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Abstract
Germination timing has a strong influence on direct seeding efforts, and therefore is 
a closely tracked demographic stage in a wide variety of wildland and agricultural 
settings. Predictive seed germination models, based on soil moisture and tempera‐
ture data in the seed zone are an efficient method of estimating germination timing. 
We utilized Visual Basic for Applications (VBA) to create Auto‐Germ, which is an 
Excel workbook that allows a user to estimate field germination timing based on wet‐
thermal accumulation models and field temperature and soil moisture data. To dem‐
onstrate the capabilities of Auto‐Germ, we calculated various germination indices 
and modeled germination timing for 11 different species, across 6 years, and 10 
Artemisia‐steppe sites in the Great Basin of North America to identify the planting 
date required for 50% or more of the simulated population to germinate in spring (1 
March or later), which is when conditions are predicted to be more conducive for 
plant establishment. Both between and within the species, germination models indi‐
cated that there was high temporal and spatial variability in the planting date re‐
quired for spring germination to occur. However, some general trends were identified, 
with species falling roughly into three categories, where seeds could be planted on 
average in either fall (Artemisia tridentata ssp. wyomingensis and Leymus cinereus), 
early winter (Festuca idahoensis, Poa secunda, Elymus lanceolatus, Elymus elymoides, 
and Linum lewisii), or mid‐winter (Achillea millefolium, Elymus wawawaiensis, and 
Pseudoroegneria spicata) and still not run the risk of germination during winter. These 
predictions made through Auto‐Germ demonstrate that fall may not be an optimal 
time period for sowing seeds for most non‐dormant species if the desired goal is to 
have seeds germinate in spring.

K E Y W O R D S
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1  | INTRODUC TION

Seed germination timing strongly impacts the success of direct 
seeding efforts in wildland systems by influencing exposure to 

pathogens, nutrients and soil moisture, temperature, light, her‐
bivory, and other biotic and abiotic factors (Gornish et al., 2015; 
James & Carrick, 2016). For these reasons, several studies have 
tracked germination timing in the field to better understand 
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and improve seeding outcomes (Abbott & Roundy, 2003; Boyd 
& James, 2013; Gerrit, 1991; James, Rinella, & Svejcar, 2012). 
However, tracking seed germination timing in the field can be 
challenging, resource intensive, and time‐consuming. Additionally, 
knowledge gained from short‐term field germination studies is 
often lacking due to high annual variability in weather conditions 
at the time of the experiment (Hardegree, Jones, Roundy, Shaw, 
& Monaco, 2016). Subsequently, to gain general inferences from 
germination studies, labor‐intensive studies need to be repeated 
for multiple years.

Researchers have turned to predictive germination models for 
a more efficient method of estimating germination timing (Allen, 
Benech‐Arnold, Batlla, & Bradford, 2007; Bradford, 2002; Hardegree, 
Moffet, Walters, Sheley, & Flerchinger, 2017; Hardegree & Van 
Vactor, 1999). In recent years, models have been developed that as‐
sume there are naturally occurring processes within the seeds them‐
selves already in place to regulate germination timing (Finch‐Savage 
& Leubner‐Metzger, 2006). It has been shown that the majority of 
these processes are a function of temperature and moisture (Allen, 
Debaene‐Gill, & Meyer, 1992; Bradford, 1990; Hardegree, Jones, 
Pierson, Clark, & Flerchinger, 2008; Hardegree, Van Vactor, Pierson, 
& Palmquist, 1999).

Progress toward germination for many cool‐season species can 
be predicted through a wet‐thermal accumulation model where soil 
moisture must exceed a base water potential (Ψb) for germination to 
occur (Finch‐Savage, Steckel, & Phelps, 1998; Rawlins, 2009; Rawlins, 
Roundy, Davis, & Egget, 2012; Roundy, Hardegree, Chambers, & 
Whittake, 2007). The base water potential used is derived through 
laboratory experimentation (Roundy et al., 2007). Though there are 
many factors that influence the rate of seed germination and number 
of germinable seeds, adjusting Ψb is expected to correct for impacts 
from environmental conditions, after‐ripening and seasonal changes 
in dormancy cycling (Bradford, 2002). Subsequently, once Ψb is de‐
termined, seed germination timing and number of germinable seeds 
may be accurately predicted from soil temperature. Field trials have 
validated wet‐thermal accumulation models (Rawlins, Roundy, Egget, 
& Cline, 2012; Rawlins, Roundy, Davis et al., 2012), and confirmed 
their utility in predicting seed germination in a number of settings, 
with a wide variety of species (Cline, Roundy, & Christensen, 2018a,b; 
Hardegree, Sheley et al., 2016). Despite the simplicity of wet‐thermal 
accumulation models, a relatively large amount of data and process‐
ing is required to develop the models and estimate seed germination 
timing in the field.

To overcome the logistical challenges associated with pre‐
dicting seed germination timing, we created a programmed work‐
book called “Auto‐Germ” that allows users to efficiently process 
seed germination data and predict seed germination timing in the 
field. Our workbook utilizes Visual Basic for Applications (VBA) in 
Microsoft Excel (Microsoft Corporation, Redmond, Washington, 
USA) to create wet‐thermal accumulation models as well as cal‐
culate various other germination indices from laboratory constant 
temperature trials. Auto‐Germ also provides users with an inter‐
face to apply the wet‐thermal accumulation models to estimate 

germination timing in the field from historic soil moisture and tem‐
perature data sets.

Auto‐Germ’s predictive germination modeling capabilities have 
the potential to educate practitioners in knowing how their planting 
dates may influence germination timing and subsequently the grow‐
ing conditions that impact seedling establishment. The Artemisia 
spp. (sagebrush)‐steppe ecosystem in the Great Basin region of the 
western United States is an example of an imperiled ecosystem that 
would benefit from improved restoration practices (Hardegree, Jones 
et al., 2016; Suring, Rowland, & Wisdom, 2005). In this region, seed‐
ing is used to reclaim degraded sites that have been impacted by 
wildfires, invasive species, and various human disturbances (Davies, 
Bates, Madsen, & Nafus, 2014; Knick et al., 2011; Noss, 1995). In the 
Artemisia‐steppe, seeding typically occurs in autumn, with the expec‐
tation that seeds will remain dormant in the soil and then germinate 
in the spring (Crawford et al., 2004; Madsen, Davies, Boyd, Kerby, & 
Svejcar, 2016; Richards, Chambers, & Ross, 1998). However, planting 
too early in the year can result in seeds germinating prior to winter 
and then experiencing high mortality over the winter period (James & 
Svejcar, 2010). Winter mortality may occur as a result of freezing con‐
ditions (Boyd & Lemos, 2013; James, Svejcar, & Rinella, 2011). Roundy 
and Madsen (2016) determined that across 14 Artemisia‐steppe sites 
there was an average of 58 freeze–thaw periods for the upper 1–3 cm 
of soil between October and March. Seedbed freezing conditions have 
been shown to alter the physiological responses of Artemisia tridentata 
Nutt. (Asteraceae) (big sagebrush) in the Great Basin (Loik & Redar, 
2003), and has the potential to further inhibit plant survival of peren‐
nial grasses such as Pseudoroegneria spicata [Pursh] A. Love (bluebunch 
wheatgrass) (Boyd & Lemos, 2013). Mortality may also occur to seed‐
lings over the winter period as a result of drought, pathogens, and ex‐
penditure of seed carbohydrate resources (James et al., 2011; Madsen 
et al., 2016). Subsequently, in this region understanding the seeding 
date required to prevent premature germination and subsequent win‐
ter mortality is paramount to improve the effectiveness of restoration 
projects.

Our objectives were to provide instructions on how to use Auto‐
Germ and demonstrate the utility of the program through a case 
study that (a) calculated various germination indices under different 
constant temperatures on 10 different species commonly used for 
restoration projects in the Great Basin and (b) for these same spe‐
cies model seed germination timing across 6 years and 10 Artemisia‐
steppe sites to estimate the planting date required for 50% or more 
of the simulated population of seeds to germinate in spring (March 
1st or later) when conditions are predicted to be more conducive for 
plant establishment.

2  | METHODS AND MATERIAL S

2.1 | Instructions for operating auto‐germ

Auto‐Germ can be downloaded at [https://autogerm.byu.edu/]. 
There are four main steps for processing data in Auto‐Germ, which 
include: (a) entering laboratory data, (b) wet‐thermal model creation, 

https://autogerm.byu.edu/
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(c) entering field data, and (d) model application. Each step is initi‐
ated by clicking a button in Auto‐Germ on the Home worksheet 
(note macros and content must be enabled to use Auto‐Germ). Auto‐
Germ provides instructions on the Home worksheet for each step 
(Supporting information Figure S1).

2.1.1 | Step 1—Germination count data input

The first step is to input germination count data from constant 
temperature laboratory trials into the Data Entry worksheet 
(Supporting information Figure S2), which is accessed by clicking 
the Data Entry button. To input new data, click the Start Over 
button on the Data Entry worksheet. In Auto‐Germ, the data or‐
ganization must match the sheet setup, where column A is tem‐
perature in Celsius, column B is replicate (or block), column C is 
plot ID, column D is treatment, column E is the number of seeds 
planted per sample, and everything from column F to the right is 
measurement dates and their respective germination counts. The 
planting date is entered into cell B8. The workbook processes up 
to 100 germination date entries and 1,000 samples. Under each 
measurement date, enter the number of seeds that germinated 
between the last count time and the current one. Do not enter 
cumulative germination count data on this sheet. Entries in the 
columns labeled as rep/block and plot ID are optional. If the user 
does not want to produce wet‐thermal accumulation models, ger‐
mination metrics will be calculated through Auto‐Germ without 
temperature data. Auto‐Germ will not operate if empty cells are 
included under the columns labeled as temperature, treatment, 
seeds planted, planting date, and the germination measurement 
columns. The treatment column can be used to signify a num‐
ber of different variables. For example, if seed treatments are 
being analyzed the type of seed treatment would be placed in this 
column. If species were being compared the treatment column 
would contain the name of the species.

2.1.2 | Step 2—Wet‐thermal model creation

Once the data is entered, return to the Home worksheet and click the 
Make a Model button, and enter in the pop‐upwindow the lower and 
upper germination percentage and interval size to model. The work‐
book can model any range of germination percentages from 1% to 99%. 
The four new worksheets created are called Germination Metrics, Data 
Averages, Standard Error, and Polynomial Equations. Once the cal‐
culations are completed, a pop‐up window notifies that the data are 
ready to be viewed. Click the View Data button under the Workbook 
Options heading to view the worksheets in a new workbook that can 
be saved, or click the worksheet tabs on the bottom of the screen. The 
Germination Metrics sheet displays the whole data set sorted by treat‐
ment, temperature, and calculated germination metrics. The calculated 
metrics for each sample include the number of seeds that germinated, 
final germination percentage, mean germination time, coefficient of 
variation of the germination time, mean germination rate, uncertainty 
of germination, synchrony of germination, and time to reach each 

percent germination (Ranal, Santana, Ferreira, & Mendes‐Rodrigues, 
2009).

Mean germination time is calculated as:

where t̄ = mean germination time;ti = time from the start of the 
experiment to the ith observation; ni = number of seeds germinated 
in the ith time; k = last time of germination.

The coefficient of variation is calculated as follows:

where CVt = coefficient of variation of the germination time; 
st = standard deviation of the germination time; t̄ = mean germina‐
tion time.

The mean germination rate is calculated by taking the inverse of 
the mean germination time. The uncertainty of germination is cal‐
culated as:

where U = uncertainty of the germination process

ni = number of seeds germinated on the ith time;k = last time of 
observation.

The synchrony of germination was calculated as follows:

where Z = synchrony of germination

Cni ,2
 = combination of the seeds germinated in the ith time, two 

by two; ni = number of seeds germinated on the ith time.
The time to reach each percent germination was calculated as 

follows:

where TN = time (days) to subpopulation germinatio; ta = incu‐
bation day when subpopulation germination was reached; tb = in‐
cubation day before subpopulation germination was reached; 
na = number of germinated seeds on day that subpopulation ger‐
mination was reached; nb = number of germinated seeds on day 
before subpopulation germination was reached; N  =   number of 
germinated seeds equal to the percentage of the total subpopula‐
tion of interest.

The Data Averages worksheet displays the same metrics for 
the average of each treatment and temperature combination. The 
Standard Error worksheet displays the standard error for each 
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calculation on the Data Averages worksheet. The Polynomial 
Equations worksheet contains second order polynomial equa‐
tions with their associated coefficient values (A, B and C), the R2 
value for each germination percentage of each treatment, and the 
corresponding graphs depicting germination rate as a function of 
temperature (Supporting information Figure S3). To create new 
polynomial equations the newly created sheets need to be exported 
or deleted.

2.1.3 | Step 3—Field data input

To estimate seed germination timing in the field from the poly‐
nomial equations, the user needs to create worksheets contain‐
ing field soil temperature and water potential data. Click the 
See Sample Data button on the Home worksheet to see how 
field data worksheets should be formatted. Create separate 
worksheets for separate sites and planting years. The format 
of the data must match the example data in the worksheet, 
where column A is the measurement date and time, column B 
is temperature, and column C is water potential. The user must 
input their own field data worksheets to apply the model. The 
field data worksheets must be located in‐between the Home 
and Data Entry worksheets. If there are any other worksheets 
besides field data in this location, the program will not operate 
correctly.

2.1.4 | Step 4—Field germination predictions

At this point, two options are available for the user to choose 
from. The first option is to predict the time to reach the previ‐
ously specified germination percentages based on a planting date. 
The second option is to predict the dates a certain germination 
percentage is reached based on a range of planting dates. Before 
clicking either button, make sure that steps 1–3 are complete and 
that the Polynomial Equations worksheet is located in the work‐
book somewhere after the Data Entry worksheet. If Polynomial 
Equations are missing or has a changed name, Auto‐Germ will not 
operate.

To predict the times to reach the previously specified ger‐
mination percentages, click the Choose Planting Date button on 
the Home worksheet. Enter the planting date to model for in the 
pop‐up window. The minimum water potential threshold can be 
changed from the default value of −1.5 MPa, based on the species 
being evaluated. The new worksheet created is named Planting 
Date (Supporting information Figure S4). The tables on the left of 
Planting Date show the predicted dates when the corresponding 
germination percentages will occur for each treatment according to 
each individual field data sheet. The graphs of the tables are located 
on the right.

To predict the dates a certain germination percentage is 
reached, click the Choose Germination Percentage button on the 
Home worksheet. Enter the percent germination and the range of 
planting dates to model in the pop‐up window. The minimum water 

potential threshold can also be changed from the default value of 
−1.5 MPa. The new sheet is named % Germination (Supporting in‐
formation Figure S5). The tables on the left of % Germination show 
the predicted time to reach the specified percent germination, 
given the specified range of planting dates. Each table corresponds 
to a field data sheet. The graphs of the tables are located on the 
right.

2.1.5 | Workbook Options

Workbook Options is the last heading on the Home sheet. The 
View Data button will create a new workbook that contains all of 
the data generated from steps 2 and 4, but will not remove any 
new worksheets. The new workbook containing generated data 
may be saved. The Export Data button will export the data that 
was generated in steps 2 and 4 to another workbook that can be 
saved, and data will be removed from Auto‐Germ. The Start Over 
button will completely reset Auto‐Germ and delete all the data 
generated, but will not affect worksheets located before Data 
Entry.

2.2 | Case study

2.2.1 | Laboratory methods

We developed wet thermal‐time models for 10 seedlots of species 
commonly used in restoration projects in the Great Basin. We in‐
cluded eight perennial grasses; P. spicata, Leymus cinereus (Scribn. 
& Merr.) Á. Löve (Great Basin wildrye), Festuca idahoensis Elmer 
ssp. Idahoensis (Idaho fescue), Poa secunda J. Presl (Sandberg 
bluegrass), Elymus wawawaiensis J. Carlson & Barkworth (Snake 
River wheatgrass), Elymus lanceolatus (Scribn. & J.G. Sm.) Gould 
(thickspike wheatgrass), and Elymus elymoides (Raf.) Swezey (bot‐
tlebrush squirreltail), two forb species; Linum lewisii Pursh (Lewis 
flax) and Achillea millefolium L. var. occidentalis DC. (western yar‐
row), and one shrub species; Artemisia tridentata Nutt. ssp. wyo-
mingensis Beetle & Young (Wyoming big sagebrush). Seed was 
purchased from certified lots at Granite Seed (Lehi, UT, USA). 
A range of constant temperatures was used to germinate the 
seeds (5, 10, 15, 20, and 25°C). The study was setup using a ran‐
domized block split‐plot design, with temperature comprising the 
split plot. Seven repetitions were used for each species, at every 
temperature. In each repetition, 25 seeds were placed in a 9 cm 
diameter petri dish that contained a single layer of blotter paper. 
Five ml of water was initially added to each petri and additional 
water was added as petri dishes dried throughout the study. Petri 
dishes were closed in plastic bags by block to prevent the loss 
of water. Germinated seeds were counted every 1–3 days, for 
60 days. Seeds that had germinated were counted, recorded, and 
removed from the petri dishes. Germination count data was then 
processed in Auto‐Germ.

Auto‐Germ was used to calculate final germination percentage, T50, 
synchrony, and mean germination time. We then used mixed model 



     |  11537RICHARDSON et al.

analysis in JMP® (Version 13, SAS Institute Inc., Cary, NC, USA) to first 
determine the significance (p ≤ 0.05) of these four indices with respect 
to species, incubation temperature, and their interactions (unless de‐
termined to not be significant). In the model, blocks were considered 
random, while incubation temperature and species were both consid‐
ered fixed. We tested for differences in responses to species at the in‐
cubation temperatures of 5, 10, 15, 20, and 25°C using a Tukey pairwise 
comparison test (p ≤ 0.05). Final germination was squared and the log 
of T50, synchrony, and mean germination time was taken to normalize 
the data.

2.2.2 | Field germination predictions

Wet‐thermal accumulation models for each species was applied 
to historical soil temperature and water potential data from the 
Sagebrush Step Treatment and Evaluation Project (SageSTEP) 
(Cline, Roundy, & Christensen, 2018a 2018b) to determine how 
planting date influenced germination timing. We selected from 
the SageSTEP network ten different sites to model seed germi‐
nation timing that were within Artemisia‐steppe and Pinus spp.‐ 
Juniperus spp.(pinyon‐juniper) woodland communities that had 
been treated with prescribed burns (Moses Coulee, WA, Saddle 
Mountain, WA, Bridge Creek, OR, Hart Mountain, OR, Marking 

Corral, NV, Owyhee, NV, Blue Mountain, CA, Greenville Bench, 
UT, Onaqui, UT, and Stansbury, UT) (McIver & Brunson, 2014). At 
each of these sites, hourly measurements were made at approxi‐
mately 1–3 cm below the soil surface to estimate soil temperature 
using thermocouples and soil water potential using gypsum blocks 
(Delmhorst Inc., Towaco, NJ, USA).

At each of the field sites, we evaluated seed germination tim‐
ing for each of the 10 seedlots using the second option in Step 4 
on the Home worksheet, which predicts the dates a certain germi‐
nation percentage is reached based on a range of planting dates. 
Simulations were ran on 6 different years with daily planting dates 
between September 1st and March 1st. For each simulated plant‐
ing date, we analyzed for the date a simulated population of seed 
would reach 50% germination. A base water potential threshold of 
−1.5 MPa was used in the simulations, based off of previous studies 
(Rawlins, Roundy, Davis et al., 2012; Rawlins, Roundy, Egget et al., 
2012).

We used the planting date required for 50% or more of the 
simulated population of seeds to germination in spring (i.e., 1 
March or later) as the metric to compare between species. This 
metric was chosen because it is estimated to be the planting date 
required for land managers to circumvent the limiting biotic and 
abiotic factors causing mortality to seedlings during the winter. 

F I G U R E  1  Final germination 
percentage and synchrony at 
temperatures ranging from 5–25°C for 10 
different species commonly seeded in the 
Great Basin, USA. Values with the same 
incubation temperature with different 
letters are significantly different (p ≤ 0.05) 
at that temperature. Letters correspond 
with the order of the data points in the 
figure



11538  |     RICHARDSON et al.

We used mixed model analysis to first determine the signifi‐
cance (p ≤ 0.05) of species, site, and year for germination date 
(all fixed variables). We then tested for differences in responses 
to species, site, and year using a Tukey pairwise comparison test 
(p ≤ 0.05).

3  | RESULTS

3.1 | Germination indices

Incubation temperature, species, and the interaction between 
these two factors affected final germination percentage (F = 10.5, 
p < 0.001; F = 23.6, p < 0.001; F = 2.9, p < 0.001), synchrony 
(F = 49.0, p < 0.001; F = 52.6, p < 0.001; F = 5.9, p < 0.001), T50 
(F = 1240.9, p < 0.001; F = 143.4, p < 0.001; F = 25.6, p < 0.001), 
and mean germination time (F = 726.8, p < 0.001; F = 116.1, 
p < 0.001; F = 18.8, p < 0.001), respectively. As would be ex‐
pected for cool‐season species in the Great Basin, germination 
was highest in general around 15°C and typically declined under 
the lowest (5°C) and highest (25°C) temperatures. The degree that 
germination percentage changed by temperature was variable for 

each species, with some species showing a limited change in ger‐
mination with temperature (E. lanceolatus, P. spicata, F. idahoensis, 
and P. secunda), while other species were more variable (A. mille-
folium, E. wawawaiensis, L. lewisii, E. elymoides, L. cinereus, and A. 
tridentata; Figure 1). Subsequently, it was at the highest and low‐
est temperatures tested where there was the greatest range in 
germination between species. For example, at 25°C , E. lanceolatus 
had the highest final germination percentage (96%) and L. lewisii 
had the lowest (34%). At 5°C , F. idahoensis had the highest final 
germination percentage (90%) while E. elymoides had the lowest 
(57%; Figure 1).

Synchrony values fluctuated greatly between tempera‐
tures for all species (Figure 1). There were five species that 
had synchrony values above 0.40 (E. lanceolatus, P. spicata, A. 
millefolium, E. elymoides, and P. secunda). Both L. cinereus and A. 
tridentata consistently had the lowest synchrony values (0.08–
0.18; Figure 1).

Both T50 and mean germination time followed similar patterns, 
where all species had the highest values at 5°C, and then decreased 
until 20 and 25°C when many species had slight increases in germi‐
nation time (Figure 2). The greatest difference between consecutive 

F I G U R E  2  Time to 50% germination and mean germination time at temperatures ranging from 5–25°C. Values with the same incubation 
temperature with different letters are significantly different (p ≤ 0.05) at that temperature. The letters correspond with the data points from 
top to bottom. Letters correspond with the order of the data points in the figure
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temperatures for both T50 and mean germination time occurred with A. 
tridentata between 5 and 10°C (32 and 31 days). Out of all the species, 
A. tridentata had the highest T50 and mean germination time at 5°C 
(41 and 48 days, respectively), but then these values quickly decreased 
as temperature increased; by 25°C, this species produced one of the 
fastest germinating times (2 and 4 days, respectively). L. cinereus had 
the second highest T50 and mean germination times at 5°C (22 and 
25 days), but relative to the other species it maintained high values 
as temperature increased. A. millefolium was typically the fastest ger‐
minating species as shown by T50 and mean germination time values. 
However, at 10°C mean germination time was lower for P. spicata by 
7 days and at 25°C, T50 was lower for A. tridentata by 2 days (Figure 2).

3.2 | Field predictions

Wet‐thermal accumulation models appeared to have sufficient accu‐
racy to predict germination time (adjusted R2 = 0.71–0.98). Species 
(F = 23.2, p < 0.001), site (F = 146.4, p < 0.001), and year (F = 79.3, 
p < 0.001) affected the planting date required to have 50% or more 
of the population germinate after 1 March. The site that produced 
the earliest average planting date across all species was Marking 
Corral (28 October), while the site that produced the latest aver‐
age planting date across all species was Bridge Creek (7 February; 
Figure 3). Seven of the sites had average planting dates in mid‐fall to 
early winter (September–November), while the other three sites had 
average planting dates much later in the season (January–February; 
Figure 3). All years had similar ranges, with 2011–2012 having the 
earliest average planting date (27 October), and 2014–2015 having 
the latest (6 January; Figure 4).

Analysis by individual species showed each species had average 
planting dates as early as September, and as late as February to have 
50% or more of the population germinate after 1 March (Figure 5). While 
there was extreme variability across all species in the date required for 
the majority of the seeds to germinate by spring or later, certain species 
consistently required later planting dates than others. A. millefolium had 
the latest average planting date (24 December), with the interquartile 

range of the data falling between 15 November and 16 February. The 
only other two species that had average planting dates in December 
were E. wawawaiensis (5 December) and P. spicata (4 December). These 
species, while having later average planting dates than all other spe‐
cies besides A. millefolium, had some of the largest interquartile ranges 
(19 October–9 February and 20 October–7 February respectively). 
E. lanceolatus (28 November), F. idahoensis (21 November), L. lewisii (19 
November), P. secunda (18 November), and E. elymoides (14 November) 
all had average planting dates in November. L. cinereus (29 October) and 
A. tridentata (25 October) had the earliest average planting dates, with 
interquartile ranges that began in mid‐September (14 September, 15 
September), and ended as early as late November—early December (23 
November, 6 December; Figure 5).

4  | DISCUSSION

Our case study demonstrates that Auto‐Germ has the potential to 
enable researchers to efficiently process laboratory germination 
data and field soil moisture and temperature data to predict vari‐
ous germination indices, including field germination timing. Based 
on these results, we anticipate that Auto‐Germ will be applicable 
to non‐dormant seeds of most species. Both land managers and re‐
searchers could benefit from this program by providing them with 
a better understanding of how seeds may respond to their planting 
sites’ unique soil temperature and moisture regimes.

It should be noted that predictions developed from Auto‐Germ 
should be used as rough assessments to help guide further research 
and management. Wet‐thermal models used in Auto‐Germ can 
overestimate germination rates (more so than other hydrothermal 
models) but these errors are expected to be minimal (Hardegree 
et al., 2017; Rawlins, Roundy, Egget et al., 2012). In previous 
studies that have validated wet‐thermal accumulation models, 
non‐linear regression equations were used from TableCurve 2D 
(Systat Software Inc., San Jose, CA, USA) curve‐fitting program 
(Rawlins, Roundy, Davis et al., 2012; Rawlins, Roundy, Egget et al., 

F I G U R E  3  Planting date by site 
required for 50% or more of the simulated 
population to germinate in March or 
later. Box limits represent the first and 
third quartiles, the black line within the 
box indicates the median, the blue line 
indicates the mean, the whiskers’ limits 
represent the 10th and 90th percentiles, 
and the individual dots represent outliers. 
Plots with different corresponding letters 
are statistically different (p ≤ 0.05)
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2012; Roundy et al., 2007). In these studies, the R2 values of the 
models ranged from 0.70 to 0.98. For our case study, a more sim‐
plified second order polynomial was used to allow processing in 
Microsoft Excel. This study indicated that second order polyno‐
mials provided a similar level of accuracy to predict germination 
timing as other models (R2 = 0.71–0.98).

The germination indices calculated showed that individ‐
ual species react uniquely to differences in soil temperature 
(Figures 1 and 2). For example, A. tridentata at 5°C had an ex‐
tremely high T50 and mean germination time in relation to the 
other species tested (almost 2× more than L. cinereus, the spe‐
cies with the next highest values; Figure 2). However, as the 

temperature increased, T50 and mean germination time de‐
creased to levels similar to the other species. Given this informa‐
tion, it is impractical for land managers to plant different species 
at the same date and expect similar results in germination timing.

Our case study also showed how these unique germination 
characteristics affected when species would germinate in the field 
under historic soil moisture and temperature settings (Figures 3–5). 
Auto‐Germ was used to calculate when 11 different species would 
need to be planted to have the majority of germination occur after 
1 March, across 6 years, and 10 Artemisia‐steppe sites in the Great 
Basin of North America. Looking at all species collectively by site 
showed that the required planting date for germination to occur 
after 1 March was highly variable, with planting dates ranging from 
September to February, due to differences in the sites soil tempera‐
ture and moisture (Figure 3). The year of planting was also highly 
variable when looking at all species collectively by planting year, 
with required planting date for germination to occur after 1 March 
ranging from November ‐January (Figure 4). Additionally, on a spe‐
cies basis, there was high variability between some species with 
respect to the planting date that would allow germination to occur 
after 1 March. In general, we found that species that exhibited lower 
T50 and mean germination time values (particularly under colder 
temperatures), such as A. millefolium, E. wawawaiensis, and P. spicata 
(Figure 2), on an average all required planting dates by December for 
the majority of the simulated population to germinate after 1 March. 
Conversely, species with higher T50 and mean germination time val‐
ues, such as L. cinereus and A. tridentata, could be planted much ear‐
lier in the season (October), and typically not have the majority of 
the seeds germinate over the winter.

Two key points can be taken from this portion of the study, firstly 
that restoration plans developed for a species at one site or year do 
not translate to sites and years with different soil temperature and 
moisture regimes. The optimal planting date (the date required for 
the majority of germination to occur after 1 March) for a species 
varies greatly between sites where the climates are different. The 
same principle can be applied to variability seen on a year to year 
basis. The annual environmental changes at individual sites create 
vastly different results for planting dates. The second key point is 
that at any given site, understanding the germination characteristics 
of individual species may increase the success rates of restoration 
projects. For example, planting A. tridentata in mid‐October may be 
late enough in the season to circumvent winter germination at mul‐
tiple sites; however, for a species such as P. spicata, which germi‐
nates more quickly, a planting date in mid‐December might be more 
suitable.

These differences between species germination timing (Figure 2 
and 5) may be beneficial when applied to bet‐hedging strategies sur‐
rounding seed mixes. Rinella and James 2017 predicted that seed 
mixes of both P. spicata and P. secunda would lead to better estab‐
lishment than individually seeded species. As shown from the ger‐
mination indices calculated in this study, the species used reacted 
in unique ways to different temperatures, both in the timing and 
spread of germination. This demonstrates how individual species 

F I G U R E  4  Planting date by modeling year required for 50% or 
more of the simulated population to germinate in March or later. 
Box limits represent the first and third quartiles, the black line 
within the box indicates the median, the blue line indicates the 
mean, the whiskers’ limits represent the 10th and 90th percentiles, 
and the individual dots represent outliers. Plots with different 
corresponding letters are statistically different (p ≤ 0.05)

F I G U R E  5  Planting date by species required for 50% or more of 
the simulated population to germinate in March or later. Box limits 
represent the first and third quartiles, the black line within the box 
indicates the median, the blue line indicates the mean, the whiskers’ 
limits represent the 10th and 90th percentiles, and the individual 
dots represent outliers. Plots with different corresponding letters 
are statistically different (p ≤ 0.05)
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may be better suited for different sites and their relative suitabil‐
ity may change depending on the planting year. Using multiple spe‐
cies with different germination characteristics could decrease the 
risk of seeding failure by spreading the period that seeds germinate 
under and thus increase the probability of having some of the spe‐
cies in the mix germinate during a period that is favorable for plant 
establishment.

Our findings provide evidence that winter mortality may play 
a role in the lack of spring emergence seen in restoration efforts 
due to species germinating prior to or during the winter period and 
being subjected to freezing conditions. For all species except A. tri-
dentata and L. cinereus, 50% or more of the required planting dates 
for spring germination occurred by November or later. This means 
that land managers who seed areas in mid to late fall would run the 
risk of having germination occur outside of more favorable spring 
conditions. Premature germination could potentially be mitigated by 
planting later in the season, however this study shows that seeding 
would need to take place in early to late winter. Winter seeding can 
be logistically challenging due to freezing and/or saturated soil con‐
ditions impacting the delivery of seed from mechanical equipment. 
One potential solution may be to treat the seeds and induce seed 
dormancy over the winter period. Richardson (2018) demonstrated 
that seed dormancy can be induced through the addition of the plant 
hormone abscisic acid (ABA), which is applied to the seed through a 
seed coating. It may be possible to have seeds that are not suitable 
for planting in early fall treated with an ABA seed coating so that the 
seeds germinate in spring when conditions may be more favorable 
for plant establishment and growth.

5  | CONCLUSION

Our research indicates that Auto‐Germ provides researchers with 
a tool to efficiently model germination timing to understand the 
germination patterns of species across large temporal and spatial 
spectrums. As shown through our case study in the Great Basin, 
Auto‐Germ was able to generate germination indices and predict 
seed germination timing in the field, over six different years, for 10 
different species commonly used for restoration projects. The re‐
sults of this research provide new insights into when these species 
should be planted and can help guide scientists and land managers in 
developing new restoration technologies and practices.
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