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Accurate mechanical characterization of adherent cells and their substrates is important
for understanding the influence of mechanical properties on cells themselves. Recent
mechanobiology studies outline the importance of mechanical parameters, such as
stress relaxation and strain stiffening on the behavior of cells. Numerous techniques
exist for probing mechanical properties and it is vital to understand the benefits of
each technique and how they relate to each other. This mini review aims to guide the
reader through the toolbox of mechanical characterization techniques by presenting
well-established and emerging methods currently used to assess mechanical properties
of substrates and cells.
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INTRODUCTION

When engineering mechanical cues to study cell mechanotransduction, it is important to take
into account how the cells sense the mechanical properties. Material mechanical properties ought
to be measured at timescales and frequencies relevant to the properties sensed by adhering cells
(Cameron et al., 2014; Charrier et al., 2018). When cells interact with a substrate, they can apply
forces parallel and perpendicular to the surface (Janmey et al., 2020). This implies that the method
used for assessing cellular forces may affect the results in mechanotransduction studies. One more
factor to consider is the depth into a material that cells can sense the mechanical properties.
Modeling, and studies on thin gels, suggest that cells sense mechanical properties in the range of
their radius (Sen et al., 2009; Buxboim et al., 2010; He et al., 2014). The range within which cells
can sense mechanical properties may be material-dependent though, and it has been shown that
strain stiffening fibrous networks enable long-range force sensing of up to hundreds of microns
(Leiphart et al., 2019). It is therefore relevant to consider the sensing depth of surface and bulk
mechanical characterization techniques, respectively. How cells sense their environment is also cell-
type dependent and, while many excellent model studies have been performed in 2D, cell sensing is
likely to be different in three-dimensional (3D) culture environments (Doyle and Yamada, 2016).

Many model substrates have been adopted to study cellular mechanotransduction. In 1980,
silicone rubber was first used as a deformable elastic substrate for cell culture, which revealed that
cells constantly exert forces on substrates (Harris et al., 1980). Building on this work, gels gained
interest as model substrates due to their tunable viscoelastic properties and close resemblance,
mechanically, to the extracellular matrix (ECM) (Tibbitt and Anseth, 2009; Chaudhuri, 2017).
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However, thin films and liquids have also been used as
substrates (Yang et al., 2014; Kong et al., 2018). To precisely
determine the mechanical cues that substrates display to cells
is crucial for biological studies. It is also important to assess
the changes in the mechanical properties of cells in response to
various biophysical and biochemical cues. Therefore, this review
describes and contrasts the most commonly used techniques
to determine the mechanical properties of materials and cells
(Figure 1 and Table 1).

ASSESSMENT OF THE GLOBAL
MECHANICAL PROPERTIES

The mechanical properties of substrates such as gels used in
mechanotransduction studies are usually characterized globally
by rheology, tensile, and compression testing.

Shear rheology can be used to monitor the gelation process,
or to measure the elastic and viscous properties of gels (denoted
by storage and loss modulus) by applying small amplitude
oscillatory shear forces (Zuidema et al., 2014). Time-dependent
aspects of viscoelasticity are quantified by relaxation time and
relaxation modulus (Fitzgerald et al., 2015; Chaudhuri et al.,
2016). Strain stiffening materials are characterized by monitoring
the elastic modulus as a function of increasing stress. It is
important to note the significance of the geometries used
for probing the sample. For instance, a recent study showed
that a crosshatched geometry revealed the strain stiffening
property of agarose, while a parallel plate geometry obscured
it due to the wall slippage effect (Bertula et al., 2019). The
main limitation of rheology to characterize gels is that the
spatial variation in moduli arising from sample heterogeneities
cannot be probed.

Compression and tensile testing are also techniques
commonly used to probe the global mechanical properties,
especially for biomaterials (Xiao et al., 2013; Vedadghavami
et al., 2017). The elastic, or Young’s modulus, of the sample is
generally obtained from the slope of the stress-strain curve, but
the viscoelastic properties can also be accessed through this kind
of characterization (Mirahmadi et al., 2013; Bosnjak et al., 2020).
Variations in the testing protocols can, however, influence the
results (Patel et al., 2019) and difficulties can also arise in tensile
testing from the breakage or slipping of the sample at the clamps
(Oyen, 2014).

Several of the aforementioned mechanical parameters can
be probed using different techniques, and it is important to
understand how the parameters are measured. For example,
tensile testing measures the elastic properties (Young’s modulus)
by applying tensile forces, while in rheology shear forces are
applied (storage modulus).

ASSESSMENT OF THE LOCAL
MECHANICAL PROPERTIES

The local mechanical properties are relevant for measuring what
properties cells sense at the surface of a material. The resolution of
the techniques described below enable the mechanical properties

of cells to be probed in real time due to their specificity and
sensitivity.

Probe-Based Techniques
The atomic force microscope (AFM) belongs to a family
of instruments known as scanning probe microscopes. These
instruments are commonly used for obtaining high resolution,
3D images of a sample surface using a tip which scans across
an area of interest whilst measuring the interactions with the
surface. Force-indentation is one major application of the AFM,
measuring the interaction forces between the probe tip (sharp
or colloidal) and a sample surface (Yablon, 2013). A force-
indentation curve is obtained by measuring the displacement
of the tip at the end of a cantilever, monitored by a laser and
photodiode while controlling the force of the indentation. AFM
has been extended for studying biological samples and their
processes (Alsteens et al., 2017; Krieg et al., 2019).

The main advantage AFM force-indentation has over
traditional nanoindentation is the ability to apply a lower
range of well-defined forces (pico-Newtons to nano-Newtons)
by changing the cantilever spring constant or tip, which is
particularly useful for hydrogel or soft biological samples. Sub-
pico-Newton forces have also been achievable by improving
tip stability (King et al., 2009; Churnside and Perkins, 2014).
Some challenges associated with AFM force-indentation are
that the indentation parameters and cantilever stiffness must
be appropriately selected and accurately calibrated to model
the data to mechanical information. A variety of methods
exist for accurate cantilever calibration, the most common
being the thermal noise calibration method (Hutter and
Bechhoefer, 1993). Laser Doppler vibrometry has also been
used to achieve more accurate calibrations (Ohler, 2007;
Gates and Pratt, 2012). Radmacher and colleagues have
developed a standardized nanomechanical procedure for AFM
on polyacrylamide hydrogels and MDCK-C11 cells showing
improvement in consistency and reproducibility across eleven
research groups in Europe (Schillers et al., 2017).

The tip and cantilever used for indentation are important for
modeling the force-indentation curves obtained from AFM. Tips
are usually made from stiff materials (silicon, silicon nitride or,
in the case of colloids, glass or polystyrene) to be suitable for
modeling, and to avoid deforming or damaging the tip when
performing indentations. AFM tips can generally be classified as
blunt or sharp tips. Blunt or rounded tips have a larger contact
area and can achieve higher forces for the same indentation depth
compared to a sharp tip (Qian and Zhao, 2018). Single cells have
also been used as probes to achieve pico-Newton forces (Helenius
et al., 2008; Li et al., 2019). Several different models are available
to model force-indentation curves, each associated with its own
assumptions and limitations (Lin and Horkay, 2008). Force-
indentation data is preferably fitted in the first few hundreds
of nanometers of the approach curve. The elastic modulus is
usually obtained by fitting Hertz model with a rounded tip;
although, sharp tips are commonly used for their availability
and simplicity (Sirghi et al., 2008; MacKay and Kumar, 2012).
It has also been demonstrated that the shear modulus can
be obtained from Hertz modeling of force-indentation curves
(Berry et al., 2020).
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FIGURE 1 | Schematic illustrations of the different methods to characterize the mechanical properties of substrates and/or cells.

AFM viscoelastic measurements such as stress relaxation and
creep (Yango et al., 2016; Efremov et al., 2017), strain stiffening
(Van Helvert and Friedl, 2016) and nano-rheology (Li et al., 2014)
are also possible. Oscillatory AFM has been used to determine
the complex shear modulus of cells (Alcaraz et al., 2003). The
storage stiffness, loss stiffness, and loss tangent of polyacrylamide
hydrogels have similarly been determined using a magnetically
driven cantilever (Nalam et al., 2015). Nano-rheology is still
a relatively new technique, but future improvements of nano-
rheological modeling in AFM software are expected to enhance
the field significantly.

Viscoelastic modeling can be performed using a variety of
models such as the Maxwell and the Voigt-Kelvin models (Cheng
et al., 2005; Fischer-Cripps, 2011) or Ting’s viscoelastic model
(Ting, 1964), which has been only recently applied to AFM force-
indentation curves (Brückner et al., 2017; Efremov et al., 2017,
2019b). For a recent review that highlights the various models and

properties obtainable from soft biological samples with AFM, the
reader is directed to Efremov et al. (2019a).

Nanomechanical Mapping
AFM modes to map mechanical properties on the nanoscale,
while imaging, have also been developed. Generally,
nanomechanical mapping modes are capable of mapping
the elastic and loss moduli in a range between 1 kPa and
100 GPa across an entire imaging area (100 nm2 to 100 µm2)
(Morales-Rivas et al., 2015; Viji Babu et al., 2019). This technique
offers high spatial resolution and can be operated in air, liquid
and vacuum. The main benefit of this method compared to
force-indentation is the imaging feature and the ability to overlay
mechanical data and topography. Different AFM manufacturers
provide integrated modes for nanomechanical mapping.

Generally, in nanomechanical mapping, individual force
curves are recorded as the tip is oscillating in tapping mode
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TABLE 1 | Considerations and relevant examples for the various characterization
techniques to assess mechanical properties at different length scales,
ranging from cm to nm.

Method Considerations Examples

Global scale
(cm-mm)

Shear rheology

– Sample’s contact ensured
by applying a normal force
(high normal
forces = higher values of
estimated modulus)

– Slippery gels: use of
crosshatched or
sandpaper geometry

– Normal force-controlled
rheology of polyethylene
glycol composite
hydrogels
(Randriantsilefisoa et al.,
2020)

– Geometry with sandpaper
to probe silk-alginate
hydrogel (Ziv et al., 2014)

Compression
testing

– Preload applied to the
samples to ensure contact
(not always relevant for
fragile materials)

– Difference between
confined and unconfined
testing

– Biphasic theory combined
with confined compression
tests to assess collagen
hydrogels mechanical
properties (Busby et al.,
2013)

Tensile testing – Use of dog-bone shape
samples to avoid breakage
and sandpaper to avoid
slipping at the clamps

– Use of digital image
correlation to assess
mechanical properties of
slippery samples (Subhash
et al., 2011)

Cavitation
rheology

– Complicated
measurements when
probing size scales similar
to sample defects

– Different types of cavitation
(needle or laser-based)
that operate at different
strain regimes

– Probing stiffness gradients
in supramolecular
hydrogels (Thomson et al.,
2020)

– Comparison of elastic
properties of gels using
bulk and cavitation
rheology (Bentz et al.,
2018)

Brillouin
microscopy

– Biophysical interpretation
of the measured signal still
causes debate

– Reply to “Water content,
not stiffness, dominates
Brillouin spectroscopy
measurements” (Scarcelli
and Yun, 2018)

Traction force
microscopy

– Use of a reference image
of cells and beads in a
stressed state first, and
then measurement of the
beads’ displacement after
removal of the cells in a
relaxed state

– Reference free TFM
methods (Balaban et al.,
2001; Bergert et al., 2016)

Probe-based
techniques

– Tip selection based on the
expected stiffness of the
material

– Nanoindentation vs. AFM
indentation with tip
selection considerations
(Qian and Zhao, 2018)

– Nanomechanical mapping
of soft substrates (Garcia,
2020)

Magnetic
tweezers

Local scale
(nm)

– Magnetic field orientation
can be used to produce
different types of forces
and torques

– Difficult to use
synergistically with other
techniques

– A guide to magnetic
tweezers (Sarkar and
Rybenkov, 2016)

– Detecting bound proteins
on DNA using hybrid
magnetic and optical
tweezers (van Loenhout
et al., 2013)

and scanning the surface. The maximum force exerted on the
sample is kept constant by the feedback loop, which ensures
the protection of the tip and the sample. The resulting force
curves are converted into force indentation curves, which can
subsequently be analyzed with regards to mechanical properties
such as modulus, adhesion, dissipation or deformation. The
spring constant of the cantilever and the tip radius have to be
calibrated prior to quantitative measurements. The operating
range of this technique ranges from very soft samples (low kPa)
to hard materials (100 GPa) and has been demonstrated on
amyloid nanofibrils (Sweers et al., 2011), proteoglycan mimetic
nanoparticles (Hedayati and Kipper, 2018), and microvilli on
living cells (Schillers et al., 2016). A protocol to analyze the
mechanical properties of very soft materials (cells) can be found
in reference (Hu et al., 2020).

We believe the use of fast, spatially resolved, mechanical,
and topographical analysis will be increasingly valuable for
mechanotransduction studies in the future.

Traction Force Microscopy
While the mechanical properties of substrates are important
to characterize, an understanding of the forces that cells can
exert on their surroundings is central for our understanding
of mechanotransduction. Traction force microscopy (TFM) is a
technique used to assess forces that cells apply to the ECM or
substrate they grow on/in, by monitoring the displacement of
fluorescent beads embedded in the substrate (Hur et al., 2020).
Some studies also measure these forces through the deflection of
elastic micropillar arrays onto which cells are adhering (Schoen
et al., 2010), or use the cell-induced alignment of collagen fibers
to deduce the applied traction forces (Shakiba et al., 2020).

Different kinds of TFM exist according to the number of
dimensions considered, and the accuracy of the method actually
increases with the number of dimensions involved in the
calculations. So far, most of the materials used as substrates are
hydrogels that exhibit linearly elastic and isotropic properties
such as silicon or polyacrylamide hydrogels (Polacheck and
Chen, 2016). However, these materials do not always reflect
the behavior of native tissues. Some studies develop TFM
methods that take into account the non-linear behaviors of
matrices, such as fibrillar networks like collagen, or strain-
stiffening materials (Steinwachs et al., 2016; Song et al., 2020).
Integrating these parameters often complicates the modeling, but
significantly improves the applicability of the results. TFM-based
methods are also developed to focus on cell-cell and intracellular
traction forces (Maruthamuthu et al., 2011), which is particularly
relevant for cells of tissues with cell junctions, such as the
endothelium. Recently, traction force microscopy was combined
with microarray-based techniques to enable high throughput
screening of cell generated forces (Kaylan et al., 2017).

EMERGING TECHNIQUES

Recent research has propagated the development of modern
characterization techniques, all with unique advantages and
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limitations. Some of the most promising emerging techniques for
mechanical characterization are summarized in this section.

Brillouin microscopy was originally demonstrated on cells
over a decade ago (Scarcelli and Yun, 2008) and has since
garnered attention within the biological and medical research
fields for its novel approach to non-destructive viscoelastic
measurements of biological samples. The method involves
interacting the intrinsic acoustic waves of a material with probe
laser pulses and interpreting how the light is scattered – which is
heavily linked to the material’s viscoelastic properties (Gusev and
Ruello, 2018). Recent works have demonstrated a submicrometric
spatial resolution (Caponi et al., 2020). Brillouin microscopy
is also largely non-destructive while still possessing resolution
capabilities for cellular characterization (µm scale) (Prevedel
et al., 2019). Since its pioneering application in 2005 (Koski
and Yarger, 2005), Brillouin microscopy has been utilized in
tissue-level sensing (Mathieu et al., 2011; Margueritat et al.,
2019) and subcellular-level characterization (Steelman et al.,
2015; Bevilacqua et al., 2019). However, interpretation of results
requires specific knowledge of the refractive index and material
density (Prevedel et al., 2019) which is difficult to experimentally
attain (Liu et al., 2016), and the weakness of the measured
signal causes extended scanning and data acquisition times
(Ballmann et al., 2019). Scrutinous evaluation of Brillouin
output is also required, especially in biological matter, due to
the spatiotemporal inhomogeneity causing differences in the
material’s intrinsic acoustic wave behavior (Wu et al., 2018;
Ballmann et al., 2019).

Microfluidic devices constitute an efficient and relatively high-
throughput method to characterize the mechanical properties of
cells. For instance, micropipette aspiration on microfluidic chips
using giant vesicles as cell models have been developed to access
cell membrane mechanics (Elias et al., 2020). Other techniques
use flow field analysis to study the deformations applied by
fluids to cells to deduce their viscoelastic properties (Guillou
et al., 2016). The influence of fluid flows on cells has also been
combined with computational models to determine the elastic
modulus of cells (Song et al., 2012) and such flows have also been
demonstrated to impact cell behavior and maturation (Song et al.,
2013; Shemesh et al., 2015).

Optical tweezers (OTs) is a single-molecule technique initially
designed in 1986 (Ashkin et al., 1986). OTs involve the
precise manipulation of beads (0.1–100 pN) with molecules
tethered to them by trapping them with strongly focused
light. In the context of mechanobiology, OTs have been
used to assess ligand-receptor bond properties using ligand-
functionalized trapped particles (Jiang et al., 2003), to explore
forces on the structures at the surface of the cell involved in
mechanotransduction (Choquet et al., 1997), to assess forces
on structures within the cell (Welte et al., 1998), and to
investigate the mechanical properties of the cell (Tan et al., 2012).
OTs are, however, accompanied by drawbacks such as photo-
entrapment of impurity particles, local heating and photodamage
(Peterman et al., 2003). Some of these challenges are solved
by magnetic tweezers (MTs). This single-molecule technique is
relevant for biological applications such as single-molecule force
measurements and cellular micromanipulation (Basoli et al.,

2018). It operates by utilizing superparamagnetic beads (0.1–
100 µm) as a force transducer for a tethered single large molecule
by applying a magnetic field (Xin et al., 2017). Advantages of
MT include its cost-effectiveness and ease of implementation,
superior to other single-molecule techniques (Kemmerich et al.,
2016). Furthermore, MTs can generate forces inside closed
opaque bodies, such as living cells, which is not the case
with other non-invasive methods (Timonen and Grzybowski,
2017). MTs have been used extensively to generate tension
on cell adhesion molecules, and then observing the cellular
response to reveal mechanotransduction pathways (Guilluy et al.,
2014; Marjoram et al., 2016). The main challenge in MT
development has been their subpar resolution that is limited
by relying on camera-based measurements of magnetic beads
(De Vlaminck and Dekker, 2012). However, high spatiotemporal
resolution magnetic tweezers (Å scale) are being implemented
with help from more sophisticated cameras and computer
hardware (Huhle et al., 2015; Ostrofet et al., 2020). There are
also difficulties working with particles susceptible to magnetic
fields. Furthermore, the requirement that bulky magnets must be
situated close to the sample complicates the combination of MTs
with other applications (Sarkar and Rybenkov, 2016).

Concerning substrates, a relatively new and inexpensive
technique to probe local mechanical properties is cavitation
rheology (Zimberlin et al., 2007). Cavitation rheology quantifies
the elastic properties by growing a bubble in a gel or fluid and
monitoring the pressure dynamics (Hashemnejad and Kundu,
2017). The resolution of cavitation rheology can go as low as 1 µm
and requires only small sample volumes (Barney et al., 2020). One
drawback of this method is that it is destructive to the sample.
Questions also remain around relating gel fracture to cavitation
and the influence of local network structures on cavitation bubble
growth (Barney et al., 2020).

CONCLUSION AND OUTLOOKS

One of the fundamental challenging aspects of characterizing
substrates is the relevance of a particular technique in capturing
the properties of substrates experienced by the cell. Each
technique probes the mechanical properties in a different way,
and it is necessary to compare the parameters obtained using
different techniques. Rheology or compression tests, for instance,
can provide the elastic and loss modulus of a material, but only
as a mean value for the whole material, whereas probe-based
techniques such as AFM assess the local mechanical properties at
the microscopic scale, which can differ from the macroscopic one.
A recent study showed that the bulk elastic modulus obtained for
stiffer gels using rheology and AFM correlate well but showed
marked differences for softer gels (Megone et al., 2018). There
has also been a recent trend in using simple and inexpensive
techniques for probing mechanical properties. For instance, using
fluorescent bead density as a readout for stiffness gradients in
gels instead of using expensive techniques like AFM (Barber-
Pérez et al., 2020). Recent technology also allows assessment
of mechanical properties of materials with extremely precise
force (resolution down to 10 nN claimed by the manufacturer)
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through micro-scale compression testing, particularly for soft
biomaterials (Kerscher et al., 2017).

Emerging techniques are now focusing on probing
these properties even more precisely and in-depth. Cell-
substrate interactions are also highly relevant to assess
mechanotransduction and techniques such as traction force
microscopy and magnetic tweezers can be applied to survey
such interactions. Forces in the order of pico-Newtons, applied
by integrins on ligands, have also been assessed by DNA
mechanotechnology (Brockman et al., 2018; Glazier et al., 2019;
Ma et al., 2019). However, significant challenges regarding the
integrity of the DNA probes in cell culture conditions and the
type of receptor-ligand interactions that can be probed remain
(Ma and Salaita, 2019; Yasunaga et al., 2019).

Many of the existing tools for measuring the mechanical
properties of cells are limited in terms of throughput. To
mitigate this issue, high throughput based methods have
been explored to separate large populations of cells based on
mechanical properties using microfluidics and shear stress (Otto
et al., 2015). A combination of smart design of microfluidic
geometries and powerful computational approaches such as
microparticle image velocimetry and machine learning promise
to further progress the field of mechanobiology (Song et al., 2010;
Guillou et al., 2016).

The influence of substrate mechanical properties on processes
such as nascent protein deposition has been explored in
recent studies by using metabolic labeling techniques (Loebel
et al., 2019, 2020). It would be interesting to combine

such labeling with 3D traction force microscopy in order to
directly visualize the effects of cell traction forces on nascent
protein deposition.

Going forward, standard mechanical characterization
techniques combined with newer, more accurate and more
local assessments of the mechanical properties, will enable
the development of more complex engineered matrices.
Such materials with spatiotemporally-controlled mechanical
properties will further the understanding of how cells interact
with their environment in vitro, and indirectly in vivo. This
is important to fully use the potential of stem cells in tissue
engineering and stem cell therapy.
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