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Abstract: In recent research on the formulation prediction of oral dissolving drugs, deep learning
models with significantly improved performance compared to machine learning models were pro-
posed. However, the performance degradation due to limitations of an imbalanced dataset with a
small size and inefficient neural network structure has still not been resolved. Therefore, we pro-
pose new deep learning-based prediction models that maximize the prediction performance for
disintegration time of oral fast disintegrating films (OFDF) and cumulative dissolution profiles of
sustained-release matrix tablets (SRMT). In the case of OFDF, we use principal component analysis
(PCA) to reduce the dimensionality of the dataset, thereby improving the prediction performance
and reducing the training time. In the case of SRMT, the Wasserstein generative adversarial net-
work (WGAN), a neural network-based generative model, is used to overcome the limitation of
performance improvement due to the lack of experimental data. To the best of our knowledge, this is
the first work that utilizes WGAN for pharmaceutical formulation prediction. Experimental results
show that the proposed methods have superior performance than the existing methods for all the
performance metrics considered.

Keywords: deep learning; imbalanced data; small data; principal component analysis; Wasserstein
GAN; pharmaceutical formulation

1. Introduction

The pharmaceutical industry still strongly relies on traditional trial-and-error experi-
ments, which are time-consuming, cost-inefficient, and unpredictable. Over recent years, in
order to reduce the degree of trial-and-error in drug discovery and development, research
results on data-based prediction technologies including machine learning and deep learn-
ing have been published [1–6]. In particular, deep learning has been successfully applied
to drug discovery and repositioning, such as drug–target interaction prediction and drug
screening, due to its ability to automatically extract nonlinear features from complex input
data [7–9].

In the field of formulation prediction, recent research [10] showed that a deep neural
network (DNN) outperforms an artificial neural network (ANN) with a single hidden
layer for predicting disintegration time on orally disintegrating tablets. Previously, two
prediction models were proposed in [11] for the formulations of oral fast disintegrating
films (OFDF) and sustained release matrix tablets (SRMT), which are drugs that disintegrate
in the oral cavity. Six machine learning methods, multiple linear regression (MLR), partial
least squared regression (PLSR), support vector machine (SVM), ANNs, random forest (RF),
and k-nearest neighbors (k-NN), were considered to compare with DNNs. The simulation
results confirmed that the performance of the DNN model has the best performance in both
cases [11]. In addition, the maximum dissimilarity algorithm with the small group filter and
representative initial set selection (MD-FIS) algorithm tried to overcome the limitation in
the pharmaceutical formulation prediction field, where only small and imbalanced datasets
are provided due to limited experimental data. The MD-FIS algorithm is a modification of
the maximum dissimilarity algorithm [12] and is a technique for selecting test data that
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adequately represents the characteristics of the entire data. The models proposed in the
previous research outperform other machine learning models, and especially show high
prediction accuracy on the training data, but do not guarantee sufficient performance on the
test data. Moreover, they still do not fundamentally solve the limitation of a small dataset.

In this paper, we utilize principal component analysis (PCA) [13] and Wasserstein
generative adversarial network (WGAN) [14] to improve the performance of existing
models in [11]. PCA is a technique for maximizing variance and selecting essential features
and was used in a recent study [15] to solve the multivariate pneumonia classification
problem. WGAN is a technology that generates new samples from an original dataset.
Recently, WGAN was used to improve the predictive performance of cancer diagnosis by
solving the data imbalance problem [16]. In our work, for OFDF, we remove the correlation
between features of the data using PCA and then predict the disintegration time using a
new neural network model with a simpler and more effective structure than the existing
model. For SRMT, we increase the size of the training data with WGAN and then predict
the cumulative dissolution profiles for four time points (2, 4, 6, and 8 h) using the proposed
neural network. The simulation results show that the two proposed models significantly
improved the performance of the existing models in [11].

2. Proposed Models

In this section, we propose two prediction models which have better performance than
the existing models in [11] for OFDF and SRMT. Figure 1 represents the architectures of
the proposed models. The proposed model for OFDF improves the prediction accuracy by
reducing the dimensionality of the features using PCA. The proposed model for SRMT im-
proves the prediction accuracy by increasing the number of data samples through WGAN,
a data augmentation scheme. In addition, we redesign the neural network structures for
both prediction models, which not only guarantee good performance but also significantly
reduce the training time.

Figure 1. Architecture of two proposed models. (a) OFDF; (b) SRMT.

2.1. A Proposed Model for OFDF

The model for OFDF implements a single output regression analysis method that
predicts the disintegration time using 24 feature values. Since deep learning methods
generally include nonlinear modules and perform feature extraction automatically, they
are relatively less susceptible to multicollinearity that causes performance degradation
in linear regression models. However, if highly correlated features are used as input to
the neural network, the problem of convergence to local minima can frequently occur
during the training process. Therefore, we utilize PCA to transform the input data into
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a new representation of independent variables in the data preprocessing. The PCA is a
dimensionality reduction technique that extracts only meaningful components of the entire
data through orthogonal transformations. Using this technique, we can reduce the size of
the original dataset as well as remove highly correlated variables.

The model for OFDF includes a neural network structure with three hidden layers
and one output layer. The neural network has 50, 25, 16, and 1 neurons in that order. In the
first hidden layer, dropout is performed at a rate of 0.05. The dropout is a technique for
temporarily ignoring neurons in a neural network during the training. Using this technique,
we prevent overfitting on the training data and improve the performance of the test data. As
activation functions, the ReLU function [17] is used for all the hidden layers, and sigmoid
function [18] is used for the output layer. Biases of all the layers are initialized to zeros, and
weights have random values following He uniform distribution [19] for the initialization.
The ReLU function is widely used in deep neural networks due to its effect of addressing
the vanishing gradient problems. The He uniform is an initialization function proposed to
improve the convergence speed of deep neural networks using the RELU function.

2.2. A Proposed Model for SRMT

The model for SRMT implements a multi-output regression analysis method that
predicts the cumulative dissolution profiles for each time point (2, 4, 6, and 8 h) with
21 feature values. It requires a relatively large amount of data compared to the model for
OFDF because there are 4 target variables to be predicted, but the original training data
consists of only 105 data samples. We note that the training data of OFDF consists of 91 data
samples. Therefore, we generated new data samples using WGAN (Wasserstein generative
adversarial network), one of the data augmentation techniques, for model training. WGAN
is an advanced model of vanilla generative adversarial network (GAN) [20] in which two
neural networks, a generator, and a discriminator, are trained in an adversarial relationship.
WGAN uses a new cost function using Wasserstein distance to address the vanishing
gradient problem and mode collapse problem.

In our model, both the generator and critic of WGAN are implemented as DNNs.
The generator has 6 hidden layers with 500, 250, 200, 150, 100, and 50 nodes, respectively,
and the batch normalization process is performed for each hidden layer. It generates 25-
dimensional data from input data of 100 dimensions randomly generated from a normal
distribution. The critic has 4 hidden layers with 150, 120, 100, and 50 nodes, respectively. In
the first and second hidden layers, dropout is performed at a rate of 0.1.

The new data generated by the WGAN model is combined with the original training
data and used for the training of the new prediction model. The prediction model consists
of five hidden layers and one output layer. Each contains 150, 130, 100, 50, 30, and 4 neurons.
Biases of all the layers are initialized to zeros, and weights have random values following a
random normal distribution as initial values. As activation functions, the ReLU function is
used for all the hidden layers, and the sigmoid function is used for the output layer. In the
first and second hidden layers, dropout is performed at a rate of 0.1.

3. Experiment and Performance Evaluation

In this section, we present datasets used in the experiment and evaluation criteria
for two prediction models. We compare the performance of the proposed models and the
existing models in [11] through experimental results. For a fair comparison, we used the
same datasets in [21] and evaluation criteria considered in [11] for all experiments.

3.1. Dataset

Two datasets used in the experiment contain 131 formulations for OFDF and 145 for-
mulations for SRMT. OFDF has disintegration time and SRMT has cumulative dissolution
profiles (2, 4, 6, and 8 h) as target variables to be predicted. For representing the properties
of active pharmaceutical ingredients (APIs), molecular descriptors were used. All formu-
lations were described with the nine molecular descriptors including molecular weight,
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XlogP3, hydrogen bond donor count, hydrogen bond acceptor count, rotatable bond count,
topological polar surface area, heavy atom count, complexity, and logS. The excipient types
were encoded to different numbers. The process parameters were also considered. The
parameters for OFDF are weight, thickness, tensile strength, elongation, folding endurance,
and actual drug content, and the parameters for SRMT are granulation process, diameter,
and hardness. Therefore, OFDF consists of 24 feature variables and 1 target variable, and
SRMT consists of 21 feature variables and 4 target variables.

The authors in [11] performed the MD-FIS algorithm twice to extract 20 data samples
each for the validation and test sets that adequately characterize the overall data, and
classified the rest as the training data. As a result, the training, validation, and test datasets
of OFDF were divided into 91, 20, and 20 data samples, and those of SRMT were divided
into 105, 20, and 20 samples.

The training data is used for model training, the validation data is used for tuning for
model optimization, and the test data is used to check the performance of a new dataset
that is not used for the training process. For effective model training, we normalized feature
values and target values. For instance, the target value of the OFDF has a real value from 0
to 1, indicating 0 to 100 s. The cumulative dissolution profile value of SRMT has a value
from 0 to 1, representing 0% to 100%.

3.2. Evaluation Criteria

Instead of the commonly used correlation and determinants as performance metrics
for evaluating regression problems in machine learning, we use the following specific
criteria introduced in the previous research [11].

In the pharmaceutical field, the case where the absolute error is less than 10% is
generally assumed to be a successful prediction [10], so we used 10 s, which is about 10% of
the maximum observation, as the criterion for the OFDF prediction model. The accuracy is
expressed as the ratio of the case where the difference between the predicted value and the
actual value is within 10 s among all predictions. The definition is expressed in Equation (1):

AccuracyOFDF =
Number(| f ′ − f | ≤ 10)

All predictions
, (1)

where f ′ is a predicted value and f is an actual experimental value.
In the prediction model for SRMT, the performance is evaluated using the similarity

factor f2 [22] to measure the similarity according to the recommendations of the FDA (US
Food and Drug Administration). When the absolute error of dissolution profile prediction is
10%, the corresponding f2 value is about 50, and the value increases as the error decreases.
Therefore, a case where the f2 value is greater than or equal to 50 is considered a successful
prediction. The accuracy of the prediction is expressed as the ratio of successful predictions
among all predictions. This definition is expressed in Equation (2):

AccuracySRMT =
Number( f2 ≥ 50)

All predictions
. (2)

3.3. Performance Evaluation for OFDF

We utilized PCA to reduce the training time and improve the performance of the
prediction model for OFDF. The PCA reduces the dimensionality by projecting a high-
dimensional space into a low-dimensional space so that the low-dimensional representation
retains some meaningful properties of the original data, thereby eliminating unnecessary
dimensions and reducing the training time for the model. Therefore, it is possible to
achieve high performance at a faster speed than when using raw data. In addition, the
multicollinearity problem can be alleviated by removing highly correlated variables.

The number of principal components can be selected using a scree plot or cumulative
percentage of variance (CPV). In order to select an appropriate number of dimensions
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before reducing the dimension of data using PCA, we drew a scree plot with the number of
components on the X-axis and eigenvalues on the Y-axis.

Figure 2 is a scree plot of the OFDF dataset. In the figure, the elbow point is observed
as 5, which indicates that the 21-dimensional data can be reduced to 5-dimensional data
through PCA. Here, the elbow point represents the point at which the slope softens after
a certain point on the scree plot. We used five principal components in order from the
first principal component as input data of the proposed model. Specifically, we found an
appropriate principal component using only the training data and applied the same setting
to the validation data and test data.

Figure 2. Scree plot of OFDF dataset.

Figure 3 shows correlation coefficients between variables in the training data before
and after applying PCA. As the color of a square gets closer to red or blue from gray,
it is a variable pair that has a strong correlation. Although there were several variable
pairs with strong correlation in the training data before applying PCA, it is confirmed that
multicollinearity between variables is removed through PCA.

Figure 3. Correlation matrices of OFDF datasets before and after applying PCA.
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In order to verify the effect of PCA on the performance improvement, we trained
the proposed DNN model using each of the training data before and after applying PCA.
For the training, mean square error (MSE) was used as the loss function and Adam [23]
was used as the optimization algorithm. The learning rate was set to 0.01. The number of
epochs was set to 800 and the batch size was set to 32. Here, an epoch is a unit in which one
training is performed on the entire training dataset, and a batch is the bundle of training
data samples used to update the parameters.

Tables 1–3 show the numbers of trainable parameters for the existing OFDF model,
the proposed OFDF model without PCA, and the proposed OFDF model with PCA, re-
spectively. The number of trainable parameters means the number of parameters that
are iteratively updated during the model training. Table 4 compares the total number of
trainable parameters, the total number of updates, and the training time of the three models
above. The training time refers to the time it takes to find an optimal or near-optimal value
after inputting the training data into each deep learning model. We note that, as the number
of trainable parameters or the total number of updates increases, the complexity of the
model increases, which leads to an increase in the training time.

Table 1. The number of trainable parameters of the existing OFDF model [11].

Layer Shape Trainable Parameters

Input 24 0
Hidden layer 1 50 1250
Hidden layer 2 50 2550
Hidden layer 3 50 2550
Hidden layer 4 50 2550
Hidden layer 5 50 2550
Hidden layer 6 50 2550
Hidden layer 7 50 2550
Hidden layer 8 50 2550
Hidden layer 9 50 2550
Hidden layer 10 50 2550

Output 1 51

Total 24,251

Table 2. The number of trainable parameters of the proposed OFDF model without PCA.

Layer Shape Trainable Parameters

Input 24 0
Hidden layer 1 50 1250
Hidden layer 2 25 1275
Hidden layer 3 16 416

Output 1 17

Total 2958

Table 3. The number of trainable parameters of the proposed OFDF model with PCA.

Layer Shape Trainable Parameters

Input 24 0
Hidden layer 1 50 300
Hidden layer 2 25 1275
Hidden layer 3 16 416

Output 1 17

Total 2008



Pharmaceutics 2022, 14, 467 7 of 11

Table 4. A comparison of the total number of trainable parameters, total number of updates, and
training time between the existing OFDF model [11], the proposed OFDF model without PCA, and
the proposed OFDF model with PCA.

Model
Total Number
of Trainable
Parameters

Total Number
of Updates

Training Time
(min:s)

Ref. [11] 24,251 81,900 01:47

Proposed
OFDF Model

Without PCA 2958 2400 00:05

With PCA 2008 2400 00:04

The DNN model proposed in this paper has a shallow but effective structure, so the
number of trainable parameters is reduced to about 10% of the existing model. In addition,
by adjusting the batch size, the total number of updates is also reduced to about 3% of the
existing model. This shortens the training time by reducing the computational complexity.
In the case of applying PCA to the proposed model, the number of trainable parameters is
reduced by 950 because the dimension of the input data is reduced from 24 to 5. As a result,
the training time was significantly reduced.

Table 5 is the performance evaluation result of the three models. Compared with the
existing OFDF models, the two proposed OFDF models show better performance for all
the training, validation, and test data. In particular, the proposed OFDF model with PCA
has the best accuracy with a 20% increase compared to the existing OFDF model in the test
data. Moreover, in terms of the training time, the proposed OFDF model with PCA was the
best among the three models. Therefore, we propose a final model of the entire structure
in which the given data is preprocessed with PCA and then the newly designed neural
network is trained using it.

Table 5. Performance comparison between the existing OFDF model [11], the proposed OFDF model
without PCA, and the proposed OFDF model with PCA.

Model
Training Data Validation Data Test Data

Accuracy
(%) RMSE MAE Accuracy

(%) RMSE MAE Accuracy
(%) RMSE MAE

Ref. [11] 97.8 0.0382 0.0277 80 0.0765 0.0629 75 0.1009 0.0720

Proposed
OFDF
model

Without
PCA

100 0.0256 0.0192 85 0.0755 0.0598 85 0.0813 0.0536

With
PCA 100 0.0338 0.0243 95 0.0568 0.0427 95 0.0843 0.0578

3.4. Performance Evaluation for SRMT

We addressed several data augmentation techniques to improve the performance
of a prediction model for SRMT. A commonly used data augmentation technique is an
oversampling technique. However, since the dataset for SRMT is non-categorical data, it is
difficult to directly apply the oversampling. Therefore, we multiplied the final cumulative
dissolution rates by 10 and removed the decimal portion to generate labels for the over-
sampling. These labels are represented by 10 classes with integer values between 0 and 9.
We applied oversampling techniques, random over-sampling (ROS), synthetic minority
over-sampling technique (SMOTE) [24], and adaptive synthetic sampling (ADASYN) [25],
to the categorically re-expressed dataset. As a result, the training data increased from
105 samples to 200, 200, and 203 samples, in that order. Table 6 shows the number of data
per class in the training data. Through the oversampling techniques, it can be seen that
data samples of each class are generated in the same or similar number as the seventh class,
which has the largest number of samples.
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Table 6. The number of samples for each class of the original training data for SRMT and the new
training data with the oversampling techniques.

Class Original
Training Data ROS SMOTE ADASYN

1 5 20 20 21
2 4 20 20 19
3 7 20 20 21
4 8 20 20 21
5 9 20 20 21
6 13 20 20 22
7 20 20 20 20
8 15 20 20 21
9 9 20 20 18
10 15 20 20 19

Total 105 200 200 203

As another data augmentation technique, we considered GAN and its variant, WGAN.
WGAN uses a critic instead of a discriminator of GAN and a new cost function using
Wasserstein distance instead of binary cross-entropy of GAN. First, we trained GAN
5000 times to generate 2000 data samples. However, some of them did not satisfy the
cumulative characteristics. Table 7 shows two cases of whether the cumulative characteristic
is satisfied or not. For example, in the first sample in the Dissatisfaction column in Table 7,
the cumulative dissolution amount increased to 0.798 after 6 h, and then decreased to
0.718 after 8 h. However, it is practically not possible. Therefore, we removed 309 samples
that do not satisfy the cumulative characteristic among the newly generated 2000 samples.
Next, in order to confirm the distribution of the generated data samples, each sample was
expressed as coordinates in two-dimensional space with two principal components as each
axis through PCA. Figure 4a shows the distribution of data samples generated by GAN.
From the figure, it can be observed that the generated data samples are concentrated in
a specific part rather than in a form that is widely spread in two-dimensional space. To
solve this mode collapse problem, we generated new data samples using WGAN. As with
GAN, only 351 samples that satisfy the cumulative characteristic among the generated
data samples were selected. Figure 4b shows the distribution of data samples generated by
WGAN. Unlike when using GAN, the distribution of the generated data samples is wide
and evenly spread in two-dimensional space. From the result, it can be seen that WGAN
solved the mode collapse problem.

Figure 4. Distribution of data samples generated by (a) GAN and (b) WGAN.



Pharmaceutics 2022, 14, 467 9 of 11

Table 7. Two cases of whether cumulative characteristic is satisfied in the cumulative dissolution
profile for SRMT.

Satisfaction Dissatisfaction

2 h 4 h 6 h 8 h 2 h 4 h 6 h 8 h

0.070 0.234 0.824 0.855 0.244 0.513 0.798 0.718
0.302 0.575 0.785 0.910 0.365 0.316 0.580 0.575
0.100 0.386 0.934 0.942 0.358 0.469 0.728 0.696
0.214 0.305 0.409 0.441 0.368 0.271 0.572 0.571
0.131 0.328 0.455 0.497 0.453 0.248 0.688 0.652

The proposed model for SRMT is optimized with the Adam algorithm with a learning
rate of 0.001 and trained 2000 times by using MSE as the cost function. In order to obtain
the best performance, we set the batch size to 32.

Tables 8 and 9 show the numbers of trainable parameters for the existing SRMT
model and the proposed SRMT model, respectively. Table 10 compares the total number of
trainable parameters, the total number of updates, and the training time of two models.
The total number of trainable parameters of the proposed model is about five times that of
the existing model, but the total number of updates is significantly reduced. As a result, the
training time was reduced to less than half. This means that our proposed SRMT model
converges to good performance with fewer updates even though the number of trainable
parameters is greater than that of the existing model.

Table 8. The number of trainable parameters of the existing SRMT model [11].

Layer Shape Trainable Parameters

Input 21 0
Hidden layer 1 30 660
Hidden layer 2 30 930
Hidden layer 3 30 930
Hidden layer 4 30 930
Hidden layer 5 30 930
Hidden layer 6 30 930
Hidden layer 7 30 930
Hidden layer 8 30 930
Hidden layer 9 30 930

Output 4 124

Total 8224

Table 9. The number of trainable parameters of the proposed SRMT model [11].

Layer Shape Trainable Parameters

Input 21 0
Hidden layer 1 150 3300
Hidden layer 2 130 19,630
Hidden layer 3 100 13,100
Hidden layer 4 50 5050
Hidden layer 5 30 1530

Output 4 124

Total 42,734
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Table 10. A comparison of the total number of trainable parameters, total number of updates, and
training time between the existing SRMT model [11], the proposed SRMT model.

Model Total Number of
Trainable Parameters

Total Number of
Updates

Training Time
(min:s)

Ref. [11] 8224 273,000 02:47

Proposed SRMT
Model 42,734 37,500 01:04

We also compared the performance after training the model using the datasets gen-
erated by ROS, SMOTE, ADASYN, and WGAN. Table 11 shows the experimental results
for the existing SRMT model and the proposed SRMT model with data augmentation
techniques. The performance of the proposed model is better than that of the existing
model in most cases, and especially when using WGAN, it shows the best performance
with a 10% increase compared to the existing SRMT model in the test data. Therefore, we
propose a final model that augments the given training data utilizing WGAN and then
uses it to train a newly designed neural network.

Table 11. Performance comparison between the existing SRMT model [11] and the proposed SRMT
model with data augmentation techniques.

Model
Training Data Validation Data Test Data

Accuracy
(%) RMSE MAE Accuracy

(%) RMSE MAE Accuracy
(%) RMSE MAE

Ref. [11] 99.05 0.0384 0.0283 65 0.1625 0.1053 60 0.2019 0.1264

Proposed
SRMT
model

ROS 99 0.0176 0.0079 65 0.1347 0.9090 65 0.1116 0.0833

SMOTE 100 0.0082 0.0045 65 0.1469 0.0990 55 0.1282 0.0993

ADASYN 100 0.0073 0.0038 65 0.1438 0.0965 60 0.1292 0.0992

WGAN 100 0.0134 0.0101 75 0.1142 0.0762 70 0.1086 0.0831

4. Conclusions

In this paper, we dealt with how to effectively utilize imbalanced datasets with small
sizes for predicting the properties of drugs. For OFDF, we used PCA to remove correlation
between variables and designed an effective neural network structure. For SRMT, which
requires more complex and accurate predictive capability than OFDF, we used WGAN
to augment data and designed an efficient neural network structure. In both cases, it was
confirmed through experiments that the proposed models showed superior performance
to the existing models. We note that, in the SRMT case, there is still room for further
improvement since the difference in prediction accuracy between the training data and the
test data is about 30%. We expect that the proposed models and techniques will contribute
to facilitating data-based decision-making, speeding up the process, and reducing the rate
of failure in all stages of drug discovery and development.
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