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A few families of transposable elements (TEs) have been shown to evolve into cis-regulatory elements (CREs). Here, to ex-

tend these studies to all classes of TEs in the human genome, we identified widespread enhancer-like repeats (ELRs) and find

that ELRs reliably mark cell identities, are enriched for lineage-specific master transcription factor binding sites, and are

mostly primate-specific. In particular, elements of MIR and L2 TE families whose abundance co-evolved across chordate ge-

nomes, are found as ELRs in most human cell types examined. MIR and L2 elements frequently share long-range intra-chro-

mosomal interactions and binding of physically interacting transcription factors. We validated that eight L2 and nine MIR

elements function as enhancers in reporter assays, and among 20 MIR-L2 pairings, one MIR repressed and one boosted the

enhancer activity of L2 elements. Our results reveal a previously unappreciated co-evolution and interaction between two

TE families in shaping regulatory networks.

[Supplemental material is available for this article.]

Transposable elements (TEs) are widespread throughout the
genome, coveringmore than 50% of the human genome (Interna-
tional Human Genome Sequencing Consortium 2001; de Koning
et al. 2011). TEs are important contributors to genome complexity
(Erwin et al. 2014), evolutionary variation (Biémont and Vieira
2006), and environmental adaptation (Chénais et al. 2012). TEs
can be broadly classified into two types: retrotransposons, which
copy andpaste; andDNA transposons, which cut and paste (Seberg
and Petersen 2009). Retrotransposons are more abundant than
DNA transposons in the human genome (International Human
Genome Sequencing Consortium 2001). Among retrotranspo-
sons, short interspersed elements (SINEs) and long interspersed el-
ements (LINEs) are the two most prolific TEs in higher eukaryotes.
The genomic distribution for specific families of SINEs and LINEs
are associated with each other, and in the human genome, only
retrotransposons such as L1, Alu, and SVA appear to have transpo-
son activity (Mills et al. 2007). Previous evidence has shown that
TEs can be adopted as cis-regulatory elements (CREs), donating en-
hancers, promoters, and insulators to the host genome (Chuong
et al. 2016). These TE CREs, which harbor abundant motifs and
transcription factor binding sites (TFBSs) (Sundaram et al. 2014),
contribute to the gene regulatory networks (Kunarso et al. 2010).

Several genome-wide analyses of epigenetic activities and
functions of TEs have been carried out (Xie et al. 2013; Su et al.
2014; Sundaram et al. 2014; Goke and Ng 2016), but an extensive
cataloging and survey of TEs as CREs across different human

cell types and tissues is still lacking. We therefore carried out a
comprehensive TE-centric integrated analysis using data from
the ENCODE Project (The ENCODE Project Consortium 2012),
NIH Roadmap Epigenomics (Roadmap Epigenomics Consortium
et al. 2015), and individual studies.

Results

Integrated framework for cis-regulatory TE detection

Accurately assigning reads fromChIP-seq data to TE regions is a key
technical issue in the TE analysis field, especially for short reads
(Derrien et al. 2012). The low mappability issue for short reads
makes TEs genomic “dark matter” (Lee and Schatz 2012). The sim-
plest computational strategy is only using uniquely mapped reads
and relying on high mappability regions at boundaries of TEs,
which could lead to signal loss at highly repetitive sequences.
The other strategy focuses on assigning ambiguous mapped reads
to TE families/subfamilies basedmainly onmapping quality scores
(Day et al. 2010; Wang et al. 2010; Chung et al. 2011; Xie et al.
2013). An alternative method is based on the uniquely mapped
reads andwhole genome-widemappability score to carryout signal
correction (Cheung et al. 2011; Harmanci et al. 2014).

Binding of co-activators such as EP300 and CBP has been
thought of as the golden standard for identifying genome-wide ac-
tive enhancers (Heintzman et al. 2007; Visel et al. 2009; Wang
et al. 2009). However, such co-activator ChIP-seq is not generally
feasible (Rajagopal et al. 2013), and currently the epigenetic map-
ping community such as NIH Roadmap Epigenomics (Roadmap
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Epigenomics Consortium et al. 2015) and BLUEPRINT (Adams
et al. 2012) prefer using histone modification ChIP-seq data
to detect enhancers. Enhancer-like repeats (ELRs) can be ob-
tained from widely used genome segmentation tools such as
ChromHMM (Ernst and Kellis 2012) by overlapping putative en-
hancers and TEs. One problem for thismethod is that the potential
ELRs may locate at the boundary of putative enhancers and thus
actually have low coverage of H3K27ac or H3K4me1 signal. The
classification model RFECS using the random forest algorithm
(Liaw and Wiener 2002) with histone modifications used as fea-
tures has been shown to detect enhancers with high accuracy
(Rajagopal et al. 2013). Therefore, based on TE-centric mappability
signal correction, normalization to input data (Supplemental Fig.
S1; Supplemental Materials) and the random forest classification
model, we selected histone modifications as features from the EN-
CODE data sets and built the FOFM (forest of forest model) (details
in Methods) to detect cis-functional TEs. Our repeats-centric clas-
sification method FOFM consists of two classification layers. The
first layer is used to train a model in cell lines with curated positive
and negative training data sets (Methods), and the second layer is
used to integrate the classification results from each trainedmodel
in the first layer (Methods).

As expected, H3K4me1, H3K27ac, H3K4me2, and H3K4me3
were the most important features (feature importance is defined
as the decrease of accuracy if the values for that feature are random-
ly permuted) for enhancer-like repeats detected by the FOFM, con-
sistent with H3K4me1 being an established mark for active and
poised enhancers (Heintzman et al. 2007), H3K27ac a mark for
the active regulatory element (Creyghton et al. 2010), H3K4me2
for promoters and enhancers, and H3K4me3 for active transcrip-
tion start sites (TSSs) (Supplemental Fig. S2A,B; Heintzman et al.
2007). Models built in one cell line showed high performance in
other cell lines for eachmodel (all AUCs were >0.9) (Supplemental
Fig. S2C). We further trained a second layer random forest classifi-
cation model to integrate the output from the first layer (Supple-
mental Fig. S2D). We also carried out the same analysis to detect
promoter-like repeats (PLRs) (Supplemental Fig. S3), and as expect-
ed, the most important features were H3K4me3, H3K4me2, and
H3K9ac (Supplemental Fig. S3B), which are known to be associated
with promoters (Karmodiya et al. 2012). The above analysis was all
based on uniquemapping. To rule out the possibility that different
mapping strategies could affect the results, we also built a classifica-
tion model based on random hit (RH) mapping (Methods), and
there was little difference between the performance of models us-
ing these two mapping strategies (Supplemental Fig. S2E). When
using 10 histone modification features, the FOFM for ELRs has an
AUC of 0.942, and for PLRs the AUC is 0.970 (Supplemental Fig.
S2E). We also compared the performance of our FOFMmodel to a
multiple forest model (MF). The first layer of the MF model is the
sameas the FOFM,while in the second layer, theMFmodel requires
more than half of the first layer outputs to support the classifica-
tion. Although the MF model achieved a little higher AUC for
ELRs, according to the zero-one-loss (ZOL) measurement (normal-
ized number of mismatches between true labels and predictions),
the FOFM performed significantly better (fewer false positives)
and obtained more ELRs (for example, the MF model detects
50,908 ELRs for GM12878, while the FOFM detects 69,013) (Sup-
plemental Fig. S2F). Using the FOFM with unique mapped data,
we identified 491,656 unique/nonoverlapping ELRs and 162,525
unique/nonoverlapping PLRs in 15 cell lines and tissues from
ENCODE data, and 1,371,646 ELRs and 447,308 PLRs in 82
cell lines and tissues from NIH Roadmap Epigenomics (with

histone modifications of H3K27ac, H3K4me1, H3K4me3,
H3K36me3, H3K9me3, and H3K27me3 ChIP-seq data). For the to-
tal 4,637,389 repeats annotated by RepeatMasker (Smit et al. 2013–
2015) in human (hg38) (we did not analyze simple repeats such as
[GTTAGG]n), 1,642,395 (35.42%) repeatswere identified asELRsor
PLRs. Corresponding data sets are available at http://www.picb.ac.
cn/hanlab/cisTEs. The detected ELRs highly overlap with the
typical enhancers defined by ChromHMM (Supplemental Fig.
S4A,B). Further comparison between the FOFM-identified ELRs
andChromHMM-enhancer-overlapped TEs (with the requirement
that more than half of TEs were overlapped) in GM12878, HeLa,
HepG2, andK562 indicate the FOFMdetectedmore reliable unique
ELRs by showing higher H3K27ac and EP300 ChIP-seq signal,
while many unique ChromHMM-enhancers-overlapped TEs may
locate at the enhancer boundaries and thus have lower H3K27ac
and H3K4me1 signal (Supplemental Fig. S4C–F).

The majority of TEs are potential regulatory elements

We first examined TE family enrichment for ELRs and PLRs in dif-
ferent cell lines. Based on the results using the FOFM with the
ENCODE (using either unique mapping [Fig. 1A] or RH mapping
strategy [Supplemental Fig. S5A]) and NIH Roadmap Epigenomics
data (consolidated [Fig. 1B] and nonconsolidated [Supplemental
Fig. S5B]), most TE families showed varied enhancer activity across
cell types, while MIR and L2 were consistently enriched in each
cell type. Consistent with previous studies, we found MIR and L2
are enriched for enhancer activities in GM12878 and K562 (Fig.
1A; Huda et al. 2011; Jjingo et al. 2014) and a specific enrichment
of the endogenous retroviral sequences ERV1 and ERVL as poten-
tial enhancers in pluripotent stem cells (Fig. 1B; Supplemental Fig.
S5B; Kunarso et al. 2010; Wang et al. 2014).

To estimate whether we detected all TEs in the genome that
could function as CREs, we performed a saturation analysis using
cumulative ratios (number of unique sets of ELRs/PLRs compared
to all TEs in the genome). Even with the use of 82 cell lines from
NIH Roadmap Epigenomics, detection did not reach saturation,
which showed that more TEs may function as CREs if using
more data and substantially more TEs potentially functioning
as enhancers than promoters (Fig. 1C). We further corroborated
the saturation analysis results using TEs overlapped within 1kb
of the EP300 ChIP-seq peak summits (Fig. 1D). The highly cell-/tis-
sue-specific bindings of EP300 at TEs (55.51%) are consistent with
the observation that the majority of TE-derived TFs bindings were
cell-type–specific (Sundaram et al. 2014).

As an indication of biological relevance and functional im-
portance of these ELRs, 74.35% of the ELRs are in the vicinity of
10 kb from gene expression quantitative trait loci (eQTLs) (Fig.
1E). In addition, there is a greater number of ELRs with their cen-
ters within 10 kb of their nearest eQTL than the number of random
background sequences (similar lengths) that are within 10 kb of
nearest eQTLs (Fig. 1E), suggesting a functional association of
ELRs with gene expression and cellular processes.

Another indication of the functional relevance of these ELRs
is that there are more ChIA-PET and Hi-C long-range PETs linking
them with TSSs than the background (ELRs’ nearby TEs belong-
ing to the same family which were not classified as ELRs or PLRs)
using data from GM12878 cells (Fig. 1F,G).

ELRs mark cell identities

ELRs showhigh tissue- and cell-type–specificity compared to PLRs,
as PLRs have very similar presence/absence profiles across samples
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(Fig. 2A). Quantitatively, the Jensen-
ShannonDivergence (JSD) entropy (Cab-
ili et al. 2011) (measurement of tissue
specificities) of ELRs is similar to typi-
cal enhancers (defined by ChromHMM
from NIH Roadmap Epigenomics); both
are much higher than PLRs, typical
promoters, or the non-TE overlapping
fragments in typical promoters or en-
hancers, indicating TEs contribute to tis-
sue specificities of typical enhancers
(Fig. 2B). To investigate whether ELRs
can distinguish cell identities, we built a
neighbor-joining tree (NJT) using ELRs.
The NJT built by ELRs showed an accu-
rately categorized structure based on
known lineage groups (cluster purity =
0.812, where cluster purity = 1.0− [mis-
aligned dendrites/total dendrites]) (Fig.
2C). A previous study has reported that
NJT built using ±1.5 kb H3K4me1 densi-
ties of long-intergenic noncoding RNAs
(lincRNAs)TSSs is thebest lineageclassifi-
cationmethod (Amin et al. 2015), andwe
find the NJT built by ELRs (cluster purity
= 0.812) (Fig. 2C) is better basedoncluster
purity (cluster purity = 0.681) and the
overall structure (Supplemental Fig.
S6A). Also, the NJT built by ELRs is better
than the NJT built by ±1.5 kb H3K4me1
densities of all lncRNAs (including lincR-
NAs) TSSs (cluster purity = 0.681) (Sup-
plemental Fig. S6B) and the NJT built by
typical enhancer fragments with no TE
overlap (cluster purity = 0.754) (Supple-
mental Fig. S6C).

We further validated the accuracy
and generality of ELRs in marking cell
identities by using known cell identities
of normal blood samples and blood dis-
ease samples from the BLUEPRINT (Ad-
ams et al. 2012) (cluster purity = 1.000)
(Supplemental Fig. S7A,B) and CEEHRC
(Bae 2013) data (cluster purity= 0.872)
(Supplemental Fig. S7C,D).

ELRs are enriched for motifs and binding

sites of tissue-specific master regulators,

and are primate-specific

To understand how ELRs mark cell iden-
tities, we focused on tissue-specific ELRs
(tsELRs) and searched for their upstream
regulators and downstream effectors.
Using ELRs with JSD>0.7, we defined
11 clusters of tissue-specific ELRs (Fig.
2D; Supplemental Fig. S9). The nearest
genes of tsELRs in each cluster are en-
riched for tissue-specific functional GO
terms (Fig. 2E), suggesting roles of ELRs
in regulating tissue-specific functions
(Xie et al. 2013; Jjingo et al. 2014). For
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Figure 1. Enhancer- and promoter-like repeat elements (ELRs and PLRs) in human tissues and cell lines.
(A) TE families enriched for ELR and PLR in different ENCODE cell lines based on histone modification
ChIP-seq data using a unique mapping strategy. Bubble size indicates corrected enrichment P-value
and color marks enrichment score. The enrichment test was performed with a combination of the bino-
mial test and hypergeometric test (Methods). (B) TE families enriched for ELRs and PLRs in NIH Roadmap
Epigenomics cell lines based on the consolidated histone modification ChIP-seq data. Tissue-specifically
enriched TE families such as ERV1 and ERVL in ESCs and iPSCs are marked by lavender ellipses.
(C ) Cumulative ratio of ELRs and PLRs among MIR, L2, and all TEs in human tissues in NIH Roadmap
data. (D) Saturation estimation of active TEs bound by EP300. Upper panel is the heat map of detected
active TEs bound by EP300 in human cell lines or tissues collected from GEO; each column is a sample,
and each row is a TE; values in the heatmap are binary, and 1 (red)means the TE is bound by EP300; lower
panel is the cumulative ratio of the active TEs among MIR, L2, and all TEs; 55.51% of the EP300-bound
TEs are restricted to predominately one tissue or cell. (E) Distance distribution of centers of ELRs to nearest
eQTLs fromGRASP database; 74.35% of the ELR centers have eQTLs in vicinity of 10 kb. The permutated
background was the mean value by sampling the same number and same length sequences to the all
ELRs 100 times. (F,G) Hi-C (GSM1551552) PETs and H3K27ac ChIA-PET (GSE59395) PET frequencies
linking ELRs and TSSs, compared to the same number of nearest non-ELR and non-PLR TEs in the
same families (background).
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example, the tsELR cluster of immune cells (Blood and T cell, HSC
and B cell) is enriched for genes in the “immune system process,”
and the digestive tissue tsELR cluster (Digestive) enriches for genes
in the “lipid metabolic process” (Fig. 2E). Based on the Jensen-

Shannon Divergence, we also defined
tissue-specific genes (Supplemental Fig.
S8A; Supplemental Materials). Tissue-
specific ELRs are highly enriched within
∼200 kb around the TSSs of tissue-specif-
ic genes (permutation FDR=0.00) (Fig.
2F; Supplemental Fig. S8B–D).

We inferred upstream regulators
of the embryonic stem cell (ESC) (ES
cell and iPSC) cluster, for which there
are rich resources of published ChIP-
seq data. Motif analysis for ESC tsELRs
showed that ESC master regulators,
POU5F1, NANOG, and SOX2 (Boyer et
al. 2005; Loh et al. 2006), ranked as the
topone, two, and fivemotifs, respectively
(Fig. 3A). Furthermore, most of the mean
motif densities for the top 10 motifs in
the ESC tsELRs are higher than the ESC-
specific typical enhancers or the typical
enhancer fragments without overlap
withTEs (Fig. 3B). This suggests that these
ELRs harbor major binding sites for TFs
that are important to ESC identity, which
is consistent with previous findings that
TEs are a source of genomic regulation
(Jacques et al. 2013; Sundaram et al.
2014;Trizzinoetal.2017).Wefurtherval-
idated this by using TF binding site data
from Cistrome (Fig. 3C, gray bars; Liu
et al. 2011) and HUES64 ESC ChIP-seq
data (Fig. 3C, green bars; Tsankov et al.
2015); heat maps of these top 10 TFs also
show that these tsELRs are enriched at
the centers of TF binding sites (Fig. 3D;
Supplemental Fig. S10A). The tsELRs also
show tissue-specific hypomethylation,
and tissue-specifically expressed non-
poly(A) and nascent RNA at a low level
(Supplemental Fig. S10B–F), similar to en-
hancer RNAs (eRNAs) (Mousavi et al.
2013; Arner et al. 2015), further indicates
that tsELRs could encode lncRNAs (Ka-
pusta et al. 2013).

We next studied whether ELRs are
conserved between species. Starting
from ESC- and iPSC-specific ELRs, we
mapped them to representative species
fromthe topologyof theUCSCvertebrate
phylogenetic tree (Fig. 3E; Karolchik et al.
2012) according to sequence similarities
(Methods). The mapping ratios decrease
as the evolutionary distances increase.
Generally, the mapping ratios are above
60% in primates, with up to 100% in
chimpanzee and gorilla, while less than
1% in chicken, frog, and zebrafish (Fig.
3F). Moreover, different from the UCSC

phylogenetic tree or the annotated evolutionary-separation years
by TimeTree (Hedges et al. 2015), the tsELRsmapping ratio showed
that laurasiatheria are closer to primates than euarchontoglires.
The enrichment formaster TFmotifs inmapped sequences showed

A C

B

D

E

F

Figure 2. ELRs mark cell identities. (A) Correlations of each pair of tissues and cell lines based on their
ELRs and PLRs presence/absence (1/0) profiles within the tissues. Cells are grouped by annotation from
NIH Roadmap Epigenomics. (B) Cumulative density of maximal tissue specificity metric Jensen-Shannon
divergence (JSD) for all ELRs, PLRs, typical enhancers/promoters defined by ChromHMM and the frag-
ment sequences from typical enhancers/promoters without TEs overlap that match any tissue-specific
pattern. (C) Neighbor joining tree (NJT) of the NIH Roadmap Epigenomics samples based on all ELRs’
presence/absence profiles, with the ESC and iPSC branch set as the root. (D) Heat map of the ELRs (max-
imal JSD>0.7) binary matrix, from 1 (red) to 0 (white), across different NIH Roadmap Epigenomics cell
lines. (E) Heat map of enrichment P-values for the top enriched GO terms of each cluster. (F) Frequency
histogram of absolute distances from each TE to the nearest tissue-specific genes (TSGs) in the group of
Blood and T cell and Digestive tissues.
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Figure 3. hESC- and iPSC-specific ELRs mark the master TF binding sites. (A) Top five enriched motifs detected by CentriMo around centers of ESC-
specific ELRs. (B) Mean motif densities for the top 10 enriched TF motifs on ESC-specific ELRs, ESC-specific typical enhancers, and ESC-specific typical
enhancer fragments that do not overlap with any TE. (C ) Top enriched TFs bound at the ELRs in the ESC-specific module as determined by ChIP-seq targets,
sorted by fold enrichment of TF binding over the background of all TEs. The left and right graphs are based on hESC and iPSC data fromCistrome, and data
fromHUES64 (GSE61475), respectively. The red line indicates themean fold enrichment of all 67 TFs that have overlaps with tsELRs over the background of
all TEs. (D) Profiles of the top 10 TFs in the left graph of panel D across −2.5 to +2.5 kb centered around tsELRs. The ELRs are sorted by the mean H3K4me1
intensity. Data sources: SMARCA4 (GSM602297), POU5F1, EP300, and NANGO, CTBP1 (H1-hESC, ENCODE), BCL11A and SP1 (GSE32465), SOX2
(GSM1364026), CHD7 (GSM831027), and JUN (GSM935614). (E) Selected representative vertebrates on the topology structure of phylogenetic tree
from UCSC. (F ) The mapping ratios of ELRs in the hESC-specific module in select vertebrate species. Species ages are obtained from TimeTree.
(G) Radar plot of the −log10 adjusted enrichment P-values determined by CentriMo for top enriched motifs within hESC-specific ELRs in select vertebrates.
(H) Histone marks and TF binding profiles in chimpanzee iPSCs (left panel, GSE69919), pig ESCs (middle panel, GSE36114), and mouse ESCs (right panel,
GSE36114, GSE11431, and GSE56138) at −2.5 to +2.5 kb aroundmapped hESC-specific ELRs (upper panel) and PLRs (bottom panel). Only <5% and <2%
of mapped hESC-specific ELRs show enhancer-like histone modifications in pig and mouse, respectively.
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a primate-specific pattern (Fig. 3G). We further examined the his-
tonemodificationprofiles of themappedELRs andPLRs and found
thatmost ELRsmapped in chimpanzee iPSC showed enhancer pro-
files, while only 4.06% of ELRs mapped in pig ESCs did (Fig. 3H)
and only 1.99% for mapped ELRs in mouse ESCs did (Fig. 3H).
The high conservation of ELRs and PLRs between human and
chimpanzee is consistent with a previous study, which showed
that the majority of cis-regulatory elements that are conserved
among primates are a source of genomic regulation (Trizzino
et al. 2017). In contrast, themapped PLRs sequences showed epige-
netic features of PLRs in all three species (Fig. 3H), which coincides
with a previous study that found that liver promoters are partially
or fully conserved across 20 mammalian species (Villar et al.
2015). Collectively, we show human ELRs contribute to primate-
specific regulatory sites in that (1) themajority of human tsELR se-
quences are absent in nonprimate species, (2) themajority of those
human tsELR sequences that can be mapped to other nonprimate
species do not harbor the cell-identity related TF motifs as in pri-
mates, and (3) thosemapped TE sequences do not contain histone
modification enhancer marks. All these together point out that
ELRs are a driving force for primates’ specific regulatory innova-
tions, contributing to newly evolved cis-regulatory elements
(Sundaram et al. 2014; Trizzino et al. 2017).

Interactions between MIR and L2 elements

In contrast to the majority of ELRs, the SINE element MIR (mam-
malian-wide interspersed repeats) and the LINE element L2 are ret-
rotransposon families enriched for both ELRs and PLRs across all
the tissues and cell types we examined (Fig. 1A,B; Supplemental
Fig. S5B).

There are∼0.5millionMIR and L2 sequences, respectively, in
the human genome, as annotated by RepeatMasker (Smit et al.
2013–2015). According to a previous conserved segment sequenc-
es analysis (Silva et al. 2003), MIR and L2 are under strong selective
constraint. We wondered whether the conservation of sequences
is due to their functions as CREs. Therefore, we investigatedmouse
ENCODE (Mouse Encode Consortium et al. 2012) data and found
thatMIR and L2 could also be classified as ELRs and PLRs inmouse
(Supplemental Fig. S11A); cumulative analysis also indicates there
are more potential mouse ELRs or PLRs if more data are available
(Supplemental Fig. S11B). Mouse EP300 bindings also showed an
unsaturated detection trend (Supplemental Fig. S11C).

We examined the overlapping or shared mappable ELRs in
matched human and mouse tissue/cell lines using the Jaccard
Index (JI) (Fig. 4A).MIRs show thehighest overlap betweenhuman
andmouse asmeasured by the JI, when compared to the other two
TE families, L2 and hAT-Charlie—which show generality as ELRs
in most tissues examined—and Alu, known as primates-specific
(Arcot et al. 1995), included as a negative control (Fig. 4A).

Subfamily level enrichment analysis using the ENCODE and
NIH Roadmap Epigenomics data also revealed that all subfamilies
of MIR (MIR, MIRb, MIRc, MIR3, and MIR1_Amn), and two sub-
families of L2 (L2b and L2c) were highly enriched for both ELRs
and PLRs (Supplemental Figs. S12, S13). Consistent with the prev-
alence of high enrichment of MIR and L2 in ELRs in nearly all tis-
sues and cell lines, among all TE families, the detection saturation
levels for MIR and L2 ELRs are the highest, with ∼45% and 40% of
uniquelymappableMIRs and L2s in the genome identified as ELRs
across 82 tissues and cell lines, which was still unsaturated, with
the number of MIR ELRs detectable still sharply ascending when
more cells/tissues or disease conditions are added (Fig. 1C). This

suggests that whenmore samples are profiled, it may show thema-
jority of MIRs and L2s can serve as ELRs or PLRs in at least one cell
type. Indeed, although MIR and L2 serve as ELRs in general, sub-
populations of the MIR and L2 elements tend to be tissue-specific.
The tissue-specific elements aremuchmore prevalent (53.23%and
52.68% for MIR and L2 ELRs, respectively, requiring JSD>0.6)
(Supplemental Fig. S14A) than tissue-nonspecific MIR and L2
ELRs.

The genomic ratios of MIR and L2 sequences are highly corre-
lated across chordate species at an ∼1:1 ratio (Pearson correlation
coefficient [PCC] =0.954) (Fig. 4B). The correlation is much higher
than between Alu and L1 (PCC=0.332) (Fig. 4B), two elements
that share the same retro-transposition enzyme (Cordaux and
Batzer 2009). ThoughMIR and L2 elements are close in the human
genome, with a mean distance of ∼1 kb for the nearest pairs, the
nearest distances detected for those in ELRs and PLRs are more dis-
tant (Supplemental Fig. S14B). This indicates that the reason MIR
and L2 are detected as PLRs and ELRs together is not because they
are in a very close linear location; thus, we investigated whether
they colocalize in a 3D manner. Based on the support and confi-
dence metrics of the association rule mining algorithm Apriori
(Agrawal and Srikant 1994), we found a strong association between
MIR and L2 between interacting anchors pulled down by RAD21,
EP300, H3K4me1-3, and H3K27ac antibodies (Supplemental Fig.
S4C). For example, interactions betweenMIR and L2 are highly en-
riched with H3K4me1, H3K27ac, and H3K4me3 ChIA-PET inter-
acting anchors both between all MIR and L2 (Fig. 4C, lower left;
Supplemental Fig. S14C,D) and between MIR and L2 ELRs (Fig.
4C, lower right; Supplemental Fig. S14E). Although the current
3D genome mapping data do not allow the precise distinction of
nearby TEs, at the whole genome level, MIR-L2 interactions are
overrepresented compared to random background (generated as
the same loop size and same loop number as the true loops but
with randomly selected regions as loop anchors, for 1000 times)
as shown by their significantly above background support and
confidence levels in most of the data set examined, while the sup-
port and confidence of MIR-MIR and L2-L2 interactions are lower
than between L2-MIR in the majority of the data sets (Supplemen-
tal Fig. S14F), suggesting that the interactions between MIR-L2 at
the loops level are unlikely due to nearby MIR-MIR or L2-L2 inter-
actions. We further analyzed loops called by cLoops (https://
github.com/YaqiangCao/cLoops) using K562 H3K4me1 and
H3K27ac ChIA-PET data (GSE59395) (Heidari et al. 2014). Overall,
94% of H3K4me1 and 95% of H3K27ac loops have repeats in their
anchors (H3K27ac: 1456/1549; H3K4me1: 3367/3528), and more
than 24% of loops have MIR on one anchor and L2 on the other
(H3K27ac: 387/1549; H3K4me1: 1125/3538), with 573 total over-
lapped loops between H3K27ac and H3K4me1, among which 111
(19.4%) loops have MIR on one anchor and L2 on the other. We
randomly selected six examples, shown as Supplemental Figure
S15, A–F. We also corroborated the interaction between MIR and
L2 using paired-end tags from Hi-C data (PETs within 10 kb were
removed) (Fig. 4D; Supplemental Fig. S14I–N) and ChIA-PET
data (Supplemental Fig. S14G,H).

There are 272 TFs with enriched motifs on MIR ELRs
(Centrimo log_adj_P-value> 4), 253 TFs on L2 ELRs (Centrimo
log_adj_P-value >4), and 119 TFs are shared between the two,
based on a total of 641 motifs recorded in the MEME motif data-
base (HOCOMOCOv10_HUMAN_mono_meme) (Bailey et al.
2006). The high enrichment for TF motifs on MIR and L2 ELRs in-
dicates that they provide a rich source of TF binding sites and
therefore are potential regulatory elements. MIR and L2 ELRs are

Enhancer-l ike transposable elements

Genome Research 45
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
https://github.com/YaqiangCao/cLoops
https://github.com/YaqiangCao/cLoops
https://github.com/YaqiangCao/cLoops
https://github.com/YaqiangCao/cLoops
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235747.118/-/DC1


A

C

B

D

E

F

Figure 4. Association betweenMIR and L2. (A) Heatmap of Jaccard index between the same type of human andmouse tissues or cell lines for human and
mouse overlapping ELRs. (B) Correlated genomic ratio between MIR and L2, or Alu and L1 across chordate species. Three outlier points (all Australian spe-
cies) are labeled. (PCC) Pearson’s correlation coefficient. (C ) Support and confidence for association between L2 to MIR between ChIA-PET loop anchors;
only significant samples were shown. Lower left panel, the gray bars and dashed lines indicate support and confidence background expectation for L2 to
MIR interactions in the same number of randomly selected regions as ChIA-PET interaction anchors. Lower right panel, the H3K4me1 ChIA-PET interactions
from L2 to MIR (both are ELRs) in K562 cells, which is the case in the lower left panel. Black (real loops) and gray (random background) bars measure the
support; blue line (real loops) and blue dashed line (random background) indicate the confidence; gray and red dashed line indicate the support (0.2) and
confidence (0.5) cutoffs. Red dots mark those that have significantly higher support and confidence compared to the all possible TE family pairs back-
ground. (D) Density of distant L2-interacting tags that fall into MIR, Alu, L1, ERVK, or another L2 based on the dense 1-kb resolution in situ Hi-C data of
GM12878 (GSM1551552). ERVK is included as a negative control. Density of distantly L2 (or MIR)-interacting tags that fall into MIR (or L2), Alu, L1,
and ERVK. (E) Top 10 enriched motifs on MIR and L2 ELRs in human cells. (F) Protein-protein interaction network (STRING v10.0) among top 50 TFs
that have enriched motifs on MIR and L2 ELRs.
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bound by many important but different TFs in their top 10 motif-
enriched TFs (Fig. 4E), with the top 50 motif-enriched TFs on MIR
and L2 elements sharing significantly more protein-protein inter-
actions (PPI) (STRING [v10.0]) (Szklarczyk et al. 2014) (evidence
score > 900; TFs that do not have links in the PPI were not shown)
than random TF background (permutation test FDR=0.0281) (Fig.
4F). Some of the top TF motifs are conserved in mouse, such as
IRF8 motif within MIR, and the HBP1 motif within L2 (Fig. 4E;
Supplemental Fig. S11D).

To confirm the enhancer activity of MIR and L2 ELRs, we se-
lected and synthesized 15 L2 and 15 MIR active ELR sequences
for further testing, which are either common between HeLa and
HepG2 cells, HeLa-specific, or HepG2-specific according to the
H3K27ac, H3K4me1 profile, and EP300 binding (Fig. 5A). In
HeLa cells, eight L2 ELRs and nine MIR ELRs show significantly

higherenhancer activity thanemptyvector in the luciferase report-
er assay by a fold change>2 (Fig. 5B). Though there was significant
activity for one HepG2-specific MIR and one L2 ELR in HeLa cells,
this may be due a lack of a repressive chromatin environment in
the reporter construct. The recently improved STARR-seq (self-
transcribing active regulatory region sequencing), a high-through-
put parallel method similar to luciferase reporter assays that
overcomes several technical issues thatmay lead to unreliablemea-
surement of enhancer due to plasmid transfection (by utilizing
only the bacterial plasmid origin of replication [ORI] as the core
promoter to prevent dual promoter-induced false positives, and
by adding inhibitors to IFN-I–inducing kinases to prevent IFN-I
response-induced false positives), has been used to assess enhancer
activities at the whole-genome scale (Muerdter et al. 2017).
Therefore, besides the small number of validated ELRs by luciferase

A B

C D

Figure 5. Experimental validation of the enhancer activity and interaction between MIR and L2. (A) H3K27ac, H3K4me1, and EP300 profiles for three
example cases ofMIR and L2 ELRs used for enhancer reporter assay. (B) Experimental validation of the enhancer activity using the luciferase reporter assay in
HeLa cells. FifteenMIR and 15 L2 ELRs were synthesized and subcloned into the luciferase reporter vector. The y-axis shows the log2 transformed normalized
firefly versus Renilla luciferase activity compared with empty vector (fold change). Two Alu sequences showing the highest enhancer activity from Su et al.
(2014) were used as a positive control. Eachmeasurement was based on three biological replicates. (∗) t-test P-value < 0.01 when compared to empty vec-
tor. The gray dashed line indicates the activity fold change of 1 compared to empty vector. (C) Enhancer activity for combinations of MIR and L2 using the
luciferase reporter assay in HeLa cells. Mean log2-transformed activities normalized to empty vectors of three biological replicates are shown in the heat
map. Each row is an L2 selected from B sorted by the activity in HeLa cells; each column is a MIR, and “solo” shows the effect of a single sequence before
combination. HepG2_MIR_3 and HeLa_MIR_1_scrambled are negative controls for MIR, HepG2_L2_2 is a negative control for L2. (D) Enhancer activity
measured by luciferase reporter assay in HeLa cells for the repressor and booster MIRs (labeled below the bars) on L2 elements.
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reporter assays, as an additional evidence to support the global en-
hancer activities of our identified ELRs fromChIP-seq data, we fur-
ther analyzed the improved STARR-seq (Muerdter et al. 2017). The
genome-wide enhancer activities of ELRs in HeLa cells were con-
firmed via the improved STARR-seq both by the much higher
mean signal of STARR-seq over input on ELRs and by the heat
map of STARR-seq signal around ELRs (Supplemental Fig. S16A).
In addition, our independently validated HeLa_MIR_1 (Supple-
mental Fig. S16B) and HeLa_L2_5 ELRs (Supplemental Fig. S16C)
overlap with two STARR-seq peaks.

To test the interactions between L2 andMIR ELRs,we generat-
ed 20 pairwise combinations of the individual MIR and L2 to drive
the luciferase reporter gene expression according to our validated
elements (Fig. 5B). Compared to a scrambled MIR sequence, a
MIR ELR (HeLa_MIR_1) augmented the enhancer activity of all
L2 ELRs tested in a multiplicative manner (before log2 transforma-
tion), two other enhancer-likeMIRs inHeLa (common_MIR_5 and
common_MIR_2) augmented the enhancer activities of L2 ELRs in
an additiveway (before log2 transformation), and aHepG2-specific
MIRELR (HepG2MIR_3) suppressed the enhancer activityof all the
HeLa cell enhancers (Fig. 5C,D). However, though HeLa_MIR_3
was classified as an enhancer and has high H3K27ac, H3K4me1,
and EP300 ChIP-seq signal, it actually functions as a repressor ac-
cording to the luciferase reporter assay result (Fig. 5B–D). The L2
ELRs tested here did not strongly influence activities of MIR ELRs.
These results indicate that someMIRELRs augment, while some re-
press L2 ELRs’ enhancer activities.

Discussion

Here, we studied the roles of TEs in gene regulatory networks as a
repertoire of potential enhancers and promoters to show that
this phenomenon goes beyond any particular TE family—it is in-
stead widespread for many TE families, especially MIR and L2.
Our analysis also shows that ELRs in general tend to interact
more with promoters than flanking regions, pointing to an impor-
tant role of the ELRs in the organization of the 3D genomic
structure.

We found that ELRs precisely mark cell identities and show
high tissue specificity and primate specificity, which raises many
questions. Why are they tissue-specific? Why do they appear in
the vicinity of tissue-specifically expressed genes? Are tissue-specif-
ic master TFs that have enriched binding sites on these ELRs in-
volved in their selection?

Nearly 40% of L2 and MIR repeat elements in human show
epigenetic profiles of enhancers. The use of 82 human cell types re-
sulted in unsaturated detection of these elements; thus, withmore
tissues and cell lines profiled, especially those of diseases or can-
cers, more ELRs can be identified. This leads to two conjectures:
(1) Many TEs, such as L2 and MIR TEs, might function as enhanc-
ers in one or more tissues; and (2) different elements of the same
repeat familymay evolve different TF binding sites and serve as dif-
ferent tissue-specific enhancers in different tissues. How such se-
lection occurs remains an intriguing question.

An earlier report identified a MIR element serving as an en-
hancer booster (Smith et al. 2008). Our results show that this
might be amore general phenomenon, whereMIR elements inter-
act extensively with L2 in the 3D genome andMIR ELRs potential-
ly act as either general repressors or boosters toward L2 ELR
enhancer activity. This is consistent with the observation that ge-
nomic ratios of MIR and L2 are highly correlated across different
genomes. However, how such ratios are maintained during evolu-

tion is still an openquestion. It would be interesting to seewhether
long distance genomic interactionsmediated by common binding
TFs and physically interacting TFs on L2 andMIR, or even noncod-
ing transcripts derived from the two TE families, play a role in such
evolutionary selection.

In most studies of disease-associatedmutations, mutations in
TE regions are often ignored—for example, in the mapping of mu-
tations in acute myeloid leukemia (Papaemmanuil et al. 2016).
However, our observation that eQTLs are enriched in the vicinity
of ELRs suggests that mutations/variants in such TE regions may
have functional consequences and can no longer be neglected.
Our maps of ELRs in the majority of tissues and a number of cell
lines provide a catalog of the ELRs to be examined for disease asso-
ciation and gene expression regulation, extensive annotation of
functional variants and mutations, as well as tracing cell lineages
and their master regulatory TFs, and identifying new roles of TEs
in 3D genomic structures.

Methods

Genome reference sequences and annotations

Soft-masked assembly sequences of hg38 and mm10 were down-
loaded from the UCSC Genome Browser (Karolchik et al. 2012).
Genome annotation files were downloaded from GENCODE (hu-
man: v21, mouse: vM4) (Harrow et al. 2012). Repeat annotations
annotated by RepeatMasker (Smit et al. 2013–2015) for all species
used in this paper were downloaded from the UCSC Genome
Browser according to the used genome version. LiftOver chain files
were downloaded from the UCSC Genome Browser. Based on
GENCODE annotations, repeats were classified into 5′ UTR,
exon, intron, 3′ UTR, proximal upstream, proximal downstream,
distal upstream, distal downstream, and intergenic, which is the
same as previous studies (Faulkner et al. 2009; Su et al. 2014).
Proximal upstream was defined as (−10 kb, 100 bp) in relation to
the 5′ end of a gene, while proximal downstream was (−100 bp,
10 kb) to the 3′ end of the gene. Distal upstream and downstream
were defined as (−100 kb, 10 kb) to a gene’s TSS and TTS, respec-
tively. Intergenic refers to any repetitive element located more
than 100 kb from the nearest gene. Considering that a repeat
could be classified as exon as well as proximal upstream, the order
of priority was defined as: 5′ UTR, exon, intron, 3′ UTR, proximal
upstream, proximal downstream, distal upstream, distal down-
stream, and intergenic; a repeat was only assigned to one genomic
region.

Data sources and data processing of ENCODE ChIP-seq

and RNA-seq data

ENCODE (Boyle et al. 2014), Cistrome (Liu et al. 2011), mouse
ENCODE, NIH Roadmap Epigenomics, Blueprint, and CEEHRC
data were downloaded from respective websites and processed us-
ing standard tools. Due to themappability issue for assigning short
reads to TEs (Derrien et al. 2012), we generated both uniquely
mapped and random hit mapped reads using the same strategy
implemented in a previous study (Su et al. 2014). Briefly, for
ChIP-seq data, replicates were merged first and then mapped to
the human genome (hg38) or mouse genome (mm10) by Bowtie
(v1.1.0) (Langmead et al. 2009) allowing up to two mismatches.
Both unique map (-k 1 –m 1) and random hit map (-k 1 –m 100)
were generated for comparison. After mapping, redundant reads
were removed. More details are described in the Supplemental
Materials.
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Mappability correction and normalization of ChIP-seq data

While mappability correction was not done for preprocessed
NIH Roadmap Epigenomics “consolidated” and “unconsolidated”
data, or random hit mapped ENCODE and mouse ENCODE data,
for the uniquely mapped ENCODE and mouse ENCODE ChIP-
seq data, the following methods of mappability correction, nor-
malization against input, and quantification were used. We
provide a graph to illustrate some of the variables used for the fol-
lowing (Supplemental Fig. S1A).

Mapped reads were first extended to the fragment length fl in
the 3′ direction, as each read actually represents a sequencing frag-
ment. The fragment length can be obtained experimentally or
computationally; however, to make different types of histone
modification comparable, we used fl=150, which is also the de-
fault parameter of the “iteres” package (Xie et al. 2013).

Themappability is defined asmp=1/fk, p denotes the genomic
location of the nucleotide, and fk is the number of locations where
the k-mer started from p could map to the genome using defined a
Bowtie parameter. The reads length of most of ENCODE and
mouse ENCODE ChIP-seq data selected is 36 bp, so k=36 was
used. The whole genome mappability score was generated by
gem-mappability (Derrien et al. 2012).

We first performed the correction of signal loses due to low
mappability using the following formula both for input and
ChIP data:

d̂i = min
di
mi

, max (di, di,j)
( )

, mi , 1

di, mi = 1
| di〉0

⎧⎨
⎩ (1)

di,j = median
(
{dj} j[[ p−w,p+w]

)
.

For the ith genomic region with the same read counts, we
denote the read counts as di;mi is the meanmappability for the re-
gion. If di . 0 & mi , 1, then the correction was carried out. For
the ith genomic region, di,j is the median count of its nearby up-
stream and downstream w bins with the same length as the ith re-
gion. In analysis, w=5 was used.

We then normalize the corrected ChIP signal to input as

d̃i = max(0, d̂chipi − Rd̂inputi ), (2)

where R is the normalization factor for chip vs. input. For different
histonemodificationswith the same input, R is different. Here,mi-
nus was used rather than division because there are millions of re-
peats in the genome; otherwise, TEs would need +1 to avoid
division by zero, which would bias the total counts. We estimated
the normalization factor R in a similar way to a previous study
(Liang and Keles 2012), except setting the searching window vec-
tor as [5000, 10,000, 20,000, 50,000, 100,000].

We defined the FPM (fragments per million) to quantify each
histone modification on individual TEs. FPM is similar to TPM
(Wagner et al. 2012) in mathematical nature and can be seen as
the coverage ratio of the total coverage.

FPMi = 106 × ni × fl
Li × F

, (3)

F =
∑
i

ni × fl
Li

,

where ni is the read counts for the ith repeat, fl is the fragment
length defined above, and Li is the length for the ith repeat.

The length of nucleotides covered by mapped reads can be
represented in two ways:

∑
j

di,j · li,j = ni × fl, (4)

where ni is the read counts for the ith repeat, fl is the fragment
length, and in the repeat, there are several regions in which each
region has the equal read counts di,j, and the region’s length is li,j.

As we obtained the mappability-corrected and input-normal-
ized signal d̃i,j from Equation (2), then Equation (3) could be con-
verted by Equation (4) to the following as the final estimation of
the signal for the individual TE:

FPMi =
106 ×∑

j d̃i,j · li,j
Li × F

, (5)

F =
∑
i

∑
j d̃i,j · li,j
Li

.

Forest of forest model detecting regulatory transposable elements

The golden standard positive (GSP) set for enhancer-like repeats
was defined as distal or intergenic repeats bound by EP300 and
overlapped with DHSs, with H3K27ac levels higher than that of
thebackground sets. In the collectedENCODEdata, EP300binding
sites were only available in GM12878, H1-hESC, HeLa-S3, HepG2,
and K562. The GSP set for promoter-like repeats were defined as
proximal upstream or 5′ UTR repeats with significant H3K4me3
peaks, overlapping with DHSs and >1 TF binding site. The golden
negative sets, termed as background repeats (BRs), were defined
as DHS-overlapped repeats, without any TF binding or any signifi-
cant histone modification peaks. For ELRs, we used the GSP PLRs
and BRs as negative controls to train the model. For PLRs, we
used the GSP ELRs and BRs as negative controls. Random forest
(Liaw and Wiener 2002) implemented in scikit-learn (v0.16.1)
(Pedregosa et al. 2011), named ExtraTreesClassifier (Geurts et al.
2006), was used for classification. Classification was done in two
steps based on random forest, which we termed the forest of forest
model. In the first step, we trained a random forest model for each
of the five cell lines that have EP300 data using a curated positive
and negative set for the cell line. Models trained in one cell line
showed good performance in other cells, so the models trained in
the five cell lines can be used in other cell lines which did not
have EP300 data and we can integrate the output from the five
models to achieve a higher performance. In the second step, for
the training set in each of the five cell lines, we first obtained the
possibility matrix using the five models trained in the first step.
Then,using thepossibilitymatrix,we traineda randomforest again
and reported the final binary value. Random forest only contains
one parameter, which controls the number of decision trees used,
and was decided by iterations that reached steady performance.
AUC and ZOL were calculated by the functions of auc and zero_
one_loss from the sklearn (v0.16.1) (Pedregosa et al. 2011) to eval-
uate model performance. The FOFM trained in ENCODE data was
used to classify ELRs and PLRs using NIH Roadmap Epigenomics
and mouse ENCODE data.

Transposable element family and subfamily enrichment analysis

Hypergeometric test and binomial test P-values were combined by
Stouffer’s Z-score method (Stouffer 1949; Darlington and Hayes
2000), and the FDR was calculated by the combined P-values.
The hypergeometric test, binomial test, and FDR functions imple-
mented in theOrange Bioinformatics Toolbox (Demšar et al. 2013)
were used, and the Stouffer’s Z-score method implemented in
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Scipy (https://www.scipy.org/) was used to combine the two P-val-
ues. FDR<1×10−100 was assigned 1×10−100, and FDR<1×10−10

was defined as significant for TE families and FDR<1×10−20

for TE subfamilies. Fold enrichment over background was
calculated as

FE = k
m

/
n
N
,

where k is the number of specific TE family/subfamily ELRs/RLRs
in the input list, m is the number of TEs in the input list, n is the
number of the specific families in the genome, and N is the total
number of TEs in the genome.

Saturation estimation for ELRs, PLRs, and active TEs

The saturation estimation was performed by iteratively adding the
number of unique set of ELRs or PLRs by samples compared to the
total number of TEs in the genome. Active TEs were defined as
within 1 kb upstream of or downstream from the EP300 peak sum-
mits. All TEs were assessed using FPM described above against re-
spective input data. Here, no correction for mappability for the
TF ChIP-seq data was done according to the observation made
by a previous study (Harmanci et al. 2014).

Neighbor joining tree analysis

The neighbor joining trees (Saitou and Nei 1987) were built using
MEGA (v6.0) (Tamura et al. 2013). Euclidean distances were pre-
computed. For the NJT built by ELRs, we used the binary matrix
whose columns are different samples and rows are TEs and the
value is set to 1 if a repeat is classified as an ELR and otherwise
0, to calculate the distance. Cluster purity was calculated as 1.0 −
[misaligned dendrites/total dendrites], and misaligned was count-
ed as the samples not aligned to the branch where the majority of
samples from the same group were.

Motif analysis

FIMO (v4.10.0) (Grant et al. 2011) was used to identify motifs’ lo-
cation in the genome using default parameters. Motif density was
calculated relative to TE centers and normalized by the segment
size. CentriMo (v4.10.0) (Bailey and Machanick 2012) was used
to identify the motifs showing significant preference at the center
of a set of TE sequences. The HOCOMOCOv10_HUMAN_mono
motif data sets (Kulakovskiy et al. 2013) curated by MEME
(Bailey et al. 2006) were used in both FIMO and CentriMo.

Fold enrichment of TF binding over background on tsELRs

Fold enrichment of TF binding peaks on tsELRs over background
was calculated as

FE = k
m

/
n
N
,

where k is the number of tsELRs overlappedwith peaks for a specif-
ic TF,m is the number of TEs overlapped with peaks for the TF, n is
the number of tsELRs, and N is the total number of TEs.

TEs mapped to other species

We selected representative vertebrates on the topology structure of
the phylogenetic tree from UCSC, namely human, chimp, gorilla,
rhesus, macaque, marmoset, squirrel monkey, mouse, rat, pig,
cow, sheep, cat, dog, opossum, chicken, frog (Xenopus tropicalis),
and zebrafish. We first mapped human TE sequences to other spe-
cies by bnMapper (Denas et al. 2015) with key parameters –f BED4
–gap 20 –threshold 0.1, the same as those used in the conservation

analysis of DHSs between human andmouse (Vierstra et al. 2014).
For the mapped TEs, the nonredundant TEs that could overlap
with TEs in the target species were kept, which result in the same
family TEs or highly similar families.

Association of TE pairs between ChIA-PET interaction anchors

The processed interaction anchors of ChIA-PET data were from
ENCODE or GEO as annotated. For ENCODE data sets, replicates
were merged. For inter-anchors association analysis, we calculated
support and confidence for all possible pairs of TE families in pairs
of interaction anchors using the same formula of support and con-
fidence in theApriori algorithm (Agrawal and Srikant 1994) and re-
quiring support >0.2 and confidence >0.5.

Estimation of paired-end tags (PETs) level density

of interacting TEs

Paired-end tags (PETs) densities of interacting TEs in dense in situ
Hi-C data (Rao et al. 2014) for HMEC, K562, and GM12878 cells
were estimated using the method described in a previous study
(Su et al. 2014). The raw data were preprocessed by HiCUP (Wing-
ett et al. 2015) (v0.5.4) to obtain intra-chromosomal PETs. The
ChIA-PET data were preprocessed by Mango (Phanstiel et al.
2015) to obtain intra-chromosomal PETs; other analyses are the
same as Hi-C data analysis. Only PETs with distance >10 kb were
used to avoid self-ligation PETs. If PETs have one end located in
a TE, then the distances of the other end to the nearest TSS or
TE’s center were recorded. The distances were grouped into 100
bins, and the PETs in each bin were counted. The binned PET
counts were then normalized for the same source TE by dividing
the copy number of target TE in the genome.

Plasmids and luciferase reporter assay

The sequences of Alu, L2, MIR, and scrambled MIR were synthe-
sized as a single or L2 and MIR combined element, and cloned
into the firefly luciferase reporter vector pGL4.23[luc2/minP]
(Promega) between the KpnI and HindIII sites by Shanghai Major-
bio. All clones were validated by sequencing. HeLa cells were
cotransfected with the firefly luciferase reporter construct and
the internal control pRL-TK Renilla luciferase vector (Promega) at
a ratio of 40:1 (reporter vector:control vector) using Lipofectamine
3000 (Life Technologies) in triplicate. Forty-eight hours after trans-
fection, the cells were lysed and firefly and Renilla luciferase activ-
ities were measured using the Dual-Luciferase Reporter Assay
System (Promega) and Synergy H1 Microplate Reader (BioTek) ac-
cording to the manufacturer’s protocols.

Data access

Essential codes to reproduce our result and training sets are in the
Supplemental Material of Supplemental_Code_Data.tar.gz. All
data and code are available at: http://www.picb.ac.cn/hanlab/
cisTEs.
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