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Abstract

Background: Pseudomonas fluorescens is a genetically and physiologically diverse species of bacteria present in
many habitats and in association with plants. This species of bacteria produces a large array of secondary
metabolites with potential as natural products. P. fluorescens isolate WH6 produces Germination-Arrest Factor (GAF),
a predicted small peptide or amino acid analog with herbicidal activity that specifically inhibits germination of
seeds of graminaceous species.

Results: We used a hybrid next-generation sequencing approach to develop a high-quality draft genome
sequence for P. fluorescens WH6. We employed automated, manual, and experimental methods to further improve
the draft genome sequence. From this assembly of 6.27 megabases, we predicted 5876 genes, of which 3115 were
core to P. fluorescens and 1567 were unique to WH6. Comparative genomic studies of WH6 revealed high similarity
in synteny and orthology of genes with P. fluorescens SBW25. A phylogenomic study also placed WH6 in the same
lineage as SBW25. In a previous non-saturating mutagenesis screen we identified two genes necessary for GAF
activity in WH6. Mapping of their flanking sequences revealed genes that encode a candidate anti-sigma factor
and an aminotransferase. Finally, we discovered several candidate virulence and host-association mechanisms, one
of which appears to be a complete type III secretion system.

Conclusions: The improved high-quality draft genome sequence of WH6 contributes towards resolving the
P. fluorescens species, providing additional impetus for establishing two separate lineages in P. fluorescens. Despite
the high levels of orthology and synteny to SBW25, WH6 still had a substantial number of unique genes and
represents another source for the discovery of genes with implications in affecting plant growth and health. Two
genes are demonstrably necessary for GAF and further characterization of their proteins is important for
developing natural products as control measure against grassy weeds. Finally, WH6 is the first isolate of
P. fluorescens reported to encode a complete T3SS. This gives us the opportunity to explore the role of what has
traditionally been thought of as a virulence mechanism for non-pathogenic interactions with plants.

Background
Pseudomonas fluorescens is a diverse species of bacteria
that is found throughout natural habitats and associated
with plants. Contributing to their diverse lifestyles is
their ability to produce an equally diverse array of sec-
ondary metabolites that affect interactions with hosts
and other inhabitants of their ecosystems. Some isolates

benefit plants by producing growth promoting hor-
mones or antimicrobial compounds to control against
pathogens [1]. Others are deleterious and have the capa-
city to synthesize and secrete novel compounds that
negatively affect growth of plants [2-4].
The physiological diversity of P. fluorescens is mir-

rored by its tremendous genetic diversity. However, the
genetic diversity may reflect the possibility that P. fluor-
escens is not a single species, but rather a complex of at
least two lineages. Molecular phylogenetic studies of 16
isolates suggested P. fluorescens should be represented
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by the P. chlororaphis and P. fluorescens lineages [5].
Alternatively or additionally, P. fluorescens may have an
open pan genome [6,7]. Finished genome sequences are
available for the SBW25, Pf-5, and Pf0-1 isolates of P.
fluorescens [8,9]. Their genomes exceed 6.4 megabases
and their relatively large sizes are not unexpected for
free-living bacteria [10]. Comparative analyses of the
three isolates of P. fluorescens revealed substantial varia-
tion in diversity of genome content and heterogeneity in
genome organization [9]. Each genome has 1,000 to
nearly 1,500 unique genes when compared to each
other.
Plant-associated isolates of P. fluorescens potentially

have mechanisms for interacting with plants. Many
Gram-negative bacteria use a type III secretion system
(T3SS) to interact with their hosts [11]. The T3SS is the
most complex of the bacterial secretion systems and is
typically encoded by a large cluster of genes arranged as
a single superoperon. Its function is to inject type III
effector proteins directly into host cells [11,12]. These
type III effectors are important host-range determinants
of plant pathogenic bacteria because they perturb and
potentially elicit plant defenses [13].
It is unclear as to how prevalent T3SS-encoding

regions are in P. fluorescens. Nearly 60% of a surveyed
collection of P. fluorescens strains had a homolog of
rscN, which encodes the ATPase of the T3SS [14].
However, it is not known whether all genes necessary
to complete the T3SS are present in these isolates. Of
the three completed genomes, genes encoding the
T3SS are present only in SBW25. Several important or
typically conserved genes are missing or truncated in
the T3SS-encoding locus of SBW25 [15]. Despite the
cryptic appearance of the T3SS, when constitutively
expressing the transcriptional regulator of the T3SS,
SBW25 could deliver a heterologous type III effector
into plant cells, suggesting the T3SS may still be func-
tional [15].
The role of the T3SS for the lifestyle of P. fluorescens

is still unclear. In SBW25, despite the cryptic T3SS,
single mutants of some but not all the remaining T3SS-
encoding genes were reduced in fitness in the rhizo-
sphere of sugar beets [16]. This is not unheard of, as
mutants of seemingly cryptic T3SS in pathogens are
compromised in virulence [17]. However, in the case of
SBW25, the T3SS mutants were also compromised in
growth in vitro [16]. A T3SS mutant of the biocontrol
isolate P. fluorescens KD was compromised in its ability
to protect cucumbers against damping-off disease
caused by Pythium ultimum [18]. This may be a result
of KD requiring a functional T3SS to elicit host
defenses, thereby indirectly protecting against P. ulti-
mum or potentially as a direct mechanism against the
pathogen.

We are interested in exploiting P. fluorescens for con-
trol of grassy weeds. We have previously reported the
selection, isolation, and characterization of five strains of
P. fluorescens that inhibit germination of seeds of grassy
weeds [19]. Further characterizations led to the identifi-
cation of Germination-Arrest Factor (GAF) produced by
these isolates. GAF is a small, extremely hydrophilic
secreted herbicide that reacts with ninhydrin and pos-
sesses an acid group, suggestive of a small peptide or
amino acid analog [4,20]. In particular, the high specifi-
city of GAF towards grasses and inhibitory activity at
only certain developmental stages during seed germina-
tion provides promise for its potential as a natural her-
bicide for the control of grassy weeds in grass seed
production and turf management settings.
We selected P. fluorescens WH6 as the archetypal

GAF-producing isolate. WH6 was extracted from the
rhizosphere of Poa sp. and Triticum aestivum at the
Hyslop Research Farm in Benton County, Oregon, USA
[19]. We sequenced and developed an improved high-
quality draft sequence for WH6 using a hybrid Illumina
and 454-based sequencing approach. This standard is
considered sufficient for our purposes of assessing gene
inventory and comparing genome organization [21].
Comparative genomic analysis showed a high number

of orthologous genes and strong similarity in genome
organization between WH6 and SBW25. Phylogenomic
analysis supported this observation and placed WH6 in
the same lineage as SBW25, or the proposed P. fluores-
cens lineage. The high similarity in orthology and gen-
ome organization is in contrast to previous observations
of P. fluorescens and in comparisons of WH6 to Pf-5 or
Pf0-1 [9]. From a non-saturating Tn5-mutagenesis
screen of WH6, we previously identified two mutants
compromised in GAF activity (WH6-2::Tn5 and WH6-
3::Tn5; [4]). Mapping of DNA sequences flanking the
two mutants revealed genes encoding proteins with
potential functions in regulation and biosynthesis of
GAF. Finally, inspection of the WH6 genome revealed
several candidate host-association mechanisms, includ-
ing what appears to be a complete type III and two
complete type VI secretion systems.

Results and Discussion
Sequencing and developing an improved, high-quality
draft genome sequence
We used an Illumina and a 454 FLX GS LR70 to
sequence the genome of WH6 (Table 1). The theoretical
coverage using all filtered reads was estimated to be
316× assuming a genome size of approximately 6.5
megabases. We employed a number of steps to meet the
standards of an improved, high-quality draft genome
sequence of WH6 for comparative purposes. We used
Velvet 0.7.55, combinations of short-reads, and a variety
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of parameter settings to de novo assemble the short
reads to generate approximately 75 different assemblies
[22]. We developed and used ad hoc Perl scripts with an
associated visualization tool to compare each of the dif-
ferent assemblies to each other. This step enabled us to
eliminate entire assemblies with large contigs not sup-
ported by any other assembly.
We identified a single high-quality de novo assembly

based on nearly 24 million reads from all three sequen-
cing methods (Table 1). The Velvet parameters were
hash length of 31, expected coverage of 104, and a cov-
erage cutoff of 20. Actual coverage of this assembly
based on the total number of used reads was 65 ~ 120×,
which was less than one-third the theoretical coverage.
This assembly had 189 contigs greater than one kb and
a total of 256 contigs greater than 100 bp. The largest
contig was 264 kb and the N50 number and size were
26 contigs and 78 kb, respectively.
We used experimental and in silico approaches to

improve the draft assembly by reducing the number
of physical gaps. Of the 189 contigs greater than one
kb, 139 contigs (74%) had significant homology to a
reference sequence shared by the end of another con-
tig. These 139 contigs potentially flanked 111 physical
gaps (See Additional file 1: Table S1). We were able
to amplify across 86 (77.5%) of the gaps using PCR.
Physical gaps were subsequently resolved by reassem-
bling the nearly 24 million short-reads with the 86
Sanger reads. Of the remaining scaffolds, we asso-
ciated more based on in silico evidence. Some contigs
shared long-range synteny to a reference genome (see
below) and their ends had fifteen or more basepairs of
sequence with 100% overlap to each other. This phe-
nomenon is a result of Velvet failing to extend the
contig because of low coverage. Secondly, some con-
tigs could be paired together because their ends had
partial coding regions with homology to a common
reference gene. In total, nineteen more contigs were
associated, resulting in a final assembly of 115 scaf-
folds greater than 100 bp. The largest scaffold was
814 kb and the N50 number and size were 8 and 203
kb, respectively.

The improved, high-quality draft genome sequence
had 67 sequence gaps totaling 258,650 Ns. There were
45 large sequence gaps with more than 300 Ns of which
eight had more than 10,000 Ns each. We presumed
these were artifacts of the Velvet assembly because the
fragment size of our paired-end library was no larger
than 300 bp. We corrected the sizes for 31 gaps to their
corresponding length found in homologous reference
sequences. In the other 14 cases, we simply reduced
the number of Ns in the region to 300 bp, to reflect
the maximum size of our paired-end library. Both
approaches to correct the size of sequence gaps were
validated using PCR of randomly selected regions (data
not shown). In total, we reduced the number of Ns to
6,049 or ~2% of the original number of Ns.
The release of the finished genome sequence of

SBW25 fortuitously coincided with our efforts of
improving the draft genome sequence of WH6 [9]. We
noted that nearly 90% of the homologous sequences we
found in the NCBI nt dataset using our BLASTN-based
approaches were to P. fluorescens SBW25. We therefore
surmised that the genome of WH6 would be similar to
the finished genome of P. fluorescens SBW25 and used
it as a reference for Mauve Aligner to reorder the 115
WH6 scaffolds [9,23].
The genome of WH6 is presumed to be a single circu-

lar chromosome (Figure 1). A total of 53 scaffolds
greater than one kb could be ordered using Mauve
Aligner. The remaining 62 contigs could not be reor-
dered and were excluded from our circular representa-
tion of the genome. These 62 contigs were all smaller
than one kb and their sum total was only 13 kb.
Attempts to use Pf0-1 or Pf-5 as a reference for Mauve
Aligner were largely unsuccessful, supporting our obser-
vation that WH6 and SBW25 had higher synteny than
previously detected in P. fluorescens and suggesting our
WH6 de novo assembly was of high quality. We found
no evidence of plasmids in the genome of WH6.
This Whole Genome Shotgun project has been depos-

ited at DDBJ/EMBL/GenBank under the accession
AEAZ00000000. The version described in this paper is
the first version, AEAZ01000000. The WH6 genome

Table 1 High-throughput sequencing statistics

Method Total Reads Reads Used Theoretical Coverage* # Contigs (>100 bp)^ Total size (Mb)§

Sanger 178 178 n/a n/a n/a

GAI 32 single 16,852,820 9,298,356 83 5,884 6.06

GAII 70 PE 10,854,745 9,013,849 234 95 6.27

454 202,070 200,467 7 2,204 6.10

All short reads 38,764,380 23,742,926 316 256 6.26

All reads 38,764,558 23,810,966 316 115 6.27

*Based on approximated genome size of 6.5 Mb; ^Highest confident draft assemblies using Velvet 0.7.55 [22]; ^Improved, high quality draft including Sanger
reads. n/a = not applicable; §Based on sum total of all contigs > 100 bp in length.
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sequence and its associated tools can also be accessed
from our website at: http://changbugs.cgrb.oregonstate.
edu/microbes/org_detail.html?org=WH6-G3.
One challenge with de novo assembly is dealing with

repeated sequences [24]. Small repeated sequences are
present in genomes of P. fluorescens but were not
expected to have a large effect on our ability to assem-
ble the WH6 genome because of the size of our
paired-end fragments [9]. Larger repeats, however,
could not be resolved. We only observed one rRNA
operon in the genome of WH6. We suspect that WH6
has five rRNA operons similar to SBW25 and Pf-5, but
they collapsed into one contig. There was approxi-
mately 5× more coverage for the contig containing the
one rRNA operon of WH6 compared to the other con-
tigs. Similarly, nonribosomal peptide synthases (NRPSs)

are encoded by large genes with repeated modules
[25,26]. The modular domains either collapsed on one
another in the assembly, or were assembled into short
contigs that we could not extend. A large fraction of
these partial NRPS-encoding genes were found in the
small contigs that we could not reorder using Mauve
Aligner. Here too, we noticed higher coverage than the
other scaffolds.

Comparative and phylogenomic analyses of P. fluorescens
At a large scale, the genome of WH6 was similar to the
genomes of the other P. fluorescens isolates (Table 2).
The size of the genome is slightly smaller, which may be
a consequence of the draft nature of our genome assem-
bly. Nonetheless, the 5876 predicted coding sequences
(CDSs) and 89.2% coding capacity were very similar.

Figure 1 Circular representation of the improved, high-quality draft genome sequence of WH6. The outer scale designates the
coordinates in half million base pair increments. The red ticks indicate physical gaps. Circles 2 and 3 show the predicted coding regions of WH6
on the positive and negative strands, respectively. Coding regions are colored to highlight orthologous (blue) and 1567 unique (red) coding
regions of WH6 relative to the other sequenced P. fluorescens. Circles 4, 5, and 6 show orthologs (BLASTP e-value ≤ 1 × 10-7) of SBW25, Pf-5, and
Pf0-1, respectively. The extent of homology relative to WH6 is depicted using a heat map of arbitrarily chosen bins; dark blue: orthologs with
greater than 80% homology over the length of the gene; green: orthologs with between 60-80% homology over the length of the gene; pink:
orthologs with between 20-60% homology over the length of the gene; white: no homology (less than 20% homology over the length of the
gene). The positions of loci of interest are also denoted (see corresponding text for more details). Circles 7 and 8 show GC% (gold >60.6%
average; gray < 60.6% average) and GC-skew.
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Previous analyses of P. fluorescens found SBW25, Pf-5,
and Pf0-1 to be divergent, with only ~61% of the genes
shared and little long-range synteny [9]. We used HAL
to carry out similar analyses to determine the effect of
the WH6 genome on the phylogenetic relationship of
the P. fluorescens species and potential changes to the
size of its pan genome [27]. HAL uses a Markov Clus-
tering algorithm based on e-values from reciprocal all-
by-all BLASTP analysis to create clusters of orthologs.
Core sequences from each species are concatenated and
the super alignment is used in phylogenomic analysis.
Using a core of 1966 translated sequences common to
P. fluorescens, representative strains of P. syringae, and
P. aeruginosa PAO1, HAL clustered the different species
of Pseudomonas as expected [8,9,28-30]. Further, HAL
clearly defined two separate lineages for P. fluorescens,
placing WH6 with SBW25 (Figure 2).
Within the P. fluorescens species as presently defined,

3115 genes formed the core and represented 53%,
52.6%, 50.7%, and 54.3% of the genomes of WH6,
SBW25, Pf-5, and Pf0-1, respectively (Figure 3). This
was nearly a 10% reduction relative to previous analysis
of three genomes [9]. A large fraction of the core genes
was assigned to categories with general cellular pro-
cesses such as energy production and conversion, amino
acid transport and metabolism, translation, and tran-
scription (Figure 4). Approximately 90% of the 3115
core genes clustered with orthologs sharing identical
COG designations suggesting our automated annotation
pipeline was accurate. There were some exceptions but
their rarity and subtle differences did not warrant man-
ual curation. For example, one cluster of orthologs had
genes annotated as “arabinose efflux permeases”
(COG2814) for genes from the published isolates of
P. fluorescens but “permease of the major facilitator
superfamily” (COG0477) for the ortholog of WH6.
A total of 4309 of the translated products of WH6 had

an orthologous sequence in another isolate of P. fluores-
cens. Almost 69% of the WH6 genes had an orthologous
sequence in SBW25, as compared to Pf-5 and Pf0-1
with 62% and 59%, respectively (Figures 1 and 3). We

found similar levels of overlap using reciprocal BLASTP
(data not shown). The 69% orthology between WH6
and SBW25 is much higher than previously observed
between isolates of P. fluorescens [9]. These levels were
still lower than those between different pathovars of
P. syringae, which had greater than 80% orthology

Table 2 Comparison of P. fluorescens genome
characteristics

Isolate WH6* SBW25^ Pf-5§ Pf0-1^

Genome Size 6.27
Mb

6.72 Mb 7.07
Mb

6.44
Mb

GC % 60.6 60.5 63.3 60.5

Coding regions 5876 5921 6138 5736

Avg. length of coding
sequences

951 1000 1020 1006

Coding % 89.2 88.1 88.5 89.6

*Improved, high quality draft genome sequence ^[9]; §[8].
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Figure 2 Phylogenomic tree of eight Pseudomonas isolates
based on a super alignment of 1966 translated sequences. P.
fluorescens isolates: WH6, SBW25, Pf-5, and Pf0-1; P. syringae
pathovars: tomato DC3000, phaseolicola 1448A, and syringae B728a;
P. aeruginosa PAO1. Bootstrap support for nodes (r = 1000) were all
100. The scale bar indicates the number of amino acid substitutions
per site.
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Figure 3 Venn diagram comparing the gene inventories of
four isolates of P. fluorescens. The numbers of shared and unique
genes are shown. Comparisons were made using HAL.
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[29,31,32]. Therefore, the generalization that P. fluores-
cens have highly variable genomes still holds true.
The genomes of WH6 and SBW25 also showed exten-

sive long-range synteny (Figure 5). This amount of syn-
teny was unexpected given previous comparisons [9].
When compared to Pf-5 or Pf0-1, we found little long-
range synteny, which tended to be near the origin of
replication. Synteny rapidly degraded away from the ori-
gin with an increase in inversions between the genomes
[9]. Taken together these lines of evidence all suggest
WH6 and SBW25 to be similar and support, though

perhaps prematurely, a redefinition of the P. fluorescens
species [5,9].
It could be argued that the high level of synteny we

found with SBW25 was an artifact of using SBW25 to
reorder the WH6 scaffolds. Though we cannot exclude
this possibility, we highlight several points that suggest
otherwise. We used a de novo approach to assemble the
genome of WH6. The long-range synteny to the SBW25
genome was observed within each and across the de
novo assembled scaffolds of WH6 (Figure 5). Further-
more, synteny with SBW25 was also supported by our
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ability to use SBW25 to successfully and substantially
reduce the number of WH6 scaffolds and improve the
WH6 genome sequence (Figure 1). Finally, analysis of
GC skew gave higher confidence in the reordering of
WH6 scaffolds (Figure 1, track 8). Genomes often have
a bias of guanine in the leading strand [33,34]. Inver-
sions of GC skew in regions distant from the replication
origins and termini are indicative of a recent recombina-
tion event [35]. Barring these events, inversions of GC
skew could also potentially indicate large-scale misas-
semblies or incorrect reordering of contigs. For the
most part, the genome of WH6 showed the expected
bias of guanine in the leading strand; there are perhaps
two small inversions in GC skew flanked by physical
gaps between scaffolds near the terminator. Our use of
SBW25 as a reference for reordering scaffolds is there-
fore acceptable and the observed synteny between WH6
and SBW25 appeared to reflect true similarities in gen-
ome organization.
More than 30% of the WH6 coding regions were unique

(Figures 1 and 3). Examinations of their annotated func-
tions suggested greater diversity in metabolic and host-
association functions such as carbohydrate transport and
metabolism, inorganic ion transport and metabolism, sec-
ondary metabolite biosynthesis, transport and catabolism,
intracellular trafficking, secretion and vesicular transport,
as well as defense mechanisms (Figure 4).
Examples of CDSs unique to WH6 and enriched in

these functional categories include 35 candidate per-
meases of the major facilitator superfamily, a large and
diverse superfamily of secondary active transporters that
control movement of substrates across membranes
(COG0477; [36]). WH6 also had 12 unique CDSs that
encode for putative TonB-dependent receptors, involved
in uptake of iron and potentially other substrates
(COG1629; [37]; see also section entitled, “Regulators of
gene expression”). Restriction modification (RM) sys-
tems are widespread defense mechanisms that protect
prokaryotes from attack by foreign DNA [38]. RM sys-
tems are diverse and can vary dramatically in numbers.
WH6 has at least 30 CDSs with annotated functions or
domains common to proteins of RM systems.
PFWH6_5037-5039, for example, encode for a type I
RM system that appears to be unique to WH6. Finally,
other CDSs unique to WH6 and of direct interest to us
are described in the following sections. The greater than
1500 genes unique to WH6 were dispersed throughout
its genome with only a slight bias in location closer to
the terminators (Figure 1). This bias was previously gen-
eralized for P. fluorescens [9].

Mapping GAF mutants
We previously identified two WH6 mutants from a non-
saturating Tn5-mutagenesis screen for those affected in

arresting the germination of Poa seeds [4]. We cloned,
sequenced and mapped their flanking sequences to iden-
tify the disrupted genes. Mutant WH6-3::Tn5 had an
insertion in PFWH6_3687. This CDS is annotated as a
“predicted transmembrane transcriptional regulator
(anti-s factor)”. Its closest homolog, with 94% similarity
is PrtR encoded by P. fluorescens LS107d2 [39]. The
Tn5 element had inserted at nucleotide position 417
within codon Asp139. Because loss of prtR led to a loss
of GAF activity, PrtR is likely an activator rather than a
repressor, as was the case in P. fluorescens LS107d2 [39].
Just upstream of prtR in WH6 is prtI, which encodes a

candidate ECF s70 factor. This arrangement is reminis-
cent of many sigma-anti-sigma factor pairs and suggests
that the genes are potentially co-regulated and both may
have roles in regulating GAF gene expression [40]. It is
peculiar that we failed to identify an insertion in prtI
but one obvious explanation is that our screen was not
saturating. Regardless, it will be important to examine
the necessity of PrtI for GAF activity to resolve its role.
Mutant WH6-2::Tn5 had an insertion in

PFWH6_5256, a gene encoding a candidate aminotrans-
ferase class III. The identification of an aminotransferase
as necessary for GAF supports our previous findings
suggesting that GAF contains an amino group and may
be a small peptide or amino acid analog [4]. Amino-
transferases are pyridoxal phosphate (PLP)-dependent
enzymes that catalyze the transfer of an amino group
from a donor group (commonly an amino acid) to an
acceptor molecule [41]. The Tn5 element had inserted
at nucleotide position 1124 within codon Lys375. Based
on comparisons to the acetyl ornithine aminotransferase
family the insertion is distal to the conserved residues
that compose pyridoxal 5’-phosphate binding sites, the
conserved residues that compose inhibitor-cofactor
binding pockets, and the catalytic residue [42]. Further
characterization of WH6-2::Tn5 is necessary to examine
its enzymatic properties and role in biosynthesis of GAF.

Regulators of gene expression
Bacteria with large genomes tend to have complex regu-
latory networks to integrate and respond to a multitude
of environmental signals. The extracytoplasmic function
(ECF) s70 factors are a class of important transcriptional
regulators of cell-surface signaling systems. Using a Hid-
den Markov Model (HMM) for ECF-encoding genes, we
found 19, 26, 28, and 22 ECFs in WH6, SBW25, Pf-5
and Pf0-1, respectively [43]. Of the 19 identified in
WH6, ten are part of the core set common to all four
sequenced P. fluorescens isolates and included prtI and
prtR, which we identified as necessary for GAF activity.
Because we had previously shown that Pf-5 and Pf0-1
do not have GAF activity, these results suggest that the
putative PrtI/R-regulon may be different between the
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different isolates of P. fluorescens [4]. Four of the 19
ECF-encoding genes were exclusive to the plant-asso-
ciated strains WH6, SBW25, or Pf-5. Two of these were
only shared with SBW25, of which one was rspL (see
below). The other two lacked sufficient annotations to
speculate on their functions. The remaining five ECFs
were unique to WH6 and all are potentially co-
expressed with genes encoding outer membrane recep-
tors involved in iron perception or uptake (chuA, fhuA,
and fhuE).

Virulence factors
Pseudomonads produce a wide-range of secondary meta-
bolites with potential benefit or detriment to plants and
microbes [25,44]. Many are synthesized by non-riboso-
mal peptide synthases (NRPS) or polyketide synthases
[25,26,44]. We found evidence for several NRPS-encod-
ing genes. Because of their modular architecture, most
NRPS-encoding genes of WH6 were fragmented and
found on small contigs that failed to assemble or reorder.
Therefore, it was not possible to determine the structure
of the repeats or infer functions based on homology. We
were, however, able to identify several other candidate
toxins and virulence factors (Table 3).
We identified several secretion systems in WH6

unique to host-associated bacteria and/or necessary for
full virulence of pathogenic bacteria. WH6 appears to
encode a complete and functional type III secretion sys-
tem (PFWH6_0718-0737; Figure 6a). We named its
genes according to the nomenclature first proposed for

SBW25 [15,45]. There is strong homology and synteny
between the T3SS-encoding regions of WH6 and P. syr-
ingae, raising the possibility of a recent acquisition of
the T3SS-encoding locus by WH6, similar to KD [14].
Phylogenetic analyses of rscN, however, placed WH6
with the group 8 of biocontrol isolates of P. fluorescens
(data not shown; [14]). Additionally, 15 kb of sequences
on either side of the T3SS-encoding region of WH6
were highly syntenic to regions flanking the T3SS-
encoding region of SBW25 with the exception of the
type III effector gene, ropE. Together, these data argue
against a recent acquisition of the T3SS-encoding region
by WH6.
There were some differences between T3SS-encoding

regions of WH6 and P. syringae. The rspR, rspZ, and
rspV genes of WH6 were not present and we failed to
detect any homology between the rspF/hrpF, rspA/hrpA,
and rspG/hrpG genes. Data, however suggest these dif-
ferences likely have little to no effect on T3SS function.
HrpR and HrpS are highly similar and are functionally
redundant. In some Erwinia strains, HrpS by itself is
demonstrably sufficient for T3SS function [46,47]. Dele-
tion mutants of hrpZ are still functional and HrpV func-
tions as a negative regulator of the T3SS [48-50]. HrpF
and HrpA are homologous to each other and are struc-
tural components of the T3SS. They are the most poly-
morphic proteins encoded within the T3SS-cluster and
the absence of significant homology between rspF and
rspA to their counterparts of P. syringae was therefore
not surprising [51,52]. Our automated annotation

Table 3 Candidate Host-association and virulence factors*

WH6 Gene (PFWH6_) Host-association or virulence factor Reported function Reference

0718-0737 T3SS-encoding region Host-association; secretion apparatus [15,84]

5796-5812 T6SS-1-encoding region Host-association; secretion apparatus [68,69,73]

3251-3270 T6SS-2-encoding region Host-association; secretion apparatus [68,69]

0824-0827 Betaine/choline uptake Osmoprotection [85]

5455 & 0252 BCCT Transporter Choline transport [86]

5456-5458 Choline to Betaine Choline to Betaine conversion [7]

1723 & 2895 aprA^ Alkaline protease A; Insecticidal toxin [87]

4097/98, 4099, 4100 tca-d Insecticidal toxin [88]

5264, 5082, 3503 & 0070 katA Catalase A; H2O2 protection [89]

0985 - 0996 Synthesis of Alginate Exopolysaccharide [90]

2199 Synthesis of Levansucrase^ Exopolysaccharide [91,92]

4225 marR Transcriptional regulator virulence factors [93]

3833 - 3843 T2SS-encoding region Secretion apparatus [94]

0699 plc lipase Phospholipase C; virulence factor [95]

0396 - 0398 *TAT-encoding region Secretion apparatus [96,97]

4428, 2727, 0116-0120 Synthesis of mangotoxin Antimetabolite toxin [98]

2331-2334 Synthesis of hydrogen cyanide Inhibitor of cytochrome c oxidase [25]

*Table derived from [44]; candidates were identified using BLASTP (e-value 1 × 10-7). There are 43 WH6 proteins with homology to candidate TAT-secreted
proteins of P. syringae pv tomato DC3000 [96,97]; ^no orthologs were detected in genomes of other P. fluorescens.
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approach failed to identify rspG but upon visual inspec-
tion, we noted a small CDS that encodes a potential
product of 63 amino acids. BLAST searches failed to
detect homology to hrpG, but given its position in the
T3SS-encoding region and similarity in size to the trans-
lated product of hrpG, we have annotated it as rspG. In
total, these data support the notion that WH6 encodes a
complete and functional T3SS, although, its role in the
lifestyle of WH6 remains unknown.

Candidate type III effectors of WH6
We used a homology-based approach to search for type
III effector genes in the genome of WH6. Our database

of type III effectors included those from T3SS-using
phytopathogens and some mammal pathogens. We only
identified one translated sequence with homology to
PipB from Salmonella, and another with homology to
HopI1 from P. syringae (e-value < 1 × 10-7, > 33% iden-
tity; [53]). However, neither appeared to be strong can-
didates for a type III effector. We identified a homolog
of pipB in the genome of Pf-5, which does not encode
the T3SS. HopI1 encodes a J domain and its homolog in
WH6 was annotated as the molecular chaperone, dnaJ
[54]. These results suggest that if WH6 does encode
type III effectors, they are very divergent in sequence.
SBW25, in contrast, had at least five genes with
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homology to known type III effectors, of which two
were expressed to sufficiently high levels and delivered
by a heterologous T3SS-encoding bacterium [55].
Computational approaches have been successfully

used to identify candidate type III effectors from P. syr-
ingae, based in part on identifying a cis-regulatory ele-
ment upstream of their genes and also some genes of
the T3SS [56-58]. This so-called hrp-box is recognized
by HrpL, an extracytoplasmic function (ECF) s70 factor
encoded within the T3SS-encoding region of P. syringae
[59]. We therefore used a Hidden Markov Model
(HMM) trained using 38 known HrpL-regulated genes
of P. syringae pv tomato DC3000 to mine the genome of
WH6 for hrp-boxes [56,60].
We found 115 hrp-boxes in the genome of WH6 (bit

score ≥ 3.0) but only 24 were within 500 bp of a CDS.
Two were located upstream of rspF and rscR in the
T3SS-encoding region, with bit scores of 7.9 and 3.2,
respectively. We also identified a hrp-box upstream of
rspJ but it had a lower bit score of 1.2. Fifteen of the
CDSs downstream of candidate hrp-boxes had annotated
functions not typically associated with type III effectors
and we did not list them as possible candidates (data not
shown). The remaining eight CDSs downstream of hrp-
boxes were annotated as hypothetical proteins and the
five with the highest bit scores for their corresponding
hrp-boxes were not present in the genomes of Pf-5 and
Pf0-1; all but PFWH6_1942 were unique to WH6 (Table
4). Further investigation of their first amino-terminal
residues indicated that three have characteristics sugges-
tive of T3SS-dependent secretion [56,61,62].
Our two computational approaches yielded very few

candidate type III effectors. One possible explanation is
that because RspL and HrpL have only 50% identity
(70% similarity), they recognize slightly different cis-reg-
ulatory sequences and our HMM was not adequately
trained for the cis-regulatory sequence recognized by
RspL. This is an unlikely scenario. Three sequences with
strong similarity to the hrp-box of P. syringae were

found in the T3SS-encoding regions for WH6 and
SBW25 [15]. Additionally, it has been observed that all
HrpL-dependent phytopathogenic bacteria share an
identical motif in the hrp-box despite having as little as
52% similarity [63]. Furthermore, in s70 factors, DNA
binding specificity is conferred by the helix-turn-helix
domain 4.2 [64,65]. Domain 4.2 of the WH6 RspL is
highly similar (82.5%) to the corresponding domain of
HrpL. An alternative explanation is that WH6 encodes
very few type III effectors with little homology to those
that have been identified. This is not unheard of. P. aer-
uginosa for example, has only three type III effectors
[66,67].

Type VI secretion systems
The type VI secretion system (T6SS) is another secretion
apparatus that is common to host-associated bacteria.
Computational approaches suggest the T6SS may also be
in P. fluorescens [68,69]. We found evidence for two com-
plete and functional T6SSs in WH6. We have named
these two systems T6SS-1 (Figure 6b; PFWH6_5796-
5812) and T6SS-2 (Figure 6c; PFWH6_3251-3270). It is
not uncommon for organisms to possess multiple T6SSs
that are of different lineages and acquired independently
[68]. Additionally, in other strains that have been charac-
terized, different T6SSs appear to be independently regu-
lated, suggesting each T6SS may have functions specific
to different aspects of the lifestyle of the bacterium [70].
Whether this is also the case with WH6 awaits further
characterization.
T6SS-1 belongs to the group A lineage and shares

homology and synteny to HSI-I of P. aeruginosa PAO1
[68]. We therefore named the corresponding genes in
WH6 according to the nomenclature established for
HSI-I (Figure 6b). Synteny extended beyond the T6SS-
encoding region and included the tagQRST genes bor-
dering ppkA. We did not, however, find evidence for
tagJ1 in WH6 [68,71]. T6SS-2 is a group B secretion
system [68]. Less is understood about the group B

Table 4 Putative hrp-boxes and candidate type III effector genes in WH6

Bit Score hrp-box sequence CDS* Distance
from hrp-box

Translocation
Signal^

7.9 TGGAACTGAATAGCCAGTACTGACCAC rspF 26 -

6.7 AGGAACCGATTCCGACAGATGGGCCAC 1942 77 A, B

5.3 CGGAACCTTTACCGGCACCTGAACACT 2917 248 A, B, C

5.1 TGGAACGAAATCGTCGATCAAACCACT 3173 58 A, C

5 TGGAACCGTATTGCGTAAGACGTCACT 1252 82 -

4.3 GGGAACCGCATCGGTTGCCTTCCAAC 3940 56 -

3.6 TGAAACCGGCACGGCGTGCCTGACCCT rscR 324 A

1.2 TGGAACCAGGTGGGCGGGGCTTGCCAC rspJ 33 A, B

Only coding sequences with no predicted homology or identifiable orthologs in Pf-5 or Pf0-1 are shown.

*PFWH6_# unless otherwise noted; ^N-terminal translocation signal scores were assigned based on “A"; >10% serine in first 50 amino acids, “B"; absence of
aliphatic amino acids in position 3 or 4, and/or “C"; absence of negatively-charged amino acids in the first 12 amino acids [62].
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secretion systems but T6SS-2 showed strong homology
and synteny to a corresponding T6SS encoded in the
genome of the phytopathogen P. syringae pv tomato
DC3000 (Figure 6c; [28]).
There are few proteins that are demonstrable type VI

effectors. Three homologs of VgrG and Hcp have been
shown to be secreted by the T6SS but both likely have
functions for the T6SS itself [72-74]. We found four
vgrG genes, of which only one was associated with
T6SS-1. The other three genes were found elsewhere in
the genome. Whether products from these latter three
are secreted proteins of the T6SS or merely homologous
in sequence is unknown. Both T6SSs of WH6 had a
homolog of hcp. Recently, three additional proteins from
P. aeruginosa PAO1 were shown to be secreted by the
T6SS, but their orthologs were not found in WH6 [75].

Conclusions
P. fluorescens is a genetically and physiologically
diverse species found in many habitats. We sequenced
the genome of the isolate WH6 because it produces
Germination-Arrest Factor (GAF), an herbicide that
specifically arrests seed germination of graminaceous
species. Comparisons of the WH6 genome to genomes
of SBW25, Pf-5, and Pf0-1 helped better define this
species, with WH6 and SBW25 forming one lineage.
Comparative studies revealing substantial similarity in
gene inventory and synteny supported its placement
and the argument of at least two major lineages of P.
fluorescens [5].
With the genome sequence, we were able to deduce

potential functions for two genes necessary for GAF
activity. One encoded a candidate anti-sigma factor. Our
previous results suggest that PrtR is an activator and
suggests it has a role in regulating expression of genes
necessary for GAF. The second gene encoded a candi-
date aminotransferase, which tentatively supports our
previous speculation that GAF is a small peptide or
amino acid analog. Further studies are required to con-
firm their functions. A less labor-intensive and saturat-
ing screen will also be necessary for a fuller
understanding of the pathway controlling GAF expres-
sion and biosynthesis. The genome sequence will cer-
tainly facilitate such future endeavors.
We also identified a number of mechanisms that

potentially affect plant health and some typically asso-
ciated with host-associated bacteria. One of the more
extensively characterized mechanisms is the type III
secretion system. WH6 appears to encode the necessary
repertoire of genes for a complete and functional T3SS.
We also identified two T6SSs in WH6. Further studies
are necessary to identify the role these secretion systems
and their effectors play in the lifestyle of WH6.

Methods
Sequencing DNA flanking Tn5-insertions
To determine the sites of Tn5 insertion, genomic DNA
from the two GAF mutants, WH6-2::Tn5 and WH6-3::
Tn5 was digested with BamHI or PstI, respectively. We
used Southern blotting with a biotinylated probe of the
TetR gene from pUTmini-Tn5gfp to identify the fusion
fragments between the TetR gene and flanking WH6
DNA [76]. DNA fragments of corresponding size were
cloned into pBluescript SK+ (Stratagene, La Jolla, CA),
transformed into E. coli DH5∝, selected based on tetra-
cycline resistance, isolated, and sequenced outwards
using primers to the TetR gene.

P. fluorescens WH6 Genome Sequencing
We used the ZR Fungal/Bacterial DNA Kit to isolate
genomic DNA from P. fluorescens WH6 grown over-
night in LB at 28°C (Zymo Research, Orange, CA). Pur-
ity and concentration were determined using a
Nanodrop ND1000 (Thermo Scientific, Waltham, MA).
For Illumina-based sequencing, we prepared the DNA
according to the instructions of the manufacturer and
sequenced the DNA fragments on the Illumina GA I
and II using 36-cycle (4 channels) and paired-end 76-
cycle (1 channel) sequencing, respectively (Illumina, San
Diego, CA). The Sanger and Illumina sequencing was
done at the Center for Genome Research and Biocom-
puting Core Labs (CGRB; Oregon State University, Cor-
vallis, OR). We also sequenced genomic DNA using the
454 FLX GS LR70 (454, Branford, CT). Preparation and
sequencing by 454 was done at the Consortium for
Comparative Genomics (University of Colorado Health
Sciences Center, Denver, CO).

Short-read assembly
For Illumina-derived reads, the last four and six bases were
trimmed from the 36 mer and 76 mer reads, respectively.
We filtered out all Illumina-derived short reads that had
ambiguous bases. For the paired-end reads, both reads
were filtered out if one read of a pair had ambiguous bases.
We used Velvet 0.7.55 to de novo assemble the reads [22].
We assembled short reads from the different sequencing
platforms independently, as well as in combination. We
wrote ad hoc shell scripts to test different Velvet para-
meters of hash length, coverage cutoff, and expected cover-
age. In total, we generated approximately 75 different
genome assemblies of WH6. Shell scripts are available for
download (http://changlab.cgrb.oregonstate.edu).

Improvements to the high-quality draft assembly
We developed ad hoc Perl scripts to use BLASTN to
compare between each of the WH6 assemblies and used
congruency in contigs from the various assemblies to

Kimbrel et al. BMC Genomics 2010, 11:522
http://www.biomedcentral.com/1471-2164/11/522

Page 11 of 15

http://changlab.cgrb.oregonstate.edu


cull those with potential misassemblies (see next section
for description of scripts; data were visualized using
blast_draw.pl). We used Tablet 1.10.01.28 to inspect the
remaining genome assemblies for depth of coverage and
potential misassemblies [77]. Finally, we used Mauve
Aligner 2.3 and the genome sequence of P. fluorescens
SBW25 as a reference to reorder WH6 contigs greater
than 100 bp from our assembly with highest confidence
[9,23]. Default settings were used for Mauve Aligner 2.3.

Physical and sequence gap closure
To identify contigs that potentially flanked a physical
gap, we wrote and used Contig_end_blast_A.pl, to
extract 300 bp of sequence from the ends of each contig
greater than one kb in size and use the contig ends as
queries in a BLASTN search against the NCBI nt data-
base. We also wrote and used Contig_end_blast_B.pl to
find contig ends that shared significant homology (e-
value ≤ 0.02) to the same reference sequence but aligned
to different regions no more than one kb apart. The
contigs corresponding to these ends were thus predicted
to be physically linked in the genome of WH6. PCR
using contig-specific primers and subsequent Sanger
sequencing were used to close the physical gaps (See
Additional file 2: Table S2). To correct the sizes for
sequence gaps larger than 300 bp, we used a similar
approach. PCR was used to validate our corrections for
sequence gaps.
Contig_end_blast_A.pl, Contig_end_blast_B.pl, and

blast_draw.pl are available for download from our web-
site at: http://changlab.cgrb.oregonstate.edu.

Genome Annotation
We used a custom pipeline to annotate the improved
high-quality draft assembly of WH6 as previously
described [78]. The only exceptions were that we used
Glimmer 3.02 rather than Glimmer 2 to predict coding
regions and gene models were trained using the “long-
orfs” option ([79]; http://www.cbcb.umd.edu/software/
glimmer/).

Bioinformatic analyses
For analysis of synteny, we first parsed the genomes of
SBW25, Pf-5 and Pf0-1 into all possible 25 mers and
identified their unique 25 mer sequences. Next, we used
CASHX to align all unique 25 mers from each of three
genomes to both strands of a formatted database from
the WH6 genome sequence [80]. Only perfect matches
were allowed. We identified the corresponding genome
coordinates for each 25 mer and the matching 25 mer
in the WH6 genome and used R to plot the start coor-
dinates of each matching pair in an XY graph [81].
Phylogenomic relationships were determined using HAL

([27]; http://aftol.org/pages/Halweb3.htm). HAL uses an

all-by-all reciprocal BLASTP to create a similarity matrix
from e-values. These are then used to group proteins into
related clusters using a Markov Clustering algorithm.
Clusters containing one protein sequence from each gen-
ome that identified each other as best hits were extracted,
concatenated within each proteome, and used to infer
phylogenetic relationships. Phylogenetic trees were visua-
lized using the Archaeopteryx & Forester Java application
([82]; http://www.phylosoft.org/archaeopteryx/).
Hidden Markov Models (HMMs) for hrp-boxes were

trained from a set of 38 confirmed hrp-boxes in the P.
syringae pv tomato DC3000 genome [28,56,57,60]. The
HMM for the extracytoplasmic function s70 factors was
downloaded from http://www.g2l.bio.uni-goettingen.de/
software/f_software.html. Searches were done using
HMMER 2.3.2 (http://hmmer.janelia.org/).
Circular diagrams were plotted using DNAplotter ([83];

http://www.sanger.ac.uk/Software/ Artemis/circular/).

Additional material

Additional file 1: Table S1: De novo assembled contigs of WH6 that
are candidates for physical gap closure.

Additional file 2: Table S2: Sequences of oligonucleotides used to
close physical gaps.
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