0.099 0.099 NA NA NA

b̂ðþÞ NA -0.050 -0.050 -0.049 NA NA NA

Power 0.696 0.481 0.800 0.896 0.171 0.287 0.171

(-0.1,0) b̂ NA NA NA NA -0.051 -0.051 -0.051

b̂ð0Þ -0.101 NA -0.101 -0.101 NA NA NA

b̂ðþÞ NA -0.001 -0.001 -0.001 NA NA NA

Power 0.700 0.054 0.612 0.781 0.575 0.698 0.571

(-0.1,0.05) b̂ NA NA NA NA -0.026 -0.026 -0.026

b̂ð0Þ -0.102 NA -0.102 -0.102 NA NA NA

b̂ðþÞ NA 0.050 0.050 0.050 NA NA NA

Power 0.719 0.483 0.803 0.905 0.188 0.304 0.183

(-0.1,-0.05) b̂ NA NA NA NA -0.075 -0.075 -0.075

b̂ð0Þ -0.099 NA -0.099 -0.099 NA NA NA

b̂ðþÞ NA -0.050 -0.050 -0.050 NA NA NA

Power 0.694 0.471 0.786 0.906 0.887 0.949 0.887

https://doi.org/10.1371/journal.pcbi.1008108.t002
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powerful in general. When one of β(0) and β(+) is 0, the MTLC model is slightly less powerful

than one of GEE(0) and GEE(+) model which only tests the part that β 6¼ 0. However, when

both β(0) and β(+) are non-zero, the MTLC model is much more powerful than both GEE(0)

and GEE(+) model. The 1P_GEE model and 1P_RE model have similar powers. It needs to be

noted that the 1P_RE model is not able to accommodate negative correlations due to the natu-

ral or random effects. This is the reason that we choose ρ01 and ρ10 to be positive in the simula-

tion settings. When the true correlations are negative, the 1P_RE model simply reduces to

1P_ind model. Comparing to the MTLC model, the power of the one-part models drops dra-

matically when β(0) and β(+) have opposite sign. This is because the positive effect cancels out

the negative effects in one-part models, but both effects are well captured in two-part models.

When β(0) and β(+) have same direction, we do observe some cases that the power of one-part

models are larger. This is related to how to deal with the excess zeros in the one-part models.

Detailed discussion about this issue is provided in section “Two-part vs. one-part models”.

Estimations for the correlation coefficients

The MTLC model can also provide estimations of correlation coefficients. First we evaluate

the unbiasedness of the correlation estimates. Let ρ(0) and ρ(+) be correlation coefficients

in GEE(0) and GEE(+) model. In simulation settings, we choose r
ð0Þ

ðD;iÞ ¼ r
ð0Þ

ðI;DÞ ¼ 0:5 and

r
ðþÞ

ðD;iÞ ¼ r
ðþÞ

ðI;DÞ ¼ � 0:3, β(0) = −0.1 and β(+) = 0.05. The specified β values do not affect the esti-

mation of ρ. Sample size K = 1000 and number of replications remains to be 1000.

The correlation structure of OTUs is based on the taxonomic structure, which is usually

known in practice. However, the correlation structure of repeated measures within each OTU

may not be known and usually requires subjective assumptions. One merit of GEE model is

that even if the assumption of correlation structure is not correct, it does not affect the estima-

tion of main effect β. The b̂ estimations are consistent under different assumptions of correla-

tion structure, as illustrated by Yan [36] and confirmed by our simulation study (results not

shown). Besides that, we evaluate the consistency of correlation estimations under wrong cor-

relative structure setting.

In contrast to the correct correlation structure R, we first construct a model with a correla-

tion matrix assuming that OTUs are independent while time points are still correlated. After

that, we construct another model with correlation matrix assuming that time points are inde-

pendent while OTUs are still correlated. When OTUs are assumed to be independent, the GEE

model may only estimate rðD;iÞ; when time points are independent, the GEE model may only

estimate rðI;DÞ. The correlation estimations are summarized in Table 3.

From Table 3, the correlation estimates under true correlation structure are all unbiased.

When the correlation structure is not correctly specified, it may not estimate all correlation

Table 3. Estimated GEE correlations under correct correlation structure, OTU independence structure and time points independence structure, compared to Pear-

son correlations.

Cor True Pearson True structure OTU ind Time points ind

r
ð0Þ

ðD;iÞ
0.5 0.497 0.495 0.495 NA

r
ð0Þ

ðI;DÞ
0.5 0.498 0.496 NA 0.496

r
ð0Þ

ðI;iÞ
0 0.000 -0.002 NA NA

r
ðþÞ

ðD;iÞ
-0.3 -0.295 -0.299 -0.300 NA

r
ðþÞ

ðI;DÞ
-0.3 -0.296 -0.299 NA -0.299

r
ðþÞ

ðI;iÞ
0 -0.001 -0.001 NA NA

https://doi.org/10.1371/journal.pcbi.1008108.t003
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coefficients for the correct correlation structure, but more interestingly, for those correlation

coefficients which can be estimated under the misspecified structure, the estimation remains

to be unbiased. It implies that if we are not interested in estimating all correlations in the cor-

rect correlation structure, we can simplify the correlation structure. For example, because the

estimation of rðI;iÞ is not of interest, we can set it to 0 without affecting the estimation of rðD;iÞ

and rðI;DÞ.

The correlation structure only contains two OTUs and two time points, so the GEE correla-

tion estimates are essentially pairwise correlations, and thus they can be compared with corre-

sponding Pearson correlation coefficients. Both results are consistent as expected. The merit of

our MTLC model is that when the correlation structure is more complicated and the pairwise

Pearson correlation is not available, it may still provide unbiased estimation of the correlation

matrix.

Two-part vs. one-part models

For one-part models, if we take −log10 transformation of both the non-zero RAs and 0, then all

0 becomes1. To solve this issue, one common approach is to change all 0 to some small value

close to 0, such as 10−5. However, we find the one-part model test powers are sensitive to this

arbitrary small value. In Table 4, we replace −log10 0 by 6, 5 4 and 3 and compare correspond-

ing test powers with the MTLC model. We only present the 1P_GEE model as we have shown

in Table 2 that the 1P_RE model has similar power to 1P_GEE.

Table 4 indicates that there is no optimal choice of the value for replacing 0 RAs. For each

value selected, depending on (β(0), β(+)), there may exist some situations such that the one-

part model has comparable power or even slightly better power than corresponding two-part

model (e.g., 0.650 vs. 0.609 when (β(0), β(+)) = (0.1, 0) and replacing 0 by 10−6), but the power

loss is much more significant for some other values of β (e.g., 0.138 vs. 0.421 when (β(0), β(+)) =

(0, 0.05) and replacing 0 by 10−6). We conclude that our MTLC models has superior and

robust power performance compared to the one-part models, and suggest readers avoid using

the one-part models in practice when there are excessive numbers of 0s in OTU data.

Application

We implement our proposed MTLC model on a twin study described in Turnbaugh et al. [37].

The full dataset is provided in the supporting information S1 Data. The data consists of 54

families and each family has a pair of twins. Each individual has at most two observations at

two time points. The primary research question is to assess the association between obesity

status (lean, overweight or obese) and OTUs, and estimate the correlations between two time

Table 4. Comparing test powers from 1P_GEE model to MTLC model when −log10 0 are replaced by 6, 5 4 and 3.

(β(0), β(+)) MTLC −log10 0 = 6 −log10 0 = 5 −log10 0 = 4 −log10 0 = 3

(0,0) 0.039 0.038 0.052 0.040 0.044

(0,0.05) 0.421 0.138 0.156 0.304 0.478

(0,-0.05) 0.394 0.122 0.176 0.284 0.468

(0.1,0) 0.609 0.650 0.528 0.308 0.040

(0.1,0.05) 0.771 0.890 0.888 0.864 0.456

(0.1,-0.05) 0.764 0.346 0.218 0.050 0.484

(-0.1,0) 0.612 0.660 0.576 0.340 0.050

(-0.1,0.05) 0.803 0.306 0.166 0.052 0.486

(-0.1,-0.05) 0.786 0.846 0.854 0.844 0.472

https://doi.org/10.1371/journal.pcbi.1008108.t004
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points, each pair of twins and OTUs. For illustration purpose, we only analyze OTUs within

the order Clostridiales, which consists of 9 OTUs at genus level. The taxonomic structure of

these 9 OTUs are shown in Fig 3.

From Fig 3, all 9 OTUs begin to belong to the same taxa (Clostridiales) at level order, and

each of the 9 OTUs belongs to a different taxon at level genus. We define level order as level 1,

level family as level 2 and level genus as level 3, thus I = 3. Accordingly, the numerical repre-

sentation of the taxonomic structure is n1 = 9, n2 = (4, 1, 4), n3 = (1, 1, 1, 1, 1, 1, 1, 1, 1).

Next, following the 4 steps described in section “Taxonomic structure of OTUs”, the taxo-

nomic structure matrix is

Γ ¼

D I I I III III III III III
I D I I III III III III III
I I D I III III III III III
I I I D III III III III III
III III III III D III III III III
III III III III III D II II II
III III III III III II D II II
III III III III III II II D II
III III III III III II II II D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Because each OTU is observed at two time points for a pair of twins, the repeated measure

correlation structure following section “Modelling correlations from repeated measures” is

Ω ¼

D i ii iii

i D iii ii

ii iii D i

iii ii i D

0

B
B
B
B
@

1

C
C
C
C
A
:

The dimension of Γ and O are N = 9 and L = 4, so as described in section “Incorporating

taxonomic structure with repeated measures”, the integrative correlation matrix R has

Fig 3. Taxonomic structure of 9 OTUs.

https://doi.org/10.1371/journal.pcbi.1008108.g003
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dimension J = N × L = 36. For a = 1, . . ., 9 and b = 1, . . ., 9, if Gab ¼ D, then

Ωab
¼ ΩðDÞ ¼

rðD;DÞ rðD;iÞ rðD;iiÞ rðD;iiiÞ

rðD;iÞ rðD;DÞ rðD;iiiÞ rðD;iiÞ

rðD;iiÞ rðD;iiiÞ rðD;DÞ rðD;iÞ

rðD;iiiÞ rðD;iiÞ rðD;iÞ rðD;DÞ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

if Gab ¼ I, then

Ωab ¼ ΩðIÞ ¼

rðI;DÞ rðI;iÞ rðI;iiÞ rðI;iiiÞ

rðI;iÞ rðI;DÞ rðI;iiiÞ rðI;iiÞ

rðI;iiÞ rðI;iiiÞ rðI;DÞ rðI;iÞ

rðI;iiiÞ rðI;iiÞ rðI;iÞ rðI;DÞ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

if Gab ¼ II, then

Ωab ¼ ΩðIIÞ ¼

rðII;DÞ rðII;iÞ rðII;iiÞ rðII;iiiÞ

rðII;iÞ rðII;DÞ rðII;iiiÞ rðII;iiÞ

rðII;iiÞ rðII;iiiÞ rðII;DÞ rðII;iÞ

rðII;iiiÞ rðII;iiÞ rðII;iÞ rðII;DÞ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

if Gab ¼ III, then

Ωab ¼ ΩðIIIÞ ¼

rðIII;DÞ rðIII;iÞ rðIII;iiÞ rðIII;iiiÞ

rðIII;iÞ rðIII;DÞ rðIII;iiiÞ rðIII;iiÞ

rðIII;iiÞ rðIII;iiiÞ rðIII;DÞ rðIII;iÞ

rðIII;iiiÞ rðIII;iiÞ rðIII;iÞ rðIII;DÞ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

The integrative correlation matrix is then

R ¼

Ω11 � � � Ω19

..

. . .
. ..

.

Ω91 � � � Ω99

0

B
B
B
B
@

1

C
C
C
C
A
:

To apply the proposed MTLC model, all OTU observations are summarized as Y. X is the

single binary predictor denoting obesity status (lean vs. obese/overweight). Both Y and X have

dimension K × J where K = 54 and J = 36. Some pedigrees only consist one individual instead a

pair of twins, and OTUs are observed at one instead of two time points for some individuals,

hence missing values exist in the matrix Y. Next, Y is separated as Y(0) and Y(+) representing

OTU prevalences and positive RAs. We assume each yð0Þkj follows Bernoulli distribution with

mean m
ð0Þ

kj and yðþÞkj follows log normal distribution with mean m
ðþÞ

kj . Then under MTLC model,
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Y and X have the following relationship:

logð
m
ð0Þ

kj

1 � m
ð0Þ

kj

Þ ¼ að0Þ þ xð0Þkj b
ð0Þ

ð8Þ

m
ðþÞ

kj ¼ a
ðþÞ þ xðþÞkj b

ðþÞ
ð9Þ

α(0) and α(+) are intercept parameters which are not our primary interest. Our goal is to esti-

mate the effects of obesity status β(0) and β(+), and test H0: β(0) = β(+) = 0. β(0) and β(+) are esti-

mated separately under Eq 2, and H0 is tested by the combined test statistic WMTLC following

Eq 7.

We summarize the estimates of obesity effects for predicting OTUs and corresponding p-

values for testing H0 in Table 5. We compare the MTLC model with the other models listed in

Table 1. Using our MTLC model, obesity has shown significant overall association with these

OTUs. Specially, it has shown significant association with the prevalence of OTUs, but no sig-

nificant association with the non-zero RAs. All other models do not detect the overall signifi-

cance. The computation time is less than 30 seconds for the twin study dataset.

Correlation estimates are presented in Table 6. rðD;iÞ and rðD;iiÞ are correlation between the

two time points and correlation between the two twins. rðI;DÞ, rðII;DÞ and rðIII;DÞ are OTU

Table 5. Estimated effects of obesity status to OTUs and p-value.

GEE(0) GEE(+) MTLC 2P_ind 1P_GEE 1P_ind 1P_RE

b̂ NA NA NA NA -0.041 -0.024 -0.028

b̂ð0Þ -0.511 NA -0.511 -0.496 NA NA NA

b̂ðþÞ NA -0.017 -0.017 0.014 NA NA NA

p-value 0.017 0.518 0.034 0.093 0.215 0.450 0.475

https://doi.org/10.1371/journal.pcbi.1008108.t005

Table 6. Estimated correlation coefficients between time points, twins and OTUs.

Models GEE Pearson

GEE(0) rðD;iÞ 0.098 0.106

rðD;iiÞ 0.130 0.110

rðI;DÞ 0.229 NA

rðII;DÞ 0.217 NA

rðIII;DÞ 0.347 NA

GEE(+) rðD;iÞ 0.696 0.751

rðD;iiÞ 0.550 0.561

rðI;DÞ -0.018 NA

rðII;DÞ -0.035 NA

rðIII;DÞ -0.175 NA

1P_GEE rðD;iÞ 0.661 0.657

rðD;iiÞ 0.495 0.498

rðI;DÞ 0.051 NA

rðII;DÞ 0.082 NA

rðIII;DÞ 0.015 NA

https://doi.org/10.1371/journal.pcbi.1008108.t006
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correlations, representing correlation from different family but within the same order Clostri-
diales, and correlation within the same family Lachnospiraceae or Ruminococcaceae.

When Pearson correlations are available (rðD;iÞ and rðD;iiÞ), they are quite consistent with

the correlation estimates under GEE models. However, Pearson correlation is not available for

OTU correlations due to the complicated taxonomic structure, and only our proposed MTLC

model can estimate these correlations.

Discussion

In this paper, we develop and implement a novel approach to model the correlations of OTUs

based on the biological taxonomic structure. The proposed MTLC model can incorporate the

taxonomic structure with repeated measures from longitudinal data. It has accurate Type I

error, unbiased estimation of model parameters and robust power performance under a vari-

ety of situations. Compared to existing methods, our method is more powerful and can pro-

vide unbiased estimation of the correlation coefficients between multiple OTUs and repeated

measures.

The MTLC model allows for sufficient flexibility of the correlation matrix construction.

It not only allows different correlation matrices for the logistic regression part and linear

regression part, but also put no constraint on the range of each correlation coefficient, i.e., any

positive or negative value from -1 to 1. In contrast, the random effect in mixed effect model

naturally leads to a positive correlation, because the same random effect adds to a few corre-

lated samples. When the true correlations are negative, the mixed effects model (e.g., Chen

et al. [13]) is simply reduced to ordinary linear and logistic regression model with indepen-

dence assumption, which results in incorrect Type I errors as we have shown in section

“Inferences for predictor’s main effects”. In summary, the MTLC model provides a reliable

analytical framework for longitudinal microbiome data analysis.

Our methodology for constructing correlation matrix of taxonomic structure imposes no

constraints to the number of OTUs, which is denoted by N. Based on the computation time

shown in our simulation and application study, we find the MTLC model runs fast overall.

However, when N is large, (e.g., N> 1000), the correlation matrix has a high dimension,

and it may cause computational issues and become time consuming to implement the MTLC

model. In such case, we suggest a dimension reduction by selecting a subgroup of OTUs. For

example, if OTUs are from the same phylum but different classes. Our MTLC model can be

implemented on each class separately or focus on the classes of interest, instead on the whole

phylum.

We have shown that the correlation estimation is consistent under MTLC model, but the

estimation accuracy is not clear. Yan [36] proposed standard error estimations of the correla-

tion coefficients under GEE approach. When corresponding Pearson correlations are also

available, we have found the standard error under GEE approach may depart from the stan-

dard error of Pearson correlations. Because the underlying distribution of the correlation esti-

mates is unknown, it lacks theoretical justifications of the standard error estimates. Further

studies are required for estimating the accurate standard errors of correlation coefficients

under our MTLC model.

The MTLC model assumes −log10 transformed positive RAs following normal distribution.

Clearly this is not the only approach to modelling the RA data, and there is no universal

answer for choosing the “best” approach. Liu et al. [38] gave an overview for modelling zero-

inflated non-negative continous data in general and proposed a few alternative distributions

for the positive part of RAs. For example, zero-inflated beta distribution is another commonly
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used approach [13, 39], because beta distribution has range from 0 to 1 exactly matching the

range of RAs.

When β(0) and β(+) have opposite signs, the predictor’s effects are described as “dissonant”.

Under this scenario, the two-part models showing more powerful results in the simulation

studies coincides with existing literature [9, 40]. In microbiome context, an example of this

scenario is that, an antibiotic treatment may be effective in reducing the risk of carrying some

specific bacteria, but may result in the growth of these bacteria once they survive due to antibi-

otic resistance [41, 42].

For the proposed method, the dimension of predictors’ design matrix Xk, p, is assumed to

be less than the number of clusters K. For high dimensional predictor space, e,g., gene expres-

sions in genome-wide association study, it is possible to encounter the situation of p� K. In

such cases regression models cannot be directly applied, and dimension reduction techniques

need to be used. Traditional approaches such as principal component analysis and penalized

regression including ridge regression and LASSO, as well as some machine learning based fea-

ture selection methods can be considered to be incorporated into the proposed method to deal

with high dimensional predictors. We are planning to extend the proposed method to deal

with such high dimensional predictors situation.

We have treated repeated longitudinal measures as a few discrete time points in our MTLC

model. When there are more time points for each sample and the exact observation time for

each sample is continuous, it is a natural extension of our current work to consider time as a

continuous variable and OTU observations as a function of time. Further investigation of

functional data analysis techniques can be explored and integrated with the OTU correlation

structure developed in this paper.
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