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NF-jB: a new player in angiostatic therapy
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Abstract Angiogenesis is considered a promising target

in the treatment of cancer. Most of the angiogenesis

inhibitors in late-stage clinical testing or approved for the

treatment of cancer act indirectly on endothelial cells. They

either neutralize angiogenic growth factors from the cir-

culation or block the signaling pathways activated by these

growth factors. Another group of angiogenesis inhibitors

are the direct angiostatic compounds. These agents have a

direct effect on the endothelium, affecting cellular regula-

tory pathways, independently of the tumor cells. The

reason that this category of agents is lagging behind

regarding their translation to the clinic may be the lack of

sufficient knowledge on the mechanism of action of these

compounds. The transcription factor NF-jB has been

recently connected with multiple aspects of angiogenesis.

In addition, several recent studies report that angiogenesis

inhibition is associated to NF-jB activation. This is of

special interest since in tumor cells NF-jB activation has

been associated to inhibition of apoptosis and currently

novel treatment strategies are being developed based on

inhibition of NF-jB. The paradigm that systemic NF-jB

inhibition can serve as an anti-cancer strategy, therefore,

might need to be re-evaluated. Based on recent data, it

might be speculated that NF-jB activation, when per-

formed specifically in endothelial cells, could be an

efficient strategy for the treatment of cancer.
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Introduction

The NF-jB/Rel proteins are a family of transcription fac-

tors that include five proteins, p50, p52, p65 or RelA, RelB,

and c-Rel, that exist as homo- and hetero-dimers. The most

common NF-jB heterodimer is composed of p50 and p65.

In resting cells, NF-jB is mainly sequestered in the cyto-

plasm by its association with proteins belonging to the IjB

inhibitor family. Stimuli such as the proinflammatory

cytokines tumor necrosis factor (TNF)-a, and interleukin-1

(IL-1), or bacterial products such as lipopolysaccharide

(LPS) can activate NF-jB. In the canonical pathway, these

stimuli activate IjB kinases (IKKs), which in turn phos-

phorylate the main NF-jB inhibitor, IjBa. This

phosphorylation step leads to the ubiquitination and sub-

sequent degradation by the proteasome of IjBa. The NF-

jB complex translocates to the nucleus where it binds to

jB enhancers present in the regulatory regions of various

genes and where it activates transcription [1]. The NF-jB

target genes are involved in a wide range of biological

functions including proliferation, survival, and inflamma-

tion (Fig. 1).

NF-jB activation has been connected with multiple

aspects of oncogenesis, including the control of tumor cell

proliferation, migration, cell cycle progression, and inhi-

bition of apoptosis [2–4]. Indeed, NF-jB is constitutively

activated in several types of cancer cells and it is
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generally regarded as an anti-apoptotic and pro-oncogenic

signal. The most studied and well-established functions

of NF-jB in promoting oncogenesis are its ability to

(i) induce growth promoting genes such as cyclin D1 and

c-myc and (ii) induce anti-apoptotic genes such as c-IAP-

1, c-IAP-2, or XIAP [3]. Therefore, activation of NF-jB in

cancer cells by chemotherapy or radiation therapy is often

associated with the acquisition of resistance to apoptosis.

This has emerged as a significant impediment to effec-

tive cancer treatment. In combination with chemotherapy,

inhibitors of the NF-jB pathway (e.g., proteasome inhibi-

tors) were recently used with success as treatment against

cancer [5]. Next to this direct effect, it has also been reported

that NF-jB activity can be tumorigenic by activation of

pro-angiogenesis genes, such as VEGF, IL-8, and MMP-9

[6].

In contrast to the negative effects of NF-jB activa-

tion, recent reports suggest that in certain situations

NF-jB can promote apoptosis and may be viewed as a

tumor suppressor gene. For example, blockade of NF-jB

predisposes murine skin to squamous cell carcinoma [7].

This observation could be explained by the fact that in

normal human epidermal cells, NF-jB activation induces

cell cycle arrest [8]. In addition, Ryan et al. describe the

role of NF-jB in p53-mediated programmed cell death.

The tumor suppressor p53 inhibits cell growth through

activation of apoptosis and cell cycle arrest. Using a

p53-inducible Saos-2 cell line, it was demonstrated that

induction of p53 causes activation of NF-jB. Further-

more, inhibition of NF-jB abrogated p53-induced

apoptosis demonstrating that inhibition of NF-jB in

tumors that retain wild-type p53 may reduce a thera-

peutic response [9]. Loss of p65 can also cause

resistance to different agents that induce apoptosis

through p53 [10]. Independently, it was demonstrated

that activation of NF-jB is essential for the cytotoxic

effect of doxorubicin and its analogs [11]. Many

hypotheses have been put forward to explain this dual

activity. The overall conclusion that is emerging is that

the final outcome of NF-jB activation depends on cell

type, the stimulus, and the context of activation [12–14].

The dual activity of NF-jB complicates the systemic use

of broad spectrum NF-jB inhibitors for the treatment of

cancer and it has been suggested to design better ther-

apeutics that specifically unleash the pro-apoptotic

activity of NF-jB [15, 16].

NF-jB in ongoing angiogenesis

NF-jB signaling has been found to regulate endothelial

cell integrity and vascular homeostasis in vivo. Treat-

ment of zebrafish embryos with NF-jB inhibitors

provokes vascular leakage and alters vessel morphology

[17]. The role of NF-jB signaling in tumor angiogenesis

has also been recently investigated. Inoculated tumors

grow faster in transgenic mice expressing mutated IjBa,

under control of the Tie-2 promoter, resulting in endo-

thelial repression of NF-jB [18]. Histological analysis

revealed a striking increase in tumor vascularization in

these mice. This study highlighted, for the first time, the

in vivo role of NF-jB in tumor angiogenesis, indicating

an inhibitory role for NF-jB in tumor angiogenesis.

Based on this study, NF-jB activation in endothelial

cells appears to be a way to block angiogenesis. How-

ever, it is unknown how specific activation of NF-jB in

endothelial cells can be realized and through which

mechanisms NF-jB activation leads to inhibition of

angiogenesis.

Angiogenesis occurs in a coordinated series of steps,

which can be divided into a destabilization, a proliferation,

and a maturation phase. Whereas inhibition of angiogenesis

Fig. 1 Schematic NF-jB pathway. In the canonical activation

pathway, NF-jB (often the dimer composed of p50/p65) is seques-

tered by its main inhibitor IjB-a. Upon stimulation, cell surface

receptors activate IKK complex, which then phosphorylate IjB-a.

These phosphorylations lead to its degradation by the proteasome and

the entry of NF-jB in the nucleus, which turns on target genes
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can prevent diseases with excessive vessel growth such as

cancer, diabetes retinopathy, and arthritis, stimulation of

angiogenesis would be beneficial in the treatment of dis-

eases such as coronary artery disease and critical limb

ischemia in diabetes [19]. One of earliest events in angi-

ogenesis is the degradation of the vascular basement

membrane and the remodeling of the extracellular matrix

(ECM). The role of NF-jB in the regulation of these sys-

tems is well documented. In line with a pro-oncogenic

activity, NF-jB promotes expression of several matrix

metalloproteinases (MMPs), including MMP-2, -3, and -9

[20–22]. However, NF-jB could also inhibit endothelial

cell migration via the up-regulation of tissue inhibitors of

metalloproteinase-1 (TIMP-1) as described in astrocytes

[23]. Next to the MMPs, plasmin is a broad-spectrum

protease that also hydrolyzes many extracellular proteins,

the most notable of which is fibrin. Plasmin is produced

from an inactive precursor called plasminogen. uPA

(urokinase plaminogen activator) and tPA (tissue-type

plasminogen activator) are two proteases with high affinity

for plasminogen. The activation of plasminogen into

plasmin could be negatively regulated by the physiological

inhibitors, namely plasminogen activator inhibitor (PAI)-1

and -2 [24]. In endothelial cells, it has been described for

both reactive oxygen species as well as for TNF-a induced

expression of PAI-1 via NF-jB [25]. In addition, activation

of NF-jB by TNF-a can also lead to the inhibition of the

tPA expression [26]. These data suggest that NF-jB acti-

vation could impair angiogenesis via a decrease in ECM

degradation capacity.

Integrins are the principle adhesion receptors used by

endothelial cells to interact with the extracellular envi-

ronment and are necessary for cell migration, proliferation,

and survival [27]. It has recently been demonstrated that

the interaction of aVb3-integrin with the ECM activates

NF-jB by activation of the IKK complex and degradation

of IjB-a. This activation triggers a pro-survival signal for

example in rat aortic endothelial cells [28].

Many soluble molecules control the balance between

cell proliferation and cell death. While angiogenic factors

such as VEGF and bFGF are mitogenic and act as sur-

vival factors, angiostatic agents induce cell cycle arrest

and promote endothelial cell death [29]. Activation of

NF-jB in endothelial cell leads to the expression of

angiogenic and angiostatic factors. VEGF expression is

up-regulated by hypoxia-induced mitogenic factor through

activation of the NF-jB pathway [30]. On the contrary,

vascular endothelial growth inhibitor (VEGI, reported to

inhibit endothelial cell proliferation) has also been found

to be induced by NF-jB [31]. In addition, the promoters

of thrombospondin-1 and -2, which are among the first

naturally occurring angiostatic agents discovered, contain

NF-jB binding sites [32].

The role of NF-jB in the cell cycle progression has been

also investigated [33]. NF-jB induces expression of acti-

vators of the cell cycle such as cyclin D or -E [34] as well

as expression of inhibitors such as p21/cip1 [35] demon-

strating that the overall effect of NF-jB on cell

proliferation is difficult to predict. To our knowledge, there

are no reports on a direct relationship between NF-jB

activation and proliferation in endothelial cells.

Programmed cell death or apoptosis occurs mainly by

two connected pathways. The extrinsic pathway involves

activation of caspase-8 by cell surface death receptors,

while the intrinsic pathway, involves cytochrome-c release

from mitochondria and subsequent caspase-9 activation. As

previously described for tumor cells, diverse activities have

been observed in endothelial cells. Silibinin, a cancer

chemopreventive agent, was found to induce apoptosis in

endothelial cell line by inhibiting NF-jB [36] and a report

describes that pro-survival effect of VEGF is mediated by

NF-jB activation [37]. However, a large body of evidence

exists that NF-jB activation plays a pro-apoptotic role in

endothelial cells. A high concentration of glucose activates

the production of reactive oxygen species and induces

caspase-3 activation in endothelial cells [38]. Recently, it

has been demonstrated that this is mediated via NF-jB and

subsequent c-Jun N-terminal protein kinase activation [39].

In human cardiac microvascular endothelial cells, IL-18

induces activation of both the intrinsic and extrinsic

apoptotic pathways via NF-jB activation [40]. Angio-

poietin-1 inhibits endothelial cell apoptosis induced by

growth factor deprivation. This effect is mediated via the

activation of an endogenous inhibitor of NF-jB, namely

A20 binding inhibitor of NF-jB (ABIN-2) [41]. In addi-

tion, in endothelial cells, it was observed that A20

inhibition and subsequent activation of NF-jB, effectively

leads to reduced tube formation in a matrigel assay [42].

A role for NF-jB in angiostatic therapy?

The observations described above indicate that NF-jB is

involved in the regulation of migration and/or proliferation/

survival of endothelial cells and suggest a strong link

between NF-jB in angiostatic agent signaling. The fol-

lowing section will highlight the role of NF-jB in the

angiostatic agent signaling. Indeed, several angiostatic

compounds, already described to block tumor growth, have

been reported to act on endothelial cells via NF-jB acti-

vation [29].

Platelet factor-4 (PF4) is an a-chemokine naturally

secreted by platelets and is known to inhibit angiogenesis

[43]. PF4 promotes the expression of E-Selectin in HU-

VEC. Data provide direct evidence that the NF-jB–binding

site is required for PF4-mediated activation of the
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E-selectin promoter. In addition, EMSA experiments

demonstrate that PF4 treatment of HUVECs results in

binding of NF-jB to the E-Selectin promoter already after

1 hour of stimulation [44]. The angiostatic properties of

angiostatin, a cleavage product of plasminogen, have also

been linked with NF-jB. Chen et al. have analyzed the

global action of angiostatin in endothelial cells. By

microarray screening, they have found an altered expres-

sion of 189 genes after treatment with angiostatin. These

genes are mainly involved not only in growth, apoptosis,

migration but also in inflammation [45]. Even though no

direct evidence points a role of NF-jB, angiostatin pro-

motes mRNA expression of RelB as well as many NF-jB

target genes, namely E-selectin, intracellular adhesion

molecule-1 (ICAM-1), Cyclin D1, p21/cip1, and FasL (for

the complete list of altered gene expression, see reference

[45]). Based on these data, there is a strong suggestion that

NF-jB is also activated by angiostatin. The 16 kDa N-

terminal fragment of prolactin (16 K PRL) is a potent an-

giostatic agent in various in vivo models and has been

shown to inhibit endothelial cell migration and prolifera-

tion [46–48]. We have demonstrated that NF-jB activation

is required for 16 K hPRL-induced caspase-8 and -9 acti-

vation and subsequent apoptosis [49]. In addition, it is

interesting to note that NF-jB activation appears to be a

very proximal event. The angiostatic agent Neovastat,

which is currently in phase III clinical studies, inhibits

angiogenesis through an increase in tPA activity and it has

been shown that this induction is NF-jB dependent [50].

Finally, administration of statins has been shown to

decrease tumor growth and angiogenesis [51]. Statins up-

regulate the expression of endothelial and inducible nitric

oxide synthase through NF-jB activation [52].

Based on all these reports, it is suggested that the

activity of angiostatic compounds is dependent on activa-

tion of NF-jB. Therefore, activation of NF-jB specifically

in endothelial cells might be an attractive therapy. TNF-a is

one of the most potent NF-jB activators. The clinical use

of TNF-a as an anti-cancer drug is limited to local treat-

ment (e.g., isolated limb perfusion) because of its systemic

toxicity [53]. To circumvent this problem, targeted delivery

of TNF-alpha to tumor vessels was achieved by coupling

this cytokine with cyclic CNGRC peptide, an aminopep-

tidase N (CD13) ligand that targets the tumor

neovasculature. Administration of this compound leads to a

reduced toxicity, a marked endothelial cell apoptosis,

destruction of blood vessels, and improvement of the anti-

tumor activity of doxorubicin [54]. These studies indicate

that NF-jB activation, specifically in endothelial cells, can

be an efficient strategy for the treatment of cancer.

In conclusion, while in tumor cells NF-jB is mostly

described as an oncogenic factor, up-regulation of NF-jB

in endothelial cells is associated with angiostatic activity. It

might therefore be warranted to revisit anti-cancer thera-

pies based on inhibition of NF-jB activity for effects on

angiogenesis.

An indirect anti-tumor activity of NF-jB through

circumvention of endothelial cell anergy

Next to a direct anti-tumor activity of NF-jB through

inhibition of tumor angiogenesis, the activation of NF-jB

could also be connected with an indirect anti-tumor activity

through reversal of endothelial unresponsiveness to

inflammatory signals, a process called endothelial cell

anergy. The latter is defined as the inability of tumor

endothelial cells to express adhesion molecules such as

ICAM-1/-2, vascular endothelial cell adhesion molecule-1

(VCAM-1) or E-selectin, in response to inflammatory

cytokines such as TNF-a, interferon-c and interleukin-1.

These adhesion molecules mediate leukocyte rolling along,

adhering to, and diapedesis through the vessel wall, and

thus have an important role in the selection of an inflam-

matory infiltrate [55].

The observation of a reduced number of infiltrated leu-

kocytes in the tumor [56] has been correlated with the fact

that tumor endothelial cells display a reduced expression of

adhesion molecules (ICAM-1 and ICAM-2) as compared

with normal endothelial cells [57, 58]. In vitro and in vivo

studies on endothelial cell anergy have demonstrated that

this reduced expression is caused by exposure to angiogenic

growth factors such as VEGF and bFGF [59]. It has been

recently described that bFGF down-regulates ICAM-1

expression via NF-jB inhibition [60]. Furthermore, we have

demonstrated that suppressed leukocyte-vessel wall inter-

actions in tumor vessels can be normalized by angiostatic

compounds, such as endostatin, angiostatin, anginex, and

16 K hPRL, as well as by treatment with chemotherapeutic

agents [61, 62]. This normalization has been correlated with

up-regulation of ICAM-1, VCAM-1, and E-selectin in

endothelial cells [44, 63]. Therefore, activation of NF-jB by

angiostatic therapy does not directly affect angiogenesis but

also has an indirect effect via expression of adhesion mol-

ecules and subsequent reversal of endothelial cell anergy.

Therefore, such activation of NF-jB resulting in stimulation

of anti-tumor immunity but also in inhibition of angiogen-

esis clearly results in an anti-tumor outcome.

Where to go from here?

Inhibition of angiogenesis is a promising therapeutic

approach to fight cancer. From several recent findings it

is likely that activation of NF-jB is a common mecha-

nism of angiostatic agents, resulting in both inhibition of
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angiogenesis and stimulation of anti-tumor immunity.

While these data raised a cautionary note about the phar-

maceutical agents that block NF-jB, they also suggest that

a targeted activation of NF-jB, specifically in endothelial

cells, could represent a new and promising strategy in

cancer treatment (Fig. 2). Further studies remain necessary

to fully understand the molecular mechanisms induced by

angiostatic agents and the role of NF-jB in endothelial

cells.
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